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EFFECTS OF MAGNETIC FIELD AND
NON-UNIFORM BASIC TEMPERATURE
GRADIENT ON THE ONSET OF
RAYLEIGH-BENARD CONVECTION

IN A MICROPOLAR FLUID

S. Pranesh*

ABSTRACT

The effects of magnetic field and non-uniform basic temperature gradient
on the onset of Rayleigh-Benard convection in an efectrically conducting
micropolar fluid are sudied using the Galerkin technique. The eigenvalue
is obtained for free-free, rigid-free and rigid-rigid velocity boundary
combinations with isothermal and adiabatic temperature conditions on
the spin-vanishing boundaries. The eigenvalues ore also obtained for
lower rigid isothermal and upper free adiabotic boundaries with
vonishing spin.Alinear stability analysis is performed. The influence of
various parameters on the onset of convection has been analyzed. Six
different non-uniform temperoture profiles are considered and their
comparative influence on onset is discussed. It is observed that the
electrically conducting fluid layer with suspended particles heated from
below is more stable compared to the classical electrically conducting
fluid without suspended particles. The critical wave number is found to
be insensitive fo the changes in the paramefers but sensitive fo the
changes int the Chondrasekhar number.
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1. Introduction

The theory of Rayleigh-Benard instability of a horizontal liquid layer with free upper
surface over a heated plofe has many imporfant applications in a number of
engineering problems, such as in oil extraction from porous medium, energy storage
in molten salts,and chemical engineering of paints, colloids and detergents.The
instability of Royleigh-Benard convection is due fo the effect of the thermal buoyancy.
Theoretical studies of the onset of convection in classical viscous fluids with non-
uniform heating have been made by Currie [1] with isothermal boundaries and by
Nield [2] with adiabatic boundaries and showed that in the case of piecewise
linear temperature profile the onset of convection could occur at a smaller Rayleigh
number than that of uniform heating.The non-uniform temperature gradient finds
its origin in transient heating or cooling at the boundaries and as a result the basic
temperature profile depends explicily on position and time. This has to be determined
by solving the coupled momentum and energy equations. This coupling also makes
the problem very complicated.in the present study, therefore, we odopt a series of
femperature profiles based on a simplification in the form of a quasi-static
approximation (Currie {1], Lebon and Cloot [3] and Rudraiah et dl [4]) that consists
of freezing the temperature distribution at a given instant of time.In this method, we
assume that the perturbation grows much faster than the initial state and hence
freeze the initial state into some spatial distribution. This hypothesis is sufficient for
our purpose because we are interested only in finding the conditions for the onset
of convection. Even with these simplifications, the solutions to the variable-coefficients
stability equations pose a problem because the temperature gradient varies with
depth. '

Micropolar fluid theories [5-7] describe some physical systems, which do not satisfy
the Navier-Stokes equation.To explain the kinematics of such media two new
variables should be added to the velocity. These variables are the spin, responsible
for microrotations, and the microinertia tensor, which accounts for the atoms and
molecules inside the macroscopic fluid particles.These fluids are able to describe
the behaviour of suspensions, liquid crystals, blood, etc (see Power [8], Lukaszewicz
[9] and Eringen [10]}). Chandra [11] observed in his experiments that adding
smoke parficles to a layer of gas could decrease the Rayleigh number at which
convective mofion commences.Since the particle spin associated with Eringen’s
theory could possibly be appropriate to the added dust situation described by
Chandra [11}, there may be dust, dirt, ice or raindrops, or other additives. Thus we
believe that the Eringen micropolar convection model may be applicable to
geophysical or industrial convection confexts. The Rayleigh-Benardsituation in
Eringen’s micropolar fluids has been investigated by many authors [12-25).The
main result from alf these studies is that for heating from below stationary convection



is the preferred mode. The effect of non-uniform basic temperature gradients on the
onset of Rayleigh-Benard convection in a micropolarfluid has not been given any
attention.Hence, the aim of this paper is to study the effect of magnetic field and
non-uniform basic temperature gradients on Rayliegh-Benard convection with the
object of understanding the control of convection. A single term Galerkin method
expansion procedure is used here with the intention of obtaining reasonable results
with minimum of mathematics.

