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EFFECT OF SECOND SOUND ON THE
ONGSET OF RAYLEIGH-

BENARD CONVECTION IN A
MICROPOLAR FLUID

S. Pranesh*

ABSTRACT

The effects resulting from the substitution of the classical Fourier law
by the non-classical Maxwell-Cattaneo low in Rayleigh-Benard
convection in micropolar fluid is studied. The classical approach predicts
-an infinite speed for the propagation of heat. The present non-classicol
theory involves a wave lype heat transport (SECOND SOUND) and
does not suffer from the physically unacceptable drawback of infinite
heat propagation speed. It is found that the results are noteworthy ot
short times and the critical eigenvalues are less than the classical ones.

1. Introduction

Convection in fluid suspensions has been the subject of intensive study because of
the remarkable physical properties of the fluid as well as its practical applications
(see Power 1995, Lukaszewicz 1998, Eringen 1999). Rayleigh-Benard convection
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in fluids with suspended particles have been studied by a number of authors {1-
20). The reported works on convection concern fluid suspensions with classical
Fourier heat flux law.

The drawback of the classical low mofivated Lindsay and Stranghan (1978),
Stranghan and Franchi (1984}, Lebon and Cloot (1984} and Siddheshwar (1993,

1999) to adopt a non-classical heat flux law in studying Rayleigh ~ Benard /

Marangoni convection. The hyperbolic heat equation (SECOND SOUND) mode!

adopted by these authors does not suffer from the physically unacceptable drawback

of infinite heat propagation speed. The principle of exchunge of stability is qlso not

guaranteed in these problems.

The objective of this chapter is to replace the classical parabolic heat equaﬂons by
non-classical Maxwell-Cattaneo heat flux law and study Rayleigh-Benard convection
in micropolar fluids. . , :

2. Mathematical Formulation

Consider an infinite horizontal layer of a Boussinesquian, Micropolar fluid of depth
d. A cartesion co-ordinaie system is faken with origin in the lower boundary and z-
anis vertically upwards. Let AT be the temperature difference between the upper aind
lower boundaries. The body force acting on the fluid is buoyancy.

zy

z=d T,
Fluid with fine
suspended particles
P 4
z=0 ° T, + AT

Fig 1 : Schematic Diqgrorﬁ of the Rdyleigh-ﬂenurd Situation for a Fluid with
Suspended Particles
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The governing equations for- fhe Ruylelgh Bencrd sn‘uohon ina Boussmesquron

Micropolar fluid are:

Conhnuaiy equahon
Vi q O

Conservaiion of Imeur momenium o _
Po [§+(q-V)q] =-VP- pgk +(2C+n)V2§+CV><m,

ey e

Conservation of angular momentum

pol[%?+ (E;’.V)GJ] = (A4 )V (Vd)n'V2 BHEG(VXG=2@); 7L

TR

Conservation of energy

—+| g- V@ |\ VT =~ ,
at ( pOCV } po v

Maxwell - Cattaneo heat flux law

1:[6+&)1 xQ]: -Q - VT,

Equation of state

P=Po [l_a (T-T, )]’

where

. 1 . .

= -i q Q is the hecn‘ flux vector and Tis the consfan’r relc:xchon hme

28

Y

:_(2)
" @)

“)

(5}

(6)



The aim of this paper.is o investigate the stability of a quiescent state to infinitesimal
perturbations superposed on the basic state. The basic state of the fluid being
quiescent is described by

Gp =0, @ =0, p=pp(2), p=pp(@), T=T;, (2),Q=(0,0,Q, (2)). (7)

Equations (2), {4) and (6) in the basic state specified by equdﬁon {7) respecﬁvefy
me '

T PR
2

d 'Iz'b =0,
dz > N

Pp =Po[1-¢(Tp - T,)], (8)

W=

Equations {1), {3) and (5) are identically satisfied by the concerned basic state
variables. We now superpose mfmltesnmcl peﬂurbuhons on ’rhe quuescem‘ busu:
state and study the stability. - ‘

2.1 Linear Stability Analysis

Let the basic state be disturbed by an infinitesimial thermcl perturbahon We now.
have

(-i:qb +Ei’! Eb:a)b"'a)’: P=Pp +p’s }

p=pp+p, T=Tp+T, Q=Qp+q k(?.);

The primesindicate that the quantities are infinitesimal perturbations and subscript
b indicates basic state vaiue.
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Substituting equation (9} into equations (1)-(6} and using the basic state (8), we
get the linearised equations governing the infinitesimal perturbations in the form: -

v.§=0, (10)
poaa—t:"VP’.—P’&ET(2§-+n,)V2ci’.fCVXf""" R
pogg_‘? = (M +0)V (V& )+ V26 +§(VxG ~ 28) 12
M’ AT B it V. - .
SL=al Vi k-w |- : ‘ A3
at d (mcV J poCy

)=, 1 AT(3 : .

