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DETECTION OF MULTIDIMENSIONAL
OUTLIERS USING BIPLOT ANALYSIS
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ABSTRACT

It is necessary fo examine the valvable data being distorted by the
presence of outliers before the some is subjected to necessary analysis,
Outliers should be identified using reliable detection methods and
tesied prior fo performing dota analyses. Detection of outliers in
mulfidimensional data is imporfant in many applications as it will have
far reaching consequences in its analysis, There are methods availuble
in the literature for detecting multiple outliers but there exist no unified
method for detecting the same. An oftempt has been made fo defect
the multidimensional outfiers through Biplot analysis using elliptical
method with a well defined axis (a, b) based on Inter Quartile Range
(lQR). The performance of the designed methods is examined by a
comparison with the existing methods.

1. Introduction

Qutliers are observations that appear to be extreme or unusual with respect to the
rest of the data and to prior knowledge about what values are plausible, Qutliers
may be “erroneous” or “real” in the following sense. “Real” outliers are observations
whose actual values are, in fact, very different than those observed for the rest of
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the data and violate plausible relationships arong variables. “Erroneous” outliers
are observations that are distorted dueto misreporting or miss- recording errors in
the data-collection process.

Quwiliers of either type may exert undue influence on the resulls of statistical analyses,
so they should be identified using reliable detection methods prior to performing
dota analyses. When we encounter a potential outlier, our first suspicion may be
that the observation resulted from @ mistake or other extraneous effect, and should
be discarded. However, if the outlier is “real” rather than “erroneous,” it may be
conveying important information about the underlying population of real values.
Non-judicious removal of observations that appear to be outliers may result in
underestimation of the uncerfainty present in the dotfa. As a consequence, estimated
standard errors and p-values may be smaller than they should be, possibly leading
to false findings of significance.

The study of outliers is as important for multivariate data as it is for univariate
samples. As Gnanadesikan and Kettenring (1972) remark, a multivariate outlier.
no longer has a'simple manifestation as an observation which ‘sticks out ot the
end’ of the sample. A multivariate outlier need not be an exireme in any of its
components. Someone who is short and fat need not be the shortest, or the fattest,
person around. But thot person can still be an ‘outlier’. The study of literature
reveals that Mahalanobis distance is the basis for the detection of multivariate
outliers. The standard method for multivariate outlier detection is robust estimation
of the parameters in the Mahalanobis distance and the comparison with a critical
value of ihe Chi square distribution {Rousseeuw ond Van Zomeren, 1990). However,.
also values larger than this crifical value are not necessarily outliers; they could sfill
belong to the data distribution. In order to distinguish between extremes of a
distribution and outliers, Garrett (1989) introduced the Chi square plot, which
draws the empirical dlsmbuhon funcfion of the robust Mahalanobis distances against
the Chi square distribution. A break in the tail of the distribuions is an indication
for outliers, and values beyond this break are iteratively deleted. The approach of
Garrett needs a lot of interaction of the analyst with the data since this mefhod ts"
not an automatic procedure.

A blplot is a graphical display of 1he rows and columns of a reciongulcr n X P
data matrix X, where the rows gre often the subjects or sample units, and the
columns are variables. The concep1 of Biplots was introduced by Gabriel (1971,
1981} and subsequently developed by Bradu and Gabriel {1 978) and Gower
(1990, 1992).
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In almost all applications, biplot analysis starts with performing some transformation
onthe data matrix X, depending on the nature of the data. The usual transformations
are centering with respect to variable means, with respect to variable medians,
normalization of variables efc. The transformed variable Z is being decomposed as
z=UAvT using Singular Value Decomposition (SVD).

The concept of SVD i one of the popular decomposition technique used in matrix
algebra with wide applications. Under singular value decomposition an n x p
matrix A of rank r can be factored into :

A=UAVT

Where A = diag (A, A,, ..., &), with A, 2 4,2 .24 2 0, U is an orthonormal
matrix of order n % r, and V an orthonormal matrix of order r X 1, i.e. UTU = VT
V=l .