2. Mathematical Formulation:

Consider an infinite horizontal layer of a Boussinesquian, electrically conducting
fluid, with non-magnetic suspended particle, of depth ‘d’ permeated by an externally
applied uniform magnetic field normal to the loyer (see figure (1)). A cartesion co-
ordinate system is taken with origin in the lower boundary and z-axis verically
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Fig. 1. Sch_émcn’ric Diagram of the Rayleigh-Benard situation fora
fluid with suspended parficles

upwards, Let DT be the temperature difference between the upper and lower
boundaries.The body forces acting on the fluid are buoyancy and magnetic field.
The governing equations for the Rayleigh-Benard situation in a Boussinesquian
fluid with suspended particles are:

Continuity equation:

V=0 (1)




Conservation of linear momentum:

Po[gt_ﬁ + (Q.V)ﬁ] =-VP-pgk + (2L +nV3G+ {Vxd+p,, (ﬁ.V}'i’ )
Conservation of angular momenium

Po 1[%{‘% (E]’.V)('i)] = A+ W (V.oln'V2H+E (VxG-2), (3)

Conservation of energy

aT (. B " ou?
§+(q- 5.Co me}VT—xV T, (4)

Equation of state ,
p=p [I-a.(T-T,)], (5)

Magnetic induction equation

OH = (Y -
T @Gv)d= (H.V)qwm ViH (6)

where § is the velocity, @ is the spin, T is the temperature, H is the magnetic

field, P =p+uTmH§ is the hydromagnetic pressure, p is the density, p, is the

density of the fluid ot a reference temperature T=T,, vis the acceleration due to
gravity, { is the coupling viscosity coefficient or vortex viscosity, 1 is the shear
kinematic viscosity coefficient, | is the moment of inertia, A’ and 1" are the bulk and
shear spin viscosity coefficient, B is the micropolar heat conduction coefficient, C,
is the specific heat, % is the thermal conductivity, & is the coefficient of thermal
expansion and T, =1/,,6,, is the magnetic viscosity (o, : electrical conductivity
“and p, : magnetic permeability). All the viscosity coefficients, heat conduction
coefficient and thermal conductivity are thermodynamically restricted to be positive
quantities on the assumption of Clausius-Duhem inequality (see Eringen {7]}. In
the energy equation (4) the viscous heating and Joule heating are neglected.

Equations (1)-(6) are solved subject to various velocity and temperature boundary
conditions. Further, the no-spin boundary condition is assumed for microrotation.



2.1 Reference Steady-State

In the reference steady-state the fluid is at rest, the temperature distribution across
the layer is non-linear and the lines of force of the magnetic field are vertical. This
state is described by : '

- _ - a d dT;
qb =0, mb =Os Hb =H0k1 P =pb(z)v p =pb(z)! —_-""""t""=f(z) . (7)
AT dz

The monotonic, non-dimensional basic temperature gradient {{z) which is non-

1
negative satisfies the condition jf (z)dz =1, The non-uniformity in T, as in (7)

0
finds its origin in transient heating or cooling at the boundaries (Siddheshwar and
Pranesh [21,22] and references therein). In this paper various reference steady-
state temperature gradients are considered and these are defined below:

Table 1:
Model Reference steady-state f(z)
temperature gradient
1 Linear i
e!' 0<z<e
2 Heating from below 0 e<z<1
| 0 0<z«l-g
3 Cooling from above et 1—g<z<]
4 Step function ) (Z —-£ )
5 Inverted parabolic 2(1— Z)
6 Parabolic 2z




2.2 Linear Stability Analysis

Letthe reference steady-state be disturbed by an infinitesimal perturbation in velocity,
microrotation, pressure, density, temperature and magnetic field. We now have

§=G,+4, 0O=@,+&, P=P+P, p=p,+p,

T=T,+T, H=H +{". (8}
The primes indicate that the quantities are infinitesimal perturbations and subscript
b indicates the reference steady-state value. In the present problem we assume the

principle of exchange of stability to be valid and hence deal with only stationary
convection.

Substituting equation (8) into equations {1)-(6), we get the linearised equations
governing the infinitesimal perturbations in the form :

V.§i’'=0, (9)
s oy oH, -
- VP —p'gk+(20+M) V2 + LV XD +41,,H, k=0, {10)
z

(M +M )V (V& )+ V2@ +§(VxG -28) =0, (11)
AT B - ]
-2t )| W-—Vx @k =y VT

- (z)( - ) VT (12)
p'=—ap,T’, (13)
Hoaawk+7mV2H =0. (14)

The perturbation equations {9)-{14) are non-dimensionalised using the following
definition :

¥ ¥ (X Y»z) wk -.’ & = o . T otk H
IS = 3 yT"=—, H =r

Using equation {13} in equation (10}, operating curl iwice on the resulting equation,
operating curl on equation {11} and non-dimensionalising the two resulting
equations and also equations (12) and (14), we get

2 2
(14N, )V*w+N V20, +R| L. 2T Q-—-—— LS P I (16)
o’ ay oz



N,V2Q, -2N,Q, -N VW = 0, (17)

VIT+W-N,Q, = 0, (18)
vep, +2mW oy, | (19)
Pr oz

N; =E_% (Coupling Parameter},
W
N; = (C+n) a2 (Couple Stress Parameter),
B
5 2 {(Micropolar Heat Conduction Parameter),
Pocvd
+
Pr= ¢ xn (Prandtl number),
+1
Pm =CT'" (Magnetic Prandti number],
0.gATdp,
v teigh
(Cv)x (Rayleigh number) and
B Had?
Q=" .
€))7 {Chandrasekhar number)

The infinitesimal perturbations W, @, Tand H, are assumed to be penodlc and
hence these permit a normal mode solution in the form

[W,Q,T,H,] = [W(2),G(2),T(z), H,(z)]exp [i (1x +my )] . | {20)

where | and m are horizontal components of the wave number 3 .