3 __1 AT —VW VT, 14}
(lwat)Q SN (az ) X (14)
p’=_ap0T’f TR TR S U R M S PR P PL IR S BRI ) ’ “5}

Opercfmg dwergence onthe equchon (] 4) ond subshtuhng in equotlon (1 3) On
using equation (10), we get

3 )T oyar[ 8 o oo T
O e

) 16)
—-xl—crvszf V2T he)

The perturbation equations (11)-(12) and equation (16) are non-dimensionalised
using the following definition:

(x,y,z),_c*;'ﬁ_@' a "'_T S
("*’Y*’z )‘ PR "_/““"”*‘x/dz’ ‘""7" *‘K" (17)
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Using equation (15} in equation (1 1), operating curl twice on the resulting equation,
operating curl on equation {12) and non- dimensmnohsmg the two resulhng
equations and also equation (16}, we get’

o at(v W)=(1+ Ny AW+ N V20, +RVET 8

Ny aQ 9 P - : :
VT (. 3 OV eme m

(1+C-§t~}ét—-=[1+CE]W—(1+C§)N5QZ +V4T-CV“W, ©(20)

where the asterisks have been dropped for simplicity and 1he non- dlmen5|onc|
parameters N,, N;, N, R and C are as defined as :

N =% | (Cou-pling Pcrfzmefer). |
Nyo ‘ |
(C+n)d2 {Couple Stress Parameter),
Ng = B M lar Heat Cond P
PoCyd? Micropolar Heat Conduction Parameter)
+
Pr:-c’-il]. o (Prondtl number),
+
Pm= & (Magnetic Prandtl number],
Ym
a.gATdp,
(C+n)x (Royleigh number) and
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o |
C= ) {Cettaneo number),
2d ‘ :

Equations (18) - (20) ore solved for velocity stress free, isothermal and vanishing
spin boundaries and hence the assumed boundary conditionsare =~

2
w=2W¥_1-9 -0 a 2=0,1. (21)
. azz

The infinitesimal perturbations W, ©, and T are assumed to be periodic waves (see
Chandrasekhar 1961} and hence these permit a normal mode solution in the form

wl [W(z) ‘ :
Q, [=| G(2) [exp[ot+i(lx +my)] , T {22)
T T{z)

where | and m are horizontal components of the wave number 3 .

Substituting equation (22) into equations (18} - (20), we get

%(m _a2)w=(l+N1)(D2 _32)2 W ~Ra2T+ N, (Dz a2 )G’ 23
N;(:G =N (bz'_az )W+N3 (Dz ~a? )G-2N10, (24)

3

(1+2C0)0T =(1+2Co) W~(1+2C0) NsG+(D? ~a? | T-C(D? -a? )W, (25)

d
here D=—.
where =
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Eliminating G and T between the equations (23) - (25), we get a single equation
involving W in the form ‘ :

[Y2Y3 +N?(D? —a )]Y] (o? —az)W=—~Raz.[Y2.Y4 ’-’(1?“2‘3‘.’)(92 _-.32 )2]w (26)
where

Y, =0+2C0” - (D? ~a?),

Y, =%—N3 (D2 —a2)+2Ni s

Y; =%-(1+N1)(D2.~a2)
and
Y3 =.I+2Ccr-—C(D2 -az)_

The solution for W for the lowest mode is, as per Chandrasekhar (1961), t.cken__in
the form ‘ \ I

W=A4, sin (mz) . ‘(27_)

where A is a constant. Substituting equation {27) in equation (26), we get

(k2 +200? +0)[(§~23+N3k2 +2N, I%*!‘(H'Nl)kz )—N%kz]kz "

b Ly (28
=Ra2[(N3k2+2N,+M](1+2Cc+dc2)-(l+2cd)NNslé]

Pr

where k* =n% +a2.
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2.2 Marginal State

If & is real, then marginal stability occurs when 6 = 0, This gives the stationary
Rayleigh numberR in the form

_ (NN N, (2 +:N1)k6 |
:112[(1+(:1;2)(N31<2 +2N, )~ N,Nskz] (29)

If C = 0, the equation {29) reduces to

R =1¢_‘5|:(1+Nl JN3kZ +2N, +Nf}

(N3 ~N,N; )k*+2N, (30)

aZ

which is the expression for the Rayleigh number discussed by Datta and Sastry
{1976} and Bhattacharya and Jena (1983). _ .

2.3 Oscillatory Motions

To study the oscillatory motions we put =i, me K, in equation {28). By equating
the real and imaginary parts, the following equations are obtained

[ 1T -0, J+ 00T [1 + T, Jhe

R = f ‘ H . (3])
° az{T32+(o2T42}
Aw? +Bo? +E=0. (3
where
2
N
T] =X] _w - 2 s
P2 :
. _ N3kZ+2Np +(1+N; )N,k?
- ‘ Pr i
: 2
2CNHw
Ty =X, -~ 22
3 2 Pr
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N, (1+ck2 |

Ty =2C(N3k? 42Ny )+ ~2CNyNsk?,

Ts =k? -2Co?,

Xy = (1+Np )(N3k? 42Ny )i = N2I2,
Xp =(1+Ck? )(Ngk? +2Ny )-NyNsk?,
X; =_N—§+2cx2,'

Pr

A

20N, . 2CN,X4
Pr pr2

2CN, 2

=—--—P-;--(X1 +k2-T2 )—X2X3 +[N k

3 +2CXy +Xq |Ta,
Pr

and E =X1X2 —k2X1T4 :

3. Résults cmd Discussions

in this paper, we study the Rayleigh-Benard convection in Micropolar fiuid by
replacing the classical parabolic heat equation by a non-classical heat flux law.