Now, the transformed variable Z be approximated using the first two singular values
and corresponding right and left singular vectors

Z, »U,A,Vy =GHT, where G=(U,A%) and H = (V,AL %)

where o is a chosen constant with 0 < _< 1. The n X 2 matrix H consists of n row
vectors representing the rows of the matrix Z. The p X 2 matrix H consists of p
column vectors representing the columns of Z. Biplots are usually plotted in two
dimensions for ease of display, and hence only the first two singular values and
their associated vectors are used in the approximation of Z. Different choices of &
give rise fo different biplots. The most common choices of & are the values 1 or Q,
when the singular values are assigned entirely either to the left singular vectors of U
orfo the right singular vectors of V respectively, or 0.5 when the square roots of the
singular values are split equatly between left and right singular vectors. Each choice,
while giving exactly the same matrix approximation, will highlight a different aspect
ofthe data matrix. The term “principal coordinates” refers to the singular vectors
scaled by the singular values {for example, G with o = 1), while “standard
coordinates” are the unscaled singular vectors (Greenacre, 1984).

Fora =1, thatis rows in principal coordinates and columns in standard coordinates,
called the form biplot, which favours the display of the individuals, while fora. = 0,
that is rows in standard coordinates and columns in principal coordinates, called
the covariance biplot, which favours the display of the variables (Greenacre and
Underhill, 1982). When o = 0.5 the biplot favours the display of interaction effect.



In this study biplots have been considered for detecting outliers in multivariate data
using elliptical method. Further, a comparative study using different methods
(Maximum Likelihood Method and Sequential Method, Barnet and Lewis, 1 994),
has been considered.

2. Biplot Method

The alternate scheme would be to evolve @ method of looking ot the distances
through an oppropriate stretch out of sphere like an ellipse for the detection of
outliers. Ellipse would be most adequate as the log-likelihood function of bivariate
normal distribution can be viewed as an ellipse (Johnson and Wichern, 1992).

Hence, biplots have been considered to provide a solution to the above scheme of
drawing an ellipse for identifying outliers. '

In biplot method we are using biplot technique for the detection of outliers in
multidimensional data. As the first step the dato matrix will be transformed by
centering with respect to the median vector. Using singular value decomposition
we will decompose the transformed matrix in to the preduct of two matrices and
then we will approximate the matrix by the product of two matrices, G and H, of
ordern X 2and 2 X p respectively, where n is the number of observations and p
is the number of variables. In biplot the G matrix representing the observations
and the variables are represented by H matrix. The observations are standardized
with the respective standard deviafions or Median Absolute Deviations {(MAD) before
proceeding with biplots,

The detection of outliers is based on the points lying outside an ellipse drawn with
parameters (a, b}, where a is vertex and b is co-vertex. Mc.Gill et al. (1978) has
suggested the use of IQR as a robust measure of spread in data. Hence, the
vertices (g, b} based .on function of IQR have been identified based on different
choices and two methods for detection of outliers have been discussed.

2.1. Mahalanobis Distance - Biplots (MDB) Method

Under this method G matrix is standardized by the corresponding Median Absolute
Deviation (MAD) rather than standard deviation. As defined earlier, Mahalanobis
distance of standardized G.from origin using correlation matrix is considered.
However, an ellipse is drawn with a = (1.5/2) * IQR of Mahalanobis Distance and
b = (1.25/2} * IQR of Mahalanobis Distances. Biplots are obtained using the
standardized G obtained through SVD and if any of the points lie outside the
ellipse {a, b) then the presence of outlier is suspected.
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2.2. Inter Quartile Range - Biplots (IQRB} Method

In JQRB method G matrix is standardized by the corresponding Median Absolute
Deviation {MAD). Then Inter Quartile Range {IQR) of each of the components of
standardized G matrix are obtained. Now an ellipse is drawn with the set
a = 1.5%IQR of first component and b = 1.5*|QR of second component. Now
Biplots are obtained using the standardized G obtained through SVD and if any
observation lies outside the ellipse (a, b) an outlier is said to be detected.

