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Abstract 

This paper attempts to understand the role of the four 
gravitational constants in the nuclear structure which 
helps in understanding the nuclear elementary charge, 
the strong coupling constant, nuclear charge radii, 
nucleon magnetic moments, nuclear stability, nuclear 
binding energy and Neutron life time. The three assumed 
atomic gravitational constants help in understanding 
neutron-proton stability. Electromagnetic and nuclear 
gravitational constants play a role in understanding 
proton-electron mass ratio, Bohr radius and characteristic 
atomic radius. With reference to the weak gravitational 
constant, it is possible to predict the existence of a weakly 
interacting fermion of rest energy 585 GeV, called Higg’s 
fermion. Cosmological ‘dark matter’ research and 
observations can be carried out in this direction also.  

Keywords: Four Gravitational Constants, Nuclear Structure, 
Higgs’s Fermion 

1. Introduction 

The most desirable cases of any unified description are:  
a) to implement gravity in microscopic physics and to estimate 

the magnitude of the Newtonian gravitational constant 

 NG  
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b) to develop a model of microscopic quantum gravity 
c) to simplify the complicated issues of known physics  
d) to predict new effects arising from a combination of the 

fields inherent in the unified description    
 

In this context, with respect to the available literature pertaining to 
large gravitational coupling constants [1-6], we propose the 
existence of four different gravitational constants assumed to be 
associated with the observed four fundamental interactions and 
study their possible role in understanding nuclear stability and 
binding energy [7-12] for light, medium, heavy and super heavy 
atomic nuclides. Even though our approach to nuclear physics is 
speculative, proposed assumptions and relations show a wide 
range of applications embedded with in-depth low energy nuclear 
physics, high energy nuclear physics, and final unification.  

2. Four Assumptions  

With reference to recent paper publications and conference 
proceedings [13-30], we propose the following four assumptions:  

1) There exist four different gravitational constants associated with 
gravitational, weak, electromagnetic and strong interactions.

 
2) The nuclear gravitational constant sG is very large in such a way 

that,
 

0 2

2 s pG m
R

c


                                                                                               
(1) 

3) Strong coupling constant [31,32] can be expressed with,
 

2
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4) There exists a strong elementary charge in such a way that,  
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3. To Fix the Magnitudes of   , and s s sG e  

Considering neutron, proton and electron rest masses, and based 
on the relation (11), the proposed nuclear gravitational constant can 
be estimated.  Further, on the basis of that, other values can be 
estimated.   
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4. Interplay Among the Four Gravitational Constants 

According to Roberto Onofrio [5], electroweak scale gravitational 
constant is roughly 1033 times the Newtonian gravitational 
constant. 

Let, Weak gravitational constant= 
w

G  

Electromagnetic gravitational constant = 
e

G  

Newtonian gravitational constant =
N

G  

We noticed that, 
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(9) 

By knowing the magnitudes of  sG and ,
p

e

m

m

 
 
 

 , ,e w NG G G
 

can be estimated. Based on the proposed relations (5 to 9),  
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5. New Concepts and Semi-Empirical Relations  

It can be suggested that:  

1) Fine structure ratio can be addressed with,  

2
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2) Proton magnetic moment can be addressed with 
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3) Neutron magnetic moment can be addressed with  

  27 -19.816235 10 J.T .
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4) Nuclear unit radius can be expressed 

as,
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5) Root mean square nuclear charge radii [33] can be addressed 
with, 
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6) Nuclear potential energy can be understood with, 

 
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7) Close to stable mass numbers, nuclear binding energy can be 
understood with a single energy co-efficient [29], 
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8) With reference to  2 ,  useful quantum energy, a constant can 

be expressed with,  
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9) Close to magic and semi-magic proton numbers [29], nuclear 
binding energy seems to approach 
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10) The characteristic melting temperature associated with a proton 
can be expressed with,  
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11) Characteristic nuclear-neutral mass unit [30] can be addressed 

with, 2546.6365 MeV/
s

c
c

G



. 