Figure (2) is the plot of critical R_versus Cattaneo number C for different values of
N,. Itis observed thot as N, increases, R_also increases. Increase in N, indicates
the increase in the concentration of microelements. These elements consume the
greater part of the energy of the system in developing the gyrational velocities of the
Huid and as a result onset of convection is delayed.  From the figure (2) it is
observed that C which represents second sound has o destabilising influence. The
effects of Ny, N, and C on R_are given in table (1). It is found that an increase
in N, is to destabilise the system while an increase in N, is to stabilise the system.
Increase in N,, decreases the couple stress of the fluid which causes o decrease in
microrotation and hence makes the system more unstable. When N increases,
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the heat induced into the fluid due to these microelements also increases, thus
reducing the heat transfer from bottom to top. It is also found that C has no
influence on the critical wave number. For small values of C, oscillatory convection
sets in for heating from above and this is clearly shown in table (2).

Table 1 : Values of critical Rayleigh number R, critical wave number 03 and

critical frequency (D: for different values of N, N,, N, N, Pr and C for o
Micropolar fluid

Pr R a’ o’

c N'I N2 N3 NS € c <
01 {01 | 01| 20 |10 | 100 | 22498 | 1008 | 2382
0.3 7358 | 9.91 | 1240
0.5 4390 | 994 | 887
0.7 3127 | 1002 | 658
0.9 2428 | 1014 | 658
01 |05 | o1 ] 20 [ 10 [ 100 ]35094] 986 | 1062
03 127.44 | 990 | 8.90
05 | 7621 990 | 604
0.7 5436 | 974 | 4.48
09 , 4224 | 975 | 340
01 [01 | 05 | 20 |10 | 100 [ 220100 995 | 24.44
0.3 : 7211 | 1001 | 1411
05 4300 | 1027 | 9.28
0.7 3061 | 1017 | 6.80
0.9 - 2376 | 998 | 532
o1 [01 | 01| 60 |10 100 ] 21753 1001 | 2517
03 o 27| 989|140
05 ‘ | 4251 972 | 9.08
07 1 o 3028 | 964 | 666
09 | | | | 2350 | 973 | 482
for Tor [ o1 | 20|15 [ 100 23065 | 1007 | 2235
03 | . | 7s6t| 999 | 1319
05 | N || 4502 986 | 855
07 | . | 3214 | 989 | 633
09 11 L | 2496 | 988 | 501
o101 [ o1 | 2010|250 | 22661 | 1002 | 2288
03 b | -74%0 | 1019 | 1345
05 - - 4481 | 992 | 862
07 2 3196 | 1044 | 655
09 | . 2484 | 967 | 497

36



Table {2) : Values of cnﬂcai Rayleigh number R, critical wave number Vﬁ ~and

critical frequency 0) for different values of C and N, and for
N, = 0.1, N, = 2.0, N, = 1.0 and Pr = 10.0 for a Mlcropolurﬂwd

Nl c R: 03 . (02

0.1 0.002 -6991127.00 512.22 64054990.00
0.005 -3137664.00 198.96 | 10251850.00
0.007 -1152220.00 139.28 5230719.00
0.01 59979440 | 9453 2563493.00
0.03 -303159.60 2492 285262.80
0.05 -20899.91 11.24 102869.90

0.5 0.002 | -24516650.00 727.48 181326400.00
0.005 -4001038.00 284.87 | 28997100.00
0.007 -2068769.00 200.55 14787800.00
0.01 -1034842.00 137.33 7242847.00
0.03 -133721.10 3897 | 80197000
0.05 -57748.59 19.31 287757.20
4 00

Na=01, N3=20, Ng«10, Pr =10

I . . )
0-2 Q4 a6 ce 10

Fig 2 : Plot of Critical Rayleigh Number R. Vs Cattaned Number C for Different
Values of Couphng Parameter N,
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Analysing equations {29} and (30) we.can conclude the following for stationary
convection in micropolar fluids: .

RIQ-[HE < REHE

where HHE - Hyperboiic heat equation and PHE - Parabolic heat equation.

4. Conclusron

The non-classical Maxwell-Cattaneo heat flux Jaw involves a wave type heat transport
and does not suffer from the physically unaceeptable drawback of infinite heat
propagation speed. The classical Fourier flux law overpredicts the critical Rayleigh
number compared to that predicted by the non-classical ]c:w Oversfcrblhty is the
preferred mode of convechon
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