3. Examples

3.1 Motivating Example: Yields of Grass

Rothamnsted Experimental Station is one of the oldest agricultural research centers.
One of the “classical experiments’ is Park Grass in which the growth of grasses has
been monifored under various fixed treatment regimes for about 150 years. Table 1
presents the yields of grass (in t/ha dry matter} on two totally untreated plots for the
50 years from 1941 1o 1990. : '

_ - Table 1
Year plot-3 plot-12 Year plot-3 | plot-12
1941 0.85 1.26 1966 1.43 2.16
1942 0.26 0.59 1967 1.31 1.48
1943 .| 1.03 1.66 1968 1.52 1.28
1944 | 034 0.65 1969 | 072 1.87
1945 1.14 1.75 1970 | 1.5 1.51
1946 1.18 08 | 197 1.5 2.94
1947 | 1.52 .67 1972 | 14 1.54"
1948 1.12 1.25 1973 1.24 1.27
1949 | 062 | 078 1974 1.18 1.25
1950 089 | 076 1975 0.91 0.55
£ 1951 1 142 | 1976 .06 | 122
1952 | 1.58 1.8 1977 1.2 RN
1953 1.63 1.84 1978 7. | w77
1954 0.99 1.05 1979 1.26 2.27
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. Year - plot-3 plot-12 Year plot-3 plot-12
1955 1 1.58 1980 0.85 1.07

1956 0.69 RE 1981 | 147 1.95
1957 0.6 1.02 1982 | 2.03 1.91
1958 1.21 161 1983 0.99 0.84
1959 0.51 0.62 1984 1.08 122
1960 1.56 1.82 1985 1.58 1.65
1961 1.39 1.82 1986 0.78 1.02
1962 12 128 1987 1.39 171
1963 143 1.64 1988 1.4 1.38
1964 .48 2.47 1989 0.6 075
1965 2.75 3.45 1990 088 | ,0.94

Figure 1 is the scatter diagram of these yields. Several observations appear as
ouliers (notably those for 1965, 1971, 1969, 1982 and 1942} marked as A, B, C,
D and E on the figure.
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Meximum likelihood (ML) method defected A, B, C, D and E as extreme ohservations.
But the Sequential method suspects the observations A, B, C, F and G as outliers.
This method does not project D and E as outliers as suspected by the ML method.
On the other hand the suspected outliers F and G identified through the sequential
method could not be identified through the ML method. Hence, these methods
have not provided an unanimous result on the identification of outliers.
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The outputs obtained through the Biplo’r methods-MDB method and IQRB method-
re given below.

a. MDB Method: The MDB method gives the following plot
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Figure 2

From Figure 2 it can be seen that the points A, B, C, D, F and G are lying outside
the ellipse and the observation E is lying on the boundary. So we can suspect A, B,
C, D, Fand G as outliers. E can also be considered as an extreme ohservation as
it is lying on the boundary.

b. IQRB Method: Figure 3 is the resultant plot obtained from IQRB method.
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Figure 3

From the above figure it can be seen that the po.im‘s A,B,C,D,E, Fand G are
lying outside the ellipse and can be suspected as outliers.



_ The ML method has shown that A, B, C, D, E as the outliers and the Sequential
method has shown that besides A, B, C two additional points namely, F and G are
observed as outliers, but D and E are not detected as outliers. However, both the
Biplot miethods: MDB and [QRB have detected all the seven observations as outliers.

3.2 Example 2

Example 1 discussed above was a 50 X 2 matrix and hence the methods needs to
be examined for a larger data set. The data from Data 1 is a 55 X 7 matrix which
presents woman track data set for fifty five countries {Appendix ). The four methods
discussed so far have been used for the data set to examine the presence of outliers.

According to ML method the observations Wsamoa, Mauritius, Cookis, Guinea
and Guatemal are suspected outliers. Sequential method also identified the
observations Wsamoa, Mauritius, Cookis, Guinea and Guatemal as extremities.

The outputs obtained through the Biplot methods are given below.

a, MDB Method: The MDB method gives the foilowing graph.
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Figure 4

From figure 4 it can be seen that the observations Wsamoa, Mauritius, Cookis,
Guinea, Guatemal, GDR, Czech, Costa and Korea are lying outside the elhpse
and thus can be suspected as outliers.



b. IQRB Method: Figure 5 shows the resultant plot obtained from IQRB method.

Figure 5

The above graph shows that the abservations Wsamoa, Mauritius, Coockis, Guinea,-
Guatemal, GDR, Czech, Costa and Korea are lying outside the ellipse and thus
can be suspected them as outliers.

Both the Biplot methods have detected all the extreme observations obtained from
the Maximum likelihood and Sequential method. In addition, the Biplots methods
also identified some other observations (GDR, Czech, Costa and Korea) as suspected
outfiers. .

4. Conclusions

The problem of identification of outliers and festing for the same is extremely important
in any data set as the presence of it could affect the inference. The detection of
outliers in a multidimensional data is fairly complex because of the components
involved in it. There are methods like Maximum Likelihood and Sequential methods
available for detection of outliers in multivariate data which invariably leads to
different results. Hence an attempt has been made to use the distances obtained
through biplots and an appropriate stretch of sphere fike an ellipse with a well
defined axis using IQR for the defection of outliers. The methods designed for
detection of outliers are compared with some of the methods available in the
literature.

The four methods are illustrated with examples and graphical presentation of outliers.
MATLAB coding for IQRB method and MDB method is presented in Appendix Ii.
There is scope for extending the method of detection of outliers through biplots as
it based on Singular Value Decomposition. The robustness needs to be examined
in detail.
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Appendix |

Data 1
Country 100 200 400 800 | 1500 | 3000 | Marathon
Argentina | 11.61 | 22.94[ 5450 | 2.15 | 443 | 9.75 | 17852
Australia [ 11.20 | 22.35| 51.08 | 198 | 413 | 9.08 | 152.37
Austria 1143 | 23.09| 5062 | 199 | 422 | 934 | 159.37
Belgiom [ 11.41 | 2304} 52.00| 200 | 414 | 888 | 157.85
Bermuda | 11.46 | 23.05| 53.30 | 216 | 458 | 9.81 | 169.98
Brazil 1131 | 2317] 5280 210 449 | 977 | 168.75
Burma 1214 | 2447 | 5500 | 218 | 445 [ 951 | 191.02
Canada | 11.00 | 22.25| 50.06 | 200 | 406 | 881 | 149.45
Chile 1200 | 2452 5490 | 205 423 | 937 [ 171.38
China | 11.95 | 24.41| 5497 | 208 | 433 | 931 | 168.48
Columbia | 11.60 | 24.00 | 5326 | 211 | 435 | 9.46 | 16542
Cookis | 12.90 [ 27.10| 60.40 | 230 { 484 | 11.10| 23322
Costa 11.96 | 24.60| 5825 | 221 | 468 | 1043 | 171.80
Crech 11.09.] 21.97 | 4799 | 189 | 414 | 892 { 15885
Denmark | 11.42 23.52 53.60 2.03 418 8.71 151.75
Dominican | 11.79 | 24.05| 5605 | 224 | 474 | 989 | 203.88
Finlond {1113 | 22.39| 5014 [ 2.03 | 410 | 892 | 154.23
France 1105 | 2259 | 51.73 | 200 | 4.14 | 898 | 155.27
GDR 10.81 | 21.71] 4816 193 | 3.9 875 | 157.68
FRG 11.01 | 22391 49751 195 | 403 | 859 | 14853
GB&NI | 11.00 | 22.13| 5046 | 1.98 | 4.03. | 8.62 | 149.72
Greece | 11.79 | 24.08| 5493 | 207 | 435 | 9.87 { 182.20
Guotemal | 11.84 | 24.541 56,09 | 228 | 486 | 10.54 | 215.08
Hungary | 11.45 | 23.06[ 5150 | 201 | 414 | 898 | 156.37
India 11.95 | 2428 5340 | 210 432 | 998 | 188.03
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200

Country 100 400 800 | 1500 3000 | Marathon
Indonesia |11.85 | 24.24( 5534 | 222§ 4.1 10.02] 201.28
Ireland 11.43 | 23.51 53.24 205 4.1 8.89°| 149.38
lsrael 11.45 | 2357 54.90 210 4.25 9.37 | 160.48
italy 11.29 | 23.00] 52.01 1.96 | 3.98 8.63 | 151.82
Japan 11.73 | 2400 53.73 209 | 435 9.20 [ 150.50
Kenya 11.73 23.88} 5270 2001 415 920 | 181.05
Korea 11.96 | 24.49| 55.70 215 | 4.42 9.62 | 164.65
DPRKorea [12.25 | 25.78] 51.20 1.97 { 425 935 | 1797
Luxembou |12.03 | 24.96) 56.10 2.07 | 438 9.64 | 174.68
Maldsiya {12.23 | 24.2] 55.09 2.19.| 4.69 10.46| 182.17
Mauritivs |[11.76 | 25.08| 58.10 227 | 4.79 10.901 261.13
Mexico 11.89 | 23.621 53.76 204 | 425 259 | 158.53
Nethedands | 11.25 22.81 52.38 1.99 | 4.06 2.01 152.48
NZealand |11.55 23.13| 51.60 202 4.8 876 | 14548
Norway 11.58 | 23.31 53.12 2031 401 | 853 | 14548
Guinea 1225 | 25.07| 56.96 224 | 484 10.69{ 233.00
Philippi 11.76 | 23541 5440 | .219 | 4.0 10.16| 200.37
Poland 1L13 ] 22.2% 49,29 1.95 | 3.99 8.97 | 160.82
Portugal | 11.81 24.22| 54,30 2091 4.6 B84 | 151.20
Rumania | 11.44 23.46| 51.20 1.92 1 3.96 8.53 | 165.45
Singapore [12.30 | 25.00( 55.08 212 | 4.52 9.94 | 18277
Spain 11.80 | 23.98| 53.59 2051 4.4 9.02 | 162.60°
Sweden 11.16 | 22.82| 51.79 202 4.2 8.84 | 154.48
Switzerl 11.45{ 23.31 53.11 2.02 | 4.07 8.77 | 153.42
Taipei 11.22 | 22.62| 52.50 210 4.38 9.63 | 177.87
Thailond }11.75 | 24.46; 55.80 220 | 4.72 10281 168.45
Turkey 1198 | 24.44; 5645 215 | 437 938 1 201.08
USA 10.79 | 21.83] 50.62 196 | 3.95 8.50 { 142.72
USSR 111.06 | 22.19| 4919 1.89 |. 3.87 8.45 | 151.22
WSamoa | 12.74 25.85| 58.73 233 5.8 13.04] 306.00
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Appendix I

% MATLAB Coding for IQRB method

m=median(y);
fori=1:sizely, 1)
 forj=1:sizely,2)
Gl =y(ii)-m(1,i)
end
end
fu,s,v]=svdix);
u2=[u(:, 1),u(:,2)];
a1 =median{abs(u2(:,1)-median{u2(:, 1));
m2=median(abs(u2(:,2)-median{u2(:, 2}}};
| z=[u2(:, 1)/m1,u2(:,2)/m2];
2
Q1 1=pretilefzf:, 1},25);
q13=pretile(z(:,1),75);
21 =prctile(z(:,2},25);
423=pretile(z(:,2},75);
iqrl=q13-qll;
igr2=¢23-g21;

a=T.5%grl;
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b=1.5%qr2;
dl =(-a:{a/10):q);
H1=[d1,d1];
fori=1:size{d1,2)

“d2(i)=b*sart{1-{{d 1)) ~ 2)/{a "~ 2)));
end
12=[d2';-d2%;
e=[1,12];
graph=(z;el;
scatter{graph(:, 1},grapht(:,2)) ..
% MATLAB Coding for MDB method
n=median(y};
fori=1:sizely 1)

for j=1:size(y,2)

x1if)=y(i,i)-(1,i);
end

end
[kyw,r]=svdlx1);
k2=[ki:, 1) k(:,2)];
n1=median{abs(k2(;,1 )-med_icn(k?(:,'l m;
n2=median{abs(k2(:,2}-median(k2{:,2))}};
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= [K26, 11/ K26.2/n2);
2]
ic=inv(corr{z1));
g=z1*ic*21";
fori=1:sizefz],1)
ma{i)=gli,i);
end
iqr=pretile{md’,75)-preile(md’,25);
aa=1 .5*iqr/2;

" bb=1.25%qr/2;
d11=(-aa:{aa/10):a0);
H1=[d114d11Y);
fori=1:size(d11,2)

d22(i}=bb*sqrt{1-{{d11 (i) ~ 2/taa ™ 2)));
end
122=[d22"-d22;
el =[t11,122];
graphl=[z1;e1];

scatter{graph1{:,1},araph1(:,2))
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