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ABSTRACT

A social group may consist of sterile and fertile couples where sterife
couples cannot reproduce. When the number of children for o fertile
couple is distributed according to a Poisson distribution, the probabifity
distribution of the number of children per couple in the social group is
a mixture of a distribution singutar of zero and a Poisson distribution.
The estimation of the porameters in the mixiure distribution is considered
in this paper. Since the maximum likelihood (ML) method does nof
provide estimates in closed forms, it is proposed fo obtain the estimates
using the EM algorithm, A stepwise procedure for computing the
estimates is presented. A numerical sfudy is carried out to compare
these estimates with the conditional ML estimates determined using
Newton-Raphson iferative procedure,
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1. Introduction

Suppose that we are interested in the distribution of the number of children (X) per
couple in a social group under study. Only fertile couples have children and sterile
couples cannot re-produce. Let us not consider the case of a couple with the male
partner being sterile and they get an offspring by arfificial insemination as well the
case where the female partner is sterile and they get a child through a surrogate
mother. In other words, we are inferested in the distribution of the number of children
given birth by couples on their own in the group under the study. If the proportion
of the sterile couples in the group is © and the number of children of a fertile
couple has a Poisson distribution with mean @ then the probability mass function of
X is given by

o+(1-)®,ifx=0
P(X=x18,¢) =p(x) = ~Bx
- S——, ifx=1,23,... (1.1)

x!
= @po(x)+(1-9)p,(x10),
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the distribution of X is a mixture of a singular distribution at O and a Poisson
distribution with mean 9. Mixture distributions of this type have recently gained
importance in the context of zero inflated regression models. See Lambert (1992}
and Hall (2000).

where Po(x)={ if x=0,1,2,...;0>0. Thus,

x!

2. Conditional maximum likelihood estimation

If X=(X;, X3, .. X,) is a random sample on X, then the likelihood function is
given by -

L(8,¢lx) = fIIP(Xj =x;16,¢)
J:

It can be written as

I —-a; 8% K
L(e,(plz)=jn{cp+<1—<p)e‘°}' ’{(1—@"’ d } 0>0,0<0<l ()

=1 Xj.
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where a;= . The above likelihood funcﬁon does not yield closed form

7 1,if x

expressions for 1he maximum likelihood estimates (MLEs) of 8and ¢. Hence, a
numerical procedure has to be employed to maximize the likelihood function fora
given x . Yip (1988, 1991) and Kale {1998} have discussed the estimation of

parameters in such mixture models. Motivated by a criterion of Cox (1958), Yip
{1988) has obtained the conditional maximum likelihood estimator (CMLE) of B.as
a solution of the equation

{O if x;=0

.0
x_l—e"a : 2.2)
n
z ajx;
where = F; and has suggested an estimator of given by the equation
2.2
=1
a-g)i-e)=2, (2.3)

where 8 is the CMLE of 8 and a = Zai . He has also computed the loss of

information due fo the conditional li ke[]iﬁood estimation for various combinations
of 8and ¢ . Further, Yip {1991) has extended the conditional likelihood approach
when p, specified in (1.1} is the probability mass function of binomial and negative
binomial distributions. .

Kale (1998) has discussed, in the spirit of Godambe (1976}, the optimal estimating
equation for @ ignoring @ when p, is the probability mass function of a general

power series distribution. When p, is the probability mass function of a Poisson
distribution as specified in (1.1}, the optimal estimating equation for § obtained by

Kale {1998) ignoring ¢ turns out to be the same as given by (2.2).
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ltis worth to note that both Yip (1988, 1991) and Kale (1998) have treated @ as
a nuisance porameter. But, from a practical point of view, estimating the proportion
of sterile couples is also essential and ¢ cannot be treated as a nuisance parameter,
Also, the equation in (2.2) does not yield a closed form expression for the estimate
of 8 and hence o numerical procedure has to be employed with an appropriate
inifial vafue fo obtain the estimate of 8. But it is definitely much easier to deal with
(2.2) than the likelihood function specified in {2.1).

It can be observed that the likelihood function in {2.1) can also be expressed as,

-80%)
LO010) = {0 +0-)e 12 1) ™ [[ (£, 050,0<0<1  (2.4)
x>0 le

where n,is the number of observations that are equal 1o 0. Hence, note that

n
a =2aj=n-n0,

=)

3. Maximum Likelihood Estimation Using the
EM Algorithm

When the likelihood functions have complicated structures and their maximi- zation
by numerical methods is difficult, the MLEs of the parameters can be computed by
the Expectation Maximization (EM) algorithm with ease. It is popular and remarkably
simple. It is an iterative procedure and there are two steps in each of the iterations,
namely the Expectation Step {E-step) and the Maximization Step {M-step. This
algorithm was developed by Dempster, Laird, and Rubin (1977) who synthesized
an earlier formulation in many particular cases and gave a general method of
finding the MLEs in a variety of problems. Since then the EM algorithm has been
applied o a variety of stafistical problems such as resolution of mixtures, mulfi-way
contingency tables, variance components estimation, and factor analysis. It has
also found applications in specialized areas like genetics, medical imaging, and
neural networks. For a detailed discussion, see McLachlan and Krishnan (1997)
and Krishnan (2004).

Nanjundan (2006} has obfained the E- and the M - steps by rewrifing the likelihood
functionin (2.1) so as to accommodate missing data.
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) If h 1— !ed ] .
tet z.:{l if the j— th sampled couple is fertile

710, otherwise

Then, we have P(Z;=1) =1-¢=1-P(Z;=0), j=1,2,..., n.

Suppose that X=(X,,X,,...,X,) is the observed sample on X. Then,
(X1, Zy), (X3.Z5),, - . (X,.Z,)), becomes the complete sample when
(X1, X355 Xp) is augmented with (Z;,Z,,...,Z,) . X, > 0, then Z, = 1 and
if X =0,then Z = O or 1. In other words, foer = (), we have no information on
Z. Hence, {Z: X, = 0} can be treated as the missing dato.

The likelihood function of the complete data is given by

n i e-eexj kel
LC(B"‘plivy_) = H(P i |:(1'—(P) )

.
= XJ.

where v=1, iij> Oandu, = Z, iij = 0.

In the E —step, the expedatidn of the likelihood function of the complete data is
taken and E(Z) is replaced by the conditional expectation E(Z;16,, ¢y, X;) , where
8, and @, are respeciively the initial estimates of 6 and @. In the M-step,
E(L,(8,0lx,u)) is maximized with respectto 8and @ . 1f9, and ¢, are the values
of @ and @ which maximize E(L (0, ¢lx,u)) , then the E-step is repeated using 9,
and . ‘

The computational details of these steps can be summarized as follows.

a) Choose the inifial estimaies 6, and ¢ .

(1-@g)e™®

b) Compute w = ———2 e,
Qo +(1-gg)e ™™
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c) Using the realization (x,, x, .. ., x} of the observed sample, compute

n

x.
o = _;=21 ! cnd(p1="_0(,1.._.l’2,

n
ng +now

where n_is the number of observations greater than zero.

d)} Repeat the steps b} and ¢} by fixing 8, =0, and @,= @, until a required
precision is atfained.

A reasonable initial estimate of @ is ny /n and the mean of the observed sample

can be token as the intial estimate of 8. If {6, ] and {o,, I, are respectively the

sequences of EM iterates of the estimates of 8 and @ and they converge, their
limits are the MLEs of 8and ¢, [for proof see Dempster et al (1977)]. Nanjundan
{2006) has observed that the above sequences of EM iterates converge for every
sample simulated for various combinations of 8 and ¢.

Since the maximum likelihood estimates of 8 and @ are those valves of 8 and

@ that maximize the likelihood function, L(8, ¢lx) the iterative procedure can be

terminated as soon as the absolute difference between the likelihood functions after
two successive iterations is less than a pre-assigned threshold value h, say 105 or

104,

4. A Comparison of the Estimation Procedures

Since the conditional moximum likelihood estimate of 0 is the solution of the equation
in {2.2), usually Newton-Raphsen iterative procedure is used to solve such an
equation and it is known fo converge very fast, After obtaining an estimate of Owith

required precision, it is used to compute the estimate of ¢ . That is the values of
both 8 and @ are not simultaneously used to maximize the likelihood function. This
is because @ is treated as a nuisance parameter in the conditional maximum
likelihood procedure. But in the EM algorithm, the likelihood is maximized
simultaneously with respect to 8 and @. Another drawback of the conditional
approach is that the estimate of @ suggested by Yip (1988} may turn out to be
negative which is not admissible since @ is a proportion. From {2.3), it can be
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observed that the estimate of ¢ will be negative when n, >n(l -9 . Sucha
situation is encountered when the sample is

0 000 ©C 0O0O0CT1T O
01 1 0 ¢ 1 0 0 01
1 000 1 00 2 11
0001 O 1T 1 010
10 0 2 0 0 3 1 0O

For this sample, n = 50, n, = 32, and n, = 18. When the initia! estimate of @is
taken fo be the sample mean, the following are the Newton-Raphson iterates of
the conditional maximum likelihood estimate of :

Heration CML Estimate of 6
i 0.415807
2 0.415723
3 0.415723

Though the Newton-Raphson procedure for computing the conditionat maximum
likelihood estimate of @ converges correctto 6 decimal places after the third iteration,
the corresponding estimate of @ is -0.058398 which is inadmissible, whereas the
EM algorithm gives the estimates of 8 and @ fo be respectively 0.522885 and
0.158514 after the 25" iteration. The following are the outputs of the first 10 EM
iterates of the estimates of @ and @ along with the fog-likelihood function for the
above sample,

iteration MLE of § MLE of @ Log-Likelihood
1 0.829882 0.469804 -41.828278
2 0.770454 0.428908 -41.414387
3 0.728459 0.395985 -41.146732
4 0.696885 0.368618 -40.960281
5 0.672109 0.345345 -40.823498
) 0.652051 0.325206 -40.719246
7 0.635419 0.307543 -40.637405
8 © 0.621363 0.291879 -40.571636
9 0.609300 0.277860 -40.517757
10 0.598814 0.265216 -40.472912
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Note that the log-likelihood function is steadily maximized. Though the rate of
convergence of the EM algorithm is slower when compared to the Newfon-Rophson
method, one need not mind it because 100's of EM iterations can be carried out in
no time when high level programming languages like C and C+ + are used. But
the EM algorithm also may converge very fast depending on the sample. When the
given sample is

W — O N
N — — W
O —= NN Ww
RNWwoOOQ —
MO =Wk
WO NO
= R BRI N
Db — N
O Whs N
- hMNO W

~

the following are the outputs of the EM iterates

lteration MLE of 0 MLE of © Log-Likelihood
1 2.548971 0121214 | -19.959564
2 2.530770 0.114894 -19.940647
3 .2.52132¢9 0.111580 -19.935225
4 2.516205 0.109770 -19.933571
5 2.513356 0.108741 -19.933048
6 2511750 0.108191 -19.932880
7 2.510838 0.107868 -19.932827
8 2510318 0.107683 -19.932810
9 2.510021 0.107577 -19.932804
10 2.509851 0.107517 -19.932802
11 2.509753 0.107482 -19.932800
12 2.5096%97 0.107462 -19.932800.

Observe that the EM algorithm converges correct to 6 decimals after the 12+
iteration which is very moderate.
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5. Discussion

Though the EM algorithm converges slower when compared to the Newton-Raphson
procedure used to compute the conditional maximum likelihood estimate of §, the
EM algorithm is preferable because i) it maximizes the likelihood function
simultaneously with respect to @ and @, ii} it does not lead fo inadmissible estimate
of @, and iii) when high level programming languages like C and C+ + are used
the number of iterations is practically immaterial.

It can be realized that reating {Z;: X, = 0}, interms of the notations of Section 3,
as missing data is very appropriate since the couples who do not have any children
may not disclose or not even like to know whether they are sterile or not due to
personal and social reasons. Hence, missing data are not uncommeon in these
studies. The computational procedure presented in this paper determines the
maximum likelihood estimates using the EM algorithm when there are missing
data.

The mixture model discussed here is applicable in other practical situations too.
For example, insects live on leaves that are suitable for feeding. If o leat s unsuitable
for feeding, then no insect lives on it. Suppose that the proportion of unsuitable
legves in a free is @ and the number of insects per suitable leaf has a Poisson
distribution with mean 8. Then, the distribution of the number of insects (X} found
on a randomly selected leaf is a mixture of a singular distribution and a Poisson
distribution.
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