Substituting equation (20} into equations (16)-(19), we get

(1+N,)(D2—a2)2w+Nl(D2—az)G_Ra2T+Q§—;(D2—a2)DH,=0, (21)

N, (D?-a’ JW-N;(D? -2® )G +2N,G =0, (22)
(D? -2 )T +£(z)(W -NsG)=0, (23)
(D?- az)Hz+l;—me 0 (24)
where Dzi.

dz

The sets of ordinary differential equations (21)-{24} are approximations based on
physical considerations to the system of partial differential equations (16)-(19).
Although the relationship between the solufions of the governing partial differential
equations and the corresponding ordinary differential equations has not been
established, these linear models reproduce quadlitatively the convective phenomena
observable through the full system,

Eliminating H, between equations {21) and (24), we get

(1+N,)(D*- )W+N1( -2")G-Ra’T-QD*W =0. (25)

Equations (22), (23) and {25) are solved subject o the following boundary conditions:
W=DW=T=G=0atz=0,W=DW=DT=G=0adat z=1, (26

Equation (26) indicates the use of rigid, isothermal lower boundary and upper,
free, thermally insulating boundary (with respect to the perturbation). The condition
on G is the spin-vanishing boundary condition,

We now use the single-term Galerkin method to find the critical eigenvalve to
equations {22), (23) and (25) that gives general results on the eigen value of the
problem for various basic femperature gradients using simple, polynomial, rial
functions for the lowest eigen value, We obtain an approximate solution of the
differential equations with the given boundary conditions by choosing trial functions
for velocity, microrotation and temperature perturbations that may satisfy some of
the boundary conditions but may not exactly satisfy the differential equations. This



leads fo residuals when the trial funciions are substituted into the differential equations.
The Galerkin method requires the residual to be orthogonal fo each individual trial
function.

In the Galerkin procedure, we expand the velocity, microrotation and temperature
by,

W)=Y AOWE,  0m)=YB0GE  Ta)=Y.C 0T

where W,(z), G,(z) and T,{z) are polynomials in z that generally have to safisfy the
given boundary conditions. For the single term Galerkin expansion technique we
take i=j=1.

Multiplying equation {25) by W, equation (22) by G and equation (23) by T, integrating
the resulting equation by parts with respectto zfrom O to 1 and taking W = AW,

G =BG, and T = CT, in which A, B and C are constants and W,, G, and T, ore
trial funchons This procedure yields the following equation for the qulelgh number R:

(1,(p?-2%)1 ) C1C, + NG, ]

' 27
a®(WT,)C, “

where

C =N3 (Gl (p? -—az)Gl)—ZNl (G?),

C, =(1+N1)<W1 (D*-a?)’ Wl>—Q(W1D2W,),

C; =(W(D*- 2)Gy ) (G, (Dz—-az)W1>,

Cy = NNy (F (z)GlTl)<Gl (D? —az)Wl)—(f (Z)WT)C,

In equation (27), {(—=) denotes integration with respect to z between z = 0 and
z=1. We note here that R in equation {27} is a functional and the Euler-Lagrange
equations for the extremisation of R are equations {22), (23) and (25).




The value of critical Rayleigh number depends on the boundaries
consider the following boundary combinations:

(a} Free-free isothermal / adiabatic, no spin.
(b) Rigid-rigid isothermal / adiabatic, no spin.
{¢) Rigid-tree isothermal / adiabatic, no spin.

(d) Lower rigid isothermal and upper free adiabatic , no spin.

. Inthis paper we

Critical Rayleigh number for free-free, isothermal,

no spin:
Table {2): Isothermal: N, = 0.1, N, = 2.0, N, = 1.0, Q = 10.0
Boundary Free - Free Rigid - Free Rigid - Rigid
Profiles gc | Ratioof R, gc | Ratioof Ry € | Rativof R

Heating from below | 0.72 |R,, =R, /1.2070 [ 0.76 |R, =R /1.1682 | 0.70

R, =R /12513

Coolingfromabove | 0.72 |R; =R /1.2070 | 0.85 [R, =R,,/1.3392 | 0.70

R =R, /12513

Step function 0.52 |R., =R /12070 | 0.54 [R., =R, /20798 | 0.50|R,, =R, /2.2033
inverted parabolic | - Res =Ry - R, =R, /05191 R.s =Ry
Parabolic - Re =Ry - |Ry =R, /1.0808 Ry, =Ry
The boundary conditions are
W=D’W=T=G=0, af z=0,]1. (28)
The trial functions satisfying (28) are |
W, =z' =222 +2, Ty=z(l-z), G, =z(1-2) {29)

10



Substituiing (29) in equation (27) and performing the infegration, we get

_{10+%)[ 28y, [(1+],)y, +306Q] 3Ny}
T1530a2 |14y, (f () W T )~ NiNsys (f (z) TGy ) |

(30)

where
yi =N, (10+a%)+2N,,
y, =3024+612a% +31a%,
y; =168+17a%,

For a given f(z), R attains its minimum value R ot a=ag.

The integrals (f (Z)W1T1) and (f (Z)TIGI) will have the following forms depending
on the naiure of basic temperature profile.

Model 1. Linear temperature profile:

(f (Z)W1T1)=£6, (f (z)T1G1)=-3:16'

Model 2. Piecewise linear heating from below temperature profile:

(f(z)wiTl)=$

(t(z)T,Gy) = %(654 ~15¢* +10e?).

(-6086 +210e° —168e* ~105¢° +140¢? )

Model 3. Piecewise linear cooling from above temperature profiie:
(f(z)WT,) = I;_6(—605"’ +2106 ~168¢* ~105¢” +140€? ), }

{f(2)TG) = 516(654 ~15€° +10¢* ).

Model 4. Step function temperature profile:

(£ (2)WT,) =—¢° +3¢° —2¢* =&’ +¢?,
(f(2)T,G, ) =¢* —2¢” +€7.

11



Model 5. Inverted temperature profile:

17 1
(f(z)“a'r1>=—4—25, | (f@)10,)=

Model 6. Parabolic temperature profile:

(f@wn)=0 (@)=t

Critical Rayleigh number for rigid-rigid,
isothermal, no spin:

The boundary conditions are

W=DW=T=G=0,qatz=0, 1], | | (31)
The trial functions satisfying {(31) are
W, =z -22% + 22, Ti=2(1-z), G, =z(1-z) {32)

Substituting {32) in equation (27) and performing the integration, we get

R_(10+a2) 28y [(1+N,)y, +12Q]-3N2y?
27042 I4y[(f(z)W,'l“,)—N,N5y3(f(z)’I}Gl) ‘

where ¥1=Nj (10+32)+2N1,
Yz =504+24a2 43¢,
y3 =28+3a’.

For a given f(z), R attains its minimum value Rata=a,.

The integrals (f (z2)W,T,) and {t (2)T,G, ) will have the following forms depending

on the nature of basic temperature profile.

12



Model 1, Linear temperature profile:

(t (Z)W1T1)=Ii_0’ (f (Z)TIGI):'%.

Model 2. Piecewise linear heating from below temperature profile:

{f (z)WT)= ﬁ (-20¢° +70¢° —84¢* +35¢’ ),

{f (z)1,G,)= 31—0(684 ~15¢° +10¢).

Model 3. Piecewise linear cooling from above temperature profile:
1 6 5 4 3
f(z)WT )= =20e” +70e” ~84€” +35¢7 |,
( (z}W 1) i 40( )

(£ (2)Ti6,)= (66" ~15¢" +10¢2).

Model 4. Step function temperature profile:
(f(z)WT )= -€° +3¢° -3¢* + €,

(f(z)T,G,)=¢* —2¢> + €.

Model 5. Inverted temperature profile:

1

{E @)W ) =15 (f)16;) =5

% .

Mode! 6. Parabolic temperature profile:
1 1

{(f(z)WT) =T (f(z)T,Gy) n

13



Critical Rayleigh number for lower rigid and upper
free isothermal, no spin:

The boundary conditions are

W=D’W=T=G=0 at z=1]'
The trial functions satisfying (34) are
W, =22* —57% + 322, Ty=2z(I-z), G,=z(1-2) - (35)
Substituting {35} in equation (27) and performing the infegration, we get
o (10+a%)[ 28y, [(1+N,)y, +216Q]-3N2y?
1170a* | 28y, {f ()W, T; )~ N;Nsy, {t(z)1G)]| 3]

where
yl = N3 (10+a2)+2N1,
¥y, =4536+432a% +19a%,
¥y =126 +13a2,

For a given f(z), R aitains its minimum value Rata=ac.

The infegrals (f (z)W,Tl) and {f (2)T,G, ) will have the following forms depending

on the nature of basic temperature profile.