12) Fermi’s weak coupling constant [5,32] can be addressed with, 
2
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13) Bohr radius of a Hydrogen atom can be addressed with, 
2
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14) Characteristic atomic radius can be addressed with, 
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6. To Fit Neutron-Proton Mass Difference  

Neutron-proton mass difference can be understood with: 
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7. To Fit Neutron Life Time  

The Neutron lifetime nt  can be understood with the following 

relation: 
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(12) 

This can be compared with the recommended value [32] of the 
Neutron lifetime,  880.2 1.0  sec  

8. Understanding Proton-Neutron Stability with Three 
Atomic Gravitational Constants 

Let, 
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Nuclear beta stability line can be addressed with a relation of the 
form [relation 8 of reference 9],  

 



Seshavatharam and Lakshminarayana             Role of Four Gravitational Constants 

27 

 

   

 

2 2

2

2 2 4

2 0.00642

2

    2

where 4 0.00642

sA Z s Z s

Z

Z Z

Z Z kZ

k s



  

 

  

                                                              (14) 

By considering a factor like 2 ,k 
 

likely possible range of sA  can be 

addressed with, 
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See Table-1. An interesting point to be noted is that, for Z=112,113 
and 114, estimated lower stable mass numbers are 296, 299, and 302 
respectively. Corresponding neutron numbers are 184, 186, and 
188. These neutron numbers are very close to the currently believed 
shell closure at N=184. It needs further study [33].  

Table 1: Likely Possible Range of sA for Z=5 to 118 

Proton number  
rs lowe

A   
ns mea

A   
rs uppe

A  

5 10 10 11 

6 12 12 13 

7 14 14 15 

8 16 16 17 

9 18 19 19 

10 20 21 21 

11 22 23 24 

12 24 25 26 

13 26 27 28 

14 28 29 30 

15 30 31 33 

16 32 34 35 

17 34 36 37 

18 37 38 40 

19 39 40 42 

20 41 43 44 

21 43 45 47 

22 45 47 49 

23 48 49 51 
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24 50 52 54 

25 52 54 56 

26 54 56 58 

27 57 59 61 

28 59 61 63 

29 61 63 66 

30 63 66 68 

31 66 68 71 

32 68 71 73 

33 70 73 76 

34 73 75 78 

35 75 78 81 

36 77 80 83 

37 80 83 86 

38 82 85 88 

39 85 88 91 

40 87 90 93 

41 90 93 96 

42 92 95 99 

43 94 98 101 

44 97 100 104 

45 99 103 107 

46 102 106 109 

47 104 108 112 

48 107 111 115 

49 109 113 117 

50 112 116 120 

51 115 119 123 

52 117 121 126 

53 120 124 128 

54 122 127 131 

55 125 129 134 

56 128 132 137 

57 130 135 139 

58 133 138 142 

59 136 140 145 

60 138 143 148 

61 141 146 151 

62 144 149 154 

63 146 151 157 

64 149 154 159 
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65 152 157 162 

66 155 160 165 

67 157 163 168 

68 160 166 171 

69 163 169 174 

70 166 171 177 

71 169 174 180 

72 172 177 183 

73 174 180 186 

74 177 183 189 

75 180 186 192 

76 183 189 195 

77 186 192 198 

78 189 195 201 

79 192 198 204 

80 195 201 207 

81 198 204 211 

82 201 207 214 

83 204 210 217 

84 207 213 220 

85 210 216 223 

86 213 219 226 

87 216 223 230 

88 219 226 233 

89 222 229 236 

90 225 232 239 

91 228 235 242 

92 231 238 246 

93 234 242 249 

94 237 245 252 

95 240 248 256 

96 243 251 259 

97 247 254 262 

98 250 258 265 

99 253 261 269 

100 256 264 272 

101 259 267 276 

102 263 271 279 

103 266 274 282 

104 269 277 286 

105 272 281 289 
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106 276 284 293 

107 279 287 296 

108 282 291 300 

109 286 294 303 

110 289 298 306 

111 292 301 310 

112 296 305 313 

113 299 308 317 

114 302 311 321 

115 306 315 324 

116 309 318 328 

117 312 322 331 

118 316 325 335 

 

9. Nuclear Binding Energy at Stable Mass Numbers 

Important points to be noted are:  

1. With reference to electromagnetic interaction, and based on proton 

number,  1 8.68s   can be considered as the maximum strength of 

nuclear binding energy.  
2. Z 30  seems to represent a characteristic reference number in 

understanding the nuclear binding of light and heavy atomic 
nuclides.  

 

Based on these points, at stable mass numbers of Z, nuclear binding 
energy can be expressed by the following simple empirical relation.
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s
n pA

B Z m m c   
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Thus, for,  Z<30
 

  9.68 1.2933 MeV
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for,  Z 30
 

  19.6033 MeV
sA

B Z 
                                                                          (18) 

 
Close to the stable mass numbers, the binding energy is estimated 
with relations (14) and (16) and compared with Semi-empirical 
mass formula (SEMF) (See Table 2). It needs further study with 
respect to its surprising results against a single energy coefficient! It 
may also be noted that understanding nuclear binding energy with 
a single energy coefficient is a challenging task and needs in-depth 
study. To improve accuracy, we tried to understand nuclear 
binding energy with two simple terms with the same energy 
coefficient (See sec-11). 
 

Table 2: Nuclear Binding Energy Close to Stable Mass Numbers of Z=2 to 
100 

Proton number 
Est. Mass number 
close to stability 

Est. BE 
(MeV) 

SEMF 
BE 

(MeV) 

Error 
(MeV) 

2 4 28.7 22.0 -6.7 

3 6 44.3 26.9 -17.4 

4 8 60.4 52.9 -7.6 

5 10 77.1 62.3 -14.8 

6 12 94.1 87.4 -6.7 

7 14 111.6 98.8 -12.8 

8 16 129.4 123.2 -6.2 

9 19 147.6 148.9 1.3 

10 21 166.1 167.5 1.4 

11 23 184.9 186.1 1.2 

12 25 204.0 204.7 0.7 

13 27 223.4 223.2 -0.2 

14 29 243.0 241.6 -1.4 

15 31 262.9 260.0 -2.9 

16 34 283.1 290.8 7.7 

17 36 303.5 305.1 1.6 

18 38 324.1 327.2 3.1 

19 40 345.0 341.5 -3.5 

20 43 366.1 371.6 5.5 

21 45 387.4 389.6 2.2 

22 47 408.9 407.5 -1.4 
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23 49 430.6 425.2 -5.4 

24 52 452.5 454.6 2.0 

25 54 474.7 468.9 -5.8 

26 56 497.0 489.6 -7.4 

27 59 519.5 515.2 -4.3 

28 61 542.2 532.5 -9.7 

29 63 565.0 549.7 -15.4 

30 66 588.1 577.9 -10.2 

31 68 607.7 592.0 -15.7 

32 71 627.3 619.8 -7.5 

33 73 646.9 636.6 -10.3 

34 75 666.5 653.3 -13.2 

35 78 686.1 677.9 -8.2 

36 80 705.7 697.0 -8.7 

37 83 725.3 721.3 -4.0 

38 85 744.9 737.6 -7.3 

39 88 764.5 761.6 -2.9 

40 90 784.1 780.2 -3.9 

41 93 803.7 803.9 0.2 

42 95 823.3 819.7 -3.6 

43 98 842.9 843.2 0.2 

44 100 862.5 861.2 -1.3 

45 103 882.1 884.4 2.2 

46 106 901.7 909.6 7.9 

47 108 921.3 922.7 1.4 

48 111 940.9 947.6 6.7 

49 113 960.5 962.8 2.3 

50 116 980.2 987.5 7.3 

51 119 999.8 1009.7 9.9 

52 121 1019.4 1024.6 5.2 

53 124 1039.0 1046.5 7.6 

54 127 1058.6 1070.4 11.9 

55 129 1078.2 1085.1 6.9 

56 132 1097.8 1108.7 11.0 

57 135 1117.4 1130.1 12.7 

58 138 1137.0 1153.3 16.3 

59 140 1156.6 1165.6 9.0 

60 143 1176.2 1188.5 12.3 

61 146 1195.8 1209.3 13.5 

62 149 1215.4 1231.9 16.5 

63 151 1235.0 1245.9 10.9 
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64 154 1254.6 1268.2 13.6 