Model 1. Linear temperature profile:

13 1
f(2)WT, )= —=, £(z)T,G, Y= —
( (z)W, [) 340 ( (#)T, 1) 30

14



Model 2. Piecewise linear heating from below temperature profile:

(f(z)WlTl)—-éza( —120¢° +490¢° — 672¢* +315¢° ),

£(z)T,G, =1 (6et ~ 156> +10?).
(z) m

Model 3. Piecewise linear cooling from above temperature profile:

(f(z)WT) = gia(—lzoa"’ +350€° - 252¢* ~105¢* +1408? ),

{t(2)TG,) = 30(63 ~15¢€° +10€?).

Model 4. Step function temperature profile:
(f (2)WT ) =—¢* +%e5 —4et + —;—ES,

(£(2)TG,)=¢* -2 +¢”.

Model 5. Inverted temperature profile:

(f (Z)WlTl) (f (Z)T1G1> e

70’ 30°

Model 6. Parabolic temperature profile:

(f(z)wlTl> 60 (f(Z)T1Gz> 310-

15



Critical Rayleigh number for free-free adiabatic,
no spin:

Table (3): Adiabatic: N, =01, N, = 2.0, N, =10 Q=100

Boundary Free - Free Rigid - Free Rigid - Rigid

Profifes g, Ratioof R; [ e | Ratioof R, g | Rafioof R,

Heating from below | 0.75 | R, =R, /1.1373{ 0.82 | R, =R, /1.1035 | 0.72 R =R,/1.2015

(oafingfomubove | 0.75 | Ry =R,/1.1373 | 0.63 [ R, =Ry /12775 | 0.72 R =R, /1.2015

Step function 050 | Roq =R /15657 | 057 | Roy =Ry /16753 | 0.50| R, =R, /18945
lnverted parabolic | - R =Ry - [Rea=R, /08830 - Res =Ry
Parabolic - Ry =Ry - | Rog=Rp /11168 - R =Ry

The boundary conditions are

W=D*W=DT=G=0,at z=0, 1. 37)
The trial functions satistying (37) are

W, =z-22+2, T =1 G, =z(l-2) . (38)

Substituting (38} in equation (27} and performing the integration, we get

__ 1] 28y [(1+N,)y, +306Q]~3N2y2 , (39)
252 |14y, {f (z)W,T; )~ N, Nsy, 3 (2)T,Gy)

16




where

y; =N, (10+a2)+2N1,
y, =3024+612a° +31a",
y, =1684172".

For a given f(z), R attains its minimum value R ot a=a,.

The integrals (f (z)WT,) and (f (z)TlGl) will have the following forms depending
on the nature of basic temperature profile.

Model 1. Linear temperature profile:

((@wWm)=1.  (f@T0)=¢.

Model 2. Piecewise linear heating from below temperature profile:

{(f(z)WT;)= -}}6(284 —5¢> +5¢),

(f(z)T,G,) = %(--2.*32 +3¢).

Model 3. Piecewise linear cooling from above temperature profile:

1

E(zs“ -5¢° +Ss),

(f ()W ) =

(£ (2)TG1 )= % (~2e? +3¢).

Model 4. Step function temperature profile:
(f(z)WT)=¢* -2€" +e,
{t (2)T,6,) =€ +e.

17



Model 5. Inverted temperature profile:

(f(z)wlTl)=';" (f(Z)T1Gl>=%-

Modei 6. Parabolic temperature profile:

(feywm)=z  ((E@)T6)=1.

Critical Rayleigh number for rigid-rigid adiabatic,
no spin:

The boundary conditions are
W=DW=DT=G=0,atz=0, 1, (40)

The trial functions satisfying (40) are

W=z -247", T =1 G =z(i-2) (41)

Substituting {41) in equation (27) and performing the integration, we get

1{ 28y [(1+N, )y, +12Q]-3N%y3 }
= , (42)

42 |14y, (D)WL, ) - NNy, (T () TGy
where
y1 =N; (10+2%)+2N,,

¥z =504+242% +at,
y3 =28+3a’.

For a given f{z), R aftains its minimum value R.ata = a..

The integrals {f (z)W[T[) and (f (2)T,G; ) will have the following forms depending

on the nature of basic temperature profile.

18



Model 1. Linear temperature profile:

(f@WT)=5  ((@m6)=.

Model 2. Piecewise linear heating from below temperature profile:
_1lys 4 3 3
(f(z)WT;) -3-6(63 -15¢* +10¢ ),

(f(z)T,Gy)= »é—(--za2 +3¢).

Model 3. Piecewise linear cooling from above temperature profile:
1 a 3 3
(f ()W) = 5(éa ~15¢" +10¢’),

{t(z)TGy) = wlﬁ-(~282 +3¢).

Model 4. Step function temperature profile:
(f(z)WT)=¢*-2¢’ +¢2,
{f(2)T,G)) =—¢" +&.

Model 5. Inverted temperature profile:

((@wWn)=5.  (fE@T6)=7.

Model 6. Parabolic temperature profile:
1 1

(f(z)wl'rl>=%v (f(Z)TlG1>=g.

19
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283 (f (Z)w‘ !
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where
y =Ny (10+2% }+ 2N,

y, =4536+432a° +192*,
y; =126+13a%,

For a given f(z), R attains its minimum value R at a=a_.

The integrals (f (Z)WITI) and {f () T,G, } will have the following forms depending

on the nature of basic temperature profile.

Model 1. Linear temperature profile:

=

(f (Z)WITJ>=4_30, (f()T,6,)=

Model 2. Piecewise linear heating from below i‘emperufure profile:

(f(z)WT;)= %(sé‘ -25€° +20¢”),

(f(z)T,6,) = %(—2&:2 +3€).

Model 3. Piecewise linear cooling from above temperature profile:
I Y 3
{t(z)WT) = 4—0(85 —15¢* +10¢),

1 .
O E(—2a2 +3¢).
Model 4. Step function temperature profile:
{f(z)WT)=¢" —233 +%az,

{f(z)T,G; ) =-€" +&.

21



Model 5. Inverted temperature profile:

(@WI)=E  (eme)-1

Model 6. Parabolic temperature profile:

(@WT)=5,  (f@10)=¢.

Critical Rayleigh number for lower boundary
rigid-isothermal and upper boundary free-

adiabatic, no spin:

The boundary conditions are

W=DW=T=G=0 at z=0 (46)
2 t

W=D W=DT=G=0 at z=l

The trial functions satisfying (46) are

W, =2z*-52°+32%, T,=2(z-2), G,=z(1-z) (47)

Substituting (47) in equdh’on {27) and performing the integration, we get

. (5+22°)[ 28y,[(1+N,)y, +216Q]-N2y?

= , 4

36 | N;Nays {f(2)T,G, )~ 28y, (£ (2) W/T,) (48)

where
y; =N3{10+2% }+2N,,

y, =4536+432a% +19a*,
y3 =126 +13a%,

22



For a given f(z), R aftains its minimum value R ot a=a,.

The integrals {f (z)W{l}) and {f (z)T,G, ) will have the foltowing forms depending

on the nature of basic temperature profile.

Model 1. Linear temperature profile:

Gawm)=2  (eme)=g.

Model 2. Piecewise linear heating from below temperature profile:

(f(z)WT)= 2—;0(4056 ~210¢° +364¢" —210¢° ),

(f(z)5Gy) = -6—16(—1284 +45¢° - 402 ).

Model 3. Piecewise linear cooling from above temperature profile:

(f(z)WT) = _2%6(4086 -70¢® - 56¢* +140¢> - 702 )

(F(2)T,61) = -636(-—1254 +15€° — 206" - 30¢).

Model 4. Step function temperature profile:

9 13
WT)=ef -2 + 2t 387,
(f(Z) 11> £ 28 + 28 £

(t(z)T,G, ) = ~¢* +3¢* ~2¢”.

Model 5. Inverted temperature profile:
=19 -1

{f(z)WT;) = 0’ (f(2)1,Gy) = 0
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Model 6. Parabolic temperature profile;

(awm)=30  (@ne)=3.

3. Results and Discussion

In this paper we considered the following effects on the classical Rayleigh-Benard
problem:

a)  magnefic field inhibition of convection
b)  micropoler fluid parameters, and
c) non-linear reference steady-state temperature distribution.

These three effects are, respectively, represented by the Chandrasekhar number @,
Micropolar fluid parameters (N, N,, N,) and (z) in the eigenvalue equation (27).
The typical values of Q are those traditionally chosen in Newtonian fluid problems
(see Chandrasekhar [25], Platten and Legros [26]) and thermodynamic restrictions
dictate the following permitted range values for N, N, and M,:

0SN; <1, 0<N;<m, 0N <n,

where m and n are finite, real numbers (see Siddheshwar and Pranesh [21]). One
linear and five non-linear reference steady-state temperature profiles, i.e., fiz)'sare
chosen for study (see fable {1)). It is observed that for the non-symmetric boundary
‘combination critical Rayleigh number, R., holds the following inequality of the six
medels,

R, <R <R, <R, <R, <R,,1

i.e., the step function is the most destabilizing basic temperature distribution and
inverted parabolic is the most stabilizing basic temperature distribution. In the case
of symmetric boundary combination the step-function and inverted parabolic
temperature profile are respectively most destabilizing and stabilizing basic
ternperature distribution. For the non-symmetric boundaries in the case of isothermal
femperature boundary condition the step function and inverted parabolic temperature
profile are respectively most destabilizing and stabilizing basic temperature
distribution. In the case of adiabatic temperature boundary conditions the step-
function and heating from below temperature profiles are respectively most
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destabilizing and stabilizing basic femperature distribution. In the case of piecewise
linear and step function profiles, the critical Rayleigh number R_depends on the
thermal depth, €, in addition to depending on the parameters of the problem.
Tables {2} — (4) provide information on the critical thermal depth €_that yields the
critical eigenvalues for different boundary combinations in respect of all relevant
basic temperature gradients.

Table (5): Why and how of the stabilizing / destabilizing effects of the suspension
parameters N, N,, N2

Parameter Nature of effect * Physical reason
N, Stabilizing Increase in N, indicates the increase
0<N €1 {as N, increases) in the concentration of

microelements. These elements
consume the greater part of the
energy of the system in developing
the gyrational velocities of the fluid
and as a result the onset of
convection is delayed.

N, Destabilizing Increase in N, decreases the couple
0N, <m {as N, increases) stress of the fluid which couses a
(m: finite, real) decrease in microrotation and hence

makes the system more unstable.

N, Stabilizing When N, increases, the heat
0<N;<n {as N increases) induced info the fluid due fo these
(n: finite, real) microelements also increases, thus

reducing the heat transfer from
botiom to top.

The critical Rayleigh number R_obtained using Rayleigh-Ritz technique for different
values of N, N, N, and Q are shown in figures (2) - {10). Figures (2) ~(4) are
the plot of critical Rayleigh number R_versus coupling parameter N, couple stress
parameter N and micropolar heat condition parameter N, for different values of
Chandrasekhar number Q and for different non-uniform temperature gradients for
different velocity boundary combination and isothermal temperature boundaries.
Figures (5) - (7) are the plot of critical Rayleigh number R_versus N, N; and N,
for different valves of Chandrasekhar number Q and for different non-uniform
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temperature gradients for different velocity boundary combination and adiabatic
temperature boundaries. Figure (8} is the plot of critical Rayleigh number R, versus
N,, N, and N, for different values of Chandrdsekhar number Q and for different
non-uniform femperature gradients for lower rigid isothermal and upper free adiabatic
boundary combination. Figures (9} — {10) are the plot of critical Rayleigh number
R, versus N, N, and N, with respect to linear temperature profile for different
velocity boundary combination and for isothermal and adiabatic temperature
condition respectively. From these figures, we obseve that as N, increases R _also
increases, N,increases R_decreases and N, increoses R_also increases, the reason
for the increase and decrease of R_is given in table (5). From the figures (9) and
(10) we observe that the results of isothermal and adiokatic boundaries are

qualitatively similar. Also we observe from these figures RER > RFF 5> RIF where
the superscripts corresponds to the three velocity boundary combinations.

N3 =20, Ng=1-0 Ny= 01, Ng =10 Ny=0-1, N3 =20

3000~ 1-G=0 : 12000 1-Q=0 1200~ 1-Q=0
2-Q =10 2-0=10 2
2500 e Linear
2000] 2 ~—=-—Heating '
______ from below
Re 1500 :__’___,..--—""1 —-— Step function
——t
1000 .
—— e 2
ot
500, ——
ol . | 1
(T G ! ra
Ny Ns

{a) {c)

Fig. 2. Plot of critical Rayleigh number R, Vs. {a) Coupling parameter N,,
(b} Couple stress parameter N, and {c) Micropolar heat conduction parameter N,
with respect o free-free isothermal boundary for different values of Chandrosekhar
number Q and different Non-uniform basic temperature gradients.
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N1=0“, Ns= 10 N1 =01, Na 220
2500 1-G=0 2500 1-0=0

2-a=10 2-a=10 2
2 /
W00~ /.
[~ R
I~ o -t Linear .
1500 T ‘ S — —+ Heating
e " trom betow
= p— [p— 1 —-— Slep function
WO T T
50001 ] | P B |
2 [ 10 1 7

Na Ns
[¢Y) {c}

Fig. 3. Plot of R_Vs. (a) N,, {b} N, and (c) N, with respect to Rigid-Rigid Isothermal
boundary, for different values of Q and different non-uniform basic femperature
gradients.

—— Linear, —— Cooling from ahove, — — Step function
—o— Healing trom below, —e— Inverted parabolic, —==~Parabolic
1-Q:=0

1800,

Re

800

(b

Fig. 4.Plot of R Vs. {a) N, {b) N, and (c) N, with respect fo Rigid-Free Isothermal
boundary, for different values of Q and different non-uniform basic femperature
gradients.
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N3=2-0, Ng =10 Ny =0-1, Ng=10 Ny=01, Ny=20

700 1-2=0 300r 1-Q=0 300 15 0
2-Q=10 /2 2-2=10 | 20102
2508 - =t —Linear
~ - - °
------ : - ~—— Healing
200+ L from belo\fv
Re P~ 2 | —=2  ——— Step function
150k ——
"~ ! I
T e e - - | ———
100 :"-._.__ I | :____,_..—-—..—-—1
50 , , |
H s 10 0 1 2
N3 Ns
{n) ()

Fig. 5. Plot of R_Vs. (a} N, (b} N, and {c) N; with respect to Free-Free Adiabatic
boundary, for different values of Q and different non-uniform basic temperature
gradients,

- N3=2:0, N5 =10 Ny=04, Ng=10 Ny=01, N3 =20

3000, 1-Q=0 10=0 1-Q=0
2-0=10
1000F 2 1000

F 2-0 =10

—— Linear

——— Heati
from ?:%Iow

2000
Re

Re | e Step function
——————— 1
1000
¢ 600}
-’ -
= et
0 400 T e g
0 02 08 w2 2 & 10 0 1 ]
Ny N3 Ns

Fig. 6. Plotof R Vs. (o) N,, (b) N, and (c} N, with respect fo Rigid-Rigid Adiabatic
boundary, for different values of Q and different non-uniform basic temperature
gradients.
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Linear , —.— Cooling trom above,  — — — Step function

~—g— Heating frem below, ——o— Inverted parabolic, --—--- Paratolic
1-0=0, 2-Q =10
Ny =01, Ng=1-0 Ny= 01, Na =20

N3z2-0,Ns =10

Fig. 7. Plot of R_Vs. {a) N, (b) N, and {c) N, with respect to Rigid-Free Adiabatic
boundary, for different values of Q and different non-uniform basic temperature
gradients.

Linear, —o— Heating trom below, -—e— Inverted parabolic

— — Step function, ———Cooling from gbove, ~---Parabolic
1-Q=0, 2-0=10
N3=2-0, Ng =10 Ny =04, Ng=1 Ny=0-1, Na=2-0
4200~ 1400 1400~

N

3400 :
1 2

2600 .
Re¢ L 2
q

1800 2

P

{b) {c)
Fig. 8. Plotof R Vs. {a) N, {b) N, and (c) N, with respect to Lower Rigid isothermal

and Upper Free Adiabatic for different values of Q and different non-uniform basic
temperature gradients.
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N3 =20, Ng=1-0 My = 041, Ngz= -0 Ny =01, Ny=2.0

7000 az10 2500;— as10 2500 a=10
. —_— -
- : — Free-Free
—— Rigid-Free
e T RRi-Rigid

[l L » i . i 1 N 1
2 3 10 1 2
N3 Ns
(o} b (<}

Fig. 9 Plot of R, Vs. (a) N, (b) N, and (¢} N, for different velocity boundary
Combinations {Isothermal) with respect o linear temperature profiles.

N3 =2:G, N5 = 1-0 Ny=01, N3 =20
3000 a=io =10 .
’— ’ e T ~——a- Free-Free
4 ,/ L —— Rigid -Free
/ e A B
2000 / - Rigid- Rigid
S
Re I ’
R I
1000}~ - e
e
::/ i
1] P | N i PR | - i L I
0 04 08 1 2
Ny Ns.
(a} T (b) (3]

Fig. 10. Plot of R_Vs. (a) N,, {b) N, and (c} N, for different velocity boundary
Combinations {Adiabatic) with respect to linear temperature profiles.
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The effects of N, N, and Ny on R is true both in the presence and absence of a
magnetic field. When the strength of the magnetic field increases, the systemn
becomes stable, a result which is as seen in the case of classical fluid, On the
other hand, when the microrotation and the magnetic field are simultaneously
present, the stabilizing effect of N, is reduced, being counteracted by the magnetic
field. Chandrasekhar [25] has noticed the similar phenomenon, when the system
is subject to both rotation and magnetic field. The above phenomenon can be
physically explained as follows:

When the magnetic field strength permeating the medium is considerably strong,
it induces viscosily info the fluid, and the magnstic lines as distorted by convection.
Then these magnetic lines hinder the growth of disturbances, leading to the delay
in the onset of instability. However, the viscosity produced by the magnetic field
lessens the rotation of the fluid particles, thus controlling the stabilizing effect of
N,.
From the calculations it has been found that the critical wave numberis, in general,
insensitive to the changes in the micropolar parameters but is influenced by the
magnetic field. A strong magnetic field succeeds in inducing only the coupling

number N, into influencing al.

4. Conclusion

The above results indicate that the externally applied magnetic field is an effective
means of controlling Rayliegh-Benard convection in electrically conducting
micropolarfluids. The results suggest that Rayleigh-Benard convection in Newtonian
fluids may be delayed by adding micron sized electrically inert suspended particles.
Further, by creating conditions for an appropriate basic temperature gradient we
can also make a priori decision on advancing or delaying convection.
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