65 157 1274.2 1288.4 14.2 

66 160 1293.8 1310.4 16.6 

67 163 1313.4 1330.4 17.0 

68 166 1333.0 1352.0 19.0 

69 169 1352.6 1371.7 19.1 

70 171 1372.2 1385.1 12.9 

71 174 1391.8 1404.5 12.7 

72 177 1411.4 1425.7 14.2 

73 180 1431.0 1444.8 13.8 

74 183 1450.6 1465.7 15.0 

75 186 1470.2 1484.6 14.3 

76 189 1489.8 1505.1 15.3 

77 192 1509.4 1523.7 14.3 

78 195 1529.0 1544.0 14.9 

79 198 1548.6 1562.4 13.7 

80 201 1568.2 1582.3 14.1 

81 204 1587.8 1600.5 12.6 

82 207 1607.4 1620.2 12.7 

83 210 1627.0 1638.1 11.0 

84 213 1646.7 1657.5 10.8 

85 216 1666.3 1675.2 8.9 

86 219 1685.9 1694.3 8.5 

87 223 1705.5 1718.6 13.1 

88 226 1725.1 1737.5 12.4 

89 229 1744.7 1754.6 10.0 

90 232 1764.3 1773.2 9.0 

91 235 1783.9 1790.2 6.3 

92 238 1803.5 1808.5 5.1 

93 241 1823.1 1830.2 7.1 

94 245 1842.7 1848.3 5.6 

95 248 1862.3 1864.8 2.5 

96 251 1881.9 1882.6 0.7 

97 254 1901.5 1898.9 -2.6 

98 258 1921.1 1922.7 1.6 

99 261 1940.7 1938.7 -2.0 

100 264 1960.3 1956.1 -4.2 
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10. Understanding Nuclear Binding Energy of Deuteron  

If it is assumed that, there exists no strong interaction in between 
proton and neutron, nuclear binding energy of deuteron can be 
expressed as, 
 

 2 2
1  of  2 2.59 MeVn pBE H m m c   

                                               
(19) 
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This can be compared with the experimental value of 2.225 MeV. 

11. Understanding Nuclear Binding Energy with Two 
Terms (Close to Stable Mass Numbers) 

Based on the new integrated model proposed by N. Ghahramany et 
al [11,12],  
 

   2 2 2

( , ) 3
3

n
N Z N Z m c

B Z N A
Z





     
     
   

                                         (20) 

 
where     Adjusting coefficient  (90 to 100). 

   if ,  0 and  if ,  1.N Z N Z N Z N Z        

 
Readers are encouraged to see references in [11,12] for the 
derivation part. Point to be noted is that, close to the beta stability 

line, 
2 2

3

N Z

Z

 
 
 

takes care of the combined effects of coulombic and 

asymmetric effects.  In this context, we would like to suggest that,  
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Proceeding further, with reference to relation (14), it is also possible 
to show that, for  40 to 83 ,Z   close to the beta stability line,  

2 2

 s

s

N Z
kA Z

Z

 
 

 
                                                                                    (22) 

 
2 2

 
3 3

s s
N Z kA Z

Z

 
 

 
                                                                                   (23) 

 
Based on the above relations and close to the stable mass numbers 
of  Z 5 to 118 ,  with a common energy coefficient of 10.06 MeV, we 

would like to suggest two terms for fitting and understanding 
nuclear binding energy.   
 
The first term helps in increasing the binding energy and can be 
considered as,  
 
Term_1 10.06 MeVsA                                                                           (24) 

 
The second term helps in decreasing the binding energy and can be 
considered as,  
 

Term_2 3.531 10.06 MeV
2.531

skA Z 
   
 

                                                     (25) 

 

   where 

  2

2

1
ln 2.531.

1
3.531 1 2.531 1 ln

n p

e

m m c

m c k

k

  
   
  

  

     
 

 
 






  

 
Thus, binding energy can be fitted with,  
 

3.531 10.06 MeV
2.531s

s
A s

kA Z
B A

  
     

  
                                                  (26) 

 
See the following figure 1. The dotted red curve plotted with 
relations (14) and (26) can be compared with the green curve 
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plotted with the standard semi-empirical mass formula (SEMF). For 
medium and heavy atomic nuclides, the fit is excellent. It seems 
that some correction is required for light atoms. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Binding energy per nucleon close to stable mass numbers of Z = 5 to 118 

We are working on understanding and estimating the binding 
energy of mass numbers above and below the stable mass numbers. 
With trial and error, we have developed a third term of the form 

 
2

10.06 MeV.s sA A A  
 

 Using this term, approximately, it is 

possible to fit the binding energy of isotopes in the following way.  

 
2

3.531 10.06 MeV
2.531

s
A

s

A AkAZ
B A

A

     
        
                                          

 (27) 

Figure 2 shows the estimated isotopic binding energy of Z=50.  The 
dotted red curve plotted with relations (14) and (27) can be 
compared with the green curve plotted with SEMF.  

For Z=50 and A=100 to 130, with reference to SEMF, there is not 
much difference in the estimation of binding energy. With 

reference to SEMF, when  130 ,A 
estimated binding energy seems 

to be increasing and when  212 ,A 
 estimated binding energy 

seems to be decreasing rapidly. It needs further study and 
refinement.  
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Figure 2: Binding Energy of Isotopes of Z=50 

12. To Fix the Magnitude of Fermi’s Weak Coupling 
Constant  

With trial-error, we noticed that, 

0 2

2

2
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

                                                                                 

(28) 

where  
F

G  is the Fermi’s weak coupling constant [5,31,32] and F
G

c
is the 

characteristic length associated with a weak interaction. 
 
Based on the relation (28),  
 

3 2

4

4
e

s F
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m c
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                                                                                                    (29) 
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Recommended value of 62 31.43586 10  J.m .
F

G   It may be noted that 

relations (29) and (30) seem to play a key role in understanding the basics 
of final unification and needs further study. 

13. To Fix the Magnitude of Newtonian Gravitational 
Constant  

With reference to Planck scale and considering the following semi-
empirical relation, magnitude of the Newtonian gravitational 
constant  N

G can be fitted. 

  

1 1
2 12 12

p s p s s s

e N N

m G m G e G

m c G eG

     
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     
                                                            (31) 

Based on relations (28) to (31), 
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(32) 
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(33) 

where Compton wavelength of electron.
e

m c




 

Based on the recommended and estimated values of ,
F

G  

62 3

11 3 -1 -2

If,  1.43586 10  J.m ,

6.66937197 10  m kg sec

F

N

G

G





 

   
62 3

11 3 -1 -2

If,  1.440414 10  J.m ,

6.679076 10  m kg sec

F

N

G

G





 

   

Average value can be expressed as,  

11 3 -1 -26.674224 10  m kg sec .
N

G    
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In terms of the nuclear charge radius,  

11
5 2
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3
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e F

N

p

m c G R
G

m

 
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      (34) 

Accuracy of  N
G  seems to depend on  0

, , , .
s s F

G R G  

14. To Understand the Nuclear Charge Radius and Fermi’s 
Weak Coupling Constant  

Based on the relation (8),  
6
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4 4p pw N

e e

m mG G
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m c m c

   
    
   
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(35) 

where 
3

4
w

G

c


can be called as the Schwarzschild radius of weak 

scale Planck mass 
2

3 2

4 4
w w

F

G G
G c

c c

 
  

 

 


                                                                          
(36) 

Characteristic electroweak mass and its Schwarzschild radius can 
be expressed as,  

2584.983 GeV/
w

w

c
M c

G
 



                                                                    

(37) 

19

2 3

2 4
6.74642 10  mw w w

G M G

c c

  


                                                         
(38) 

2

p s p e s

w e w

m G m m G

M c G G
 

                                                                               
(39) 

Based on the relation (14), relation (39) can be given some 
consideration in understanding neutron-proton stability. 

w s

e w

M G

m G


                                                                                                
(40) 

15. To Understand the Important Strong Interaction 
Parameters 

Based on the above relations, strong interaction range and strong 
coupling constant can be understood with the following relation. 
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One strange approximation is,  
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2

32 32
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   
   

   
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If so,   

2

1
expw

N s

G
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(44) 

 
Based on the above relations, strong interaction range can be understood 
with the following relation. 
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(45) 

It seems interesting to infer that,  

a) 
2

1

s


 
 
 

 and 
2

1
exp

s


 
 
 

 play a crucial role in deciding the strong 

interaction range.  

b) An increase in the value of 
s

 help in decreasing the interaction range. 

This may be an indication of a more strongly bound nuclear system. 

c) A decrease in the value of 
s

 help in increasing the interaction range. 

This may be an indication of the more weakly bound nuclear system. 

2

1
d)    Poportionality constant being exp ,

s


 
 
 
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According to current literature [34], nuclear charge radii can be expressed 
with the following formulae, 
 

 

1 3

1 3

1 0.349 1.262 fm

1 0.015 1.245 fm

c

N Z
R N

N

N N Z
Z

Z

   
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  

    
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                                                          

(46) 

 
Based on these relations, by adjusting the coefficients 0.349 and 0.015 and 

bringing the value of  
0

R close to1.24 fm, magnitudes of  ,
s N

G G can also be 

fitted. 

16. Discussion 

According to Rosi et al. [35], there is no definitive relationship 
between GN and the other fundamental constants and no theoretical 
prediction for its value to test the experimental results. Improving 
the knowledge of GN not only has a pure metrological interest but 
also plays a key role in theories of gravitation, cosmology, particle 
physics, astrophysics, and geophysical models.  

By following the works of Sivram, De Sabbata, and Gasperini [36-
39] and with respect to the partial numerical success of the 
proposed relations, we are trying to understand the very nature of 
the four interactions in terms of tensors, vectors and axial vectors.  

Interaction constants are connected both with global phenomena of 
physics and with phenomena at small distances, such as quantum 
gravity. Therefore, the search for relations among the constants of 
the four types of interactions is important, relevant and necessary. 
At present, there exist no basic formulae or mechanisms using by 
which one can develop at least models with ad hoc relations for 
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estimating the Newtonian gravitational constant. It would be 
important to consider in detail such theories as microscopic 
quantum gravity and a combination of the fields inherent in the 
unified description of the four interactions.  

Clearly speaking, even though materialistic atoms have an 
independent existence, they are not allowing scientists and 
engineers to explore the secrets of gravity at the atomic scale. This 
may be due to incomplete unification paradigm, the inadequacy of 
known physics and technological difficulties etc. When heavenly 
bodies are made up of tiny atoms, it is imperative to find 
correlations that might exist among ‘atoms’ and ‘heavenly body’ as 
a whole. In this challenging scenario, one fundamental question to 
be answered is: Is Newtonian gravitational constant having any 
physical existence?  We would like to suggest that, it is a man 
created empirical constant and is having no physical existence. 
Clearly speaking, it is not real but virtual. For understanding the 
secrets of large scale gravitational effects, scientists consider it as a 
physical constant. In the same way, each atomic interaction can be 
allowed to have its own gravitational constant. With further study, 
their magnitudes can be refined for a better understanding of their 
nature.  

17. Conclusion 

With reference to the famous semi-empirical mass formula having 
5 different energy terms and 5 different energy coefficients, 
qualitatively and quantitatively, our proposed relations (14), (16), 
(26) and (27) are very simple to follow and a special study seems to 
be required for understanding the binding energy of isotopes above 
and below the stability line. We are working in this direction. 

Considering relations (36 to 42), it is possible to predict that there 
exists a weakly interacting fermion of rest energy 585 GeV. It can be 
called as Higg’s fermion. Cosmological ‘dark matter’ research and 
observations [40] can be carried out in this direction also. 

With further research and considering relations (1 to 10) and (28 to 
46), current nuclear models and strong interaction concepts can be 
studied in a unified manner with respect to strong nuclear gravity. 
In this context, relation (35) can be given some consideration. 
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Finally, the value of the Newtonian gravitational constant can 
successfully be estimated with nuclear elementary physical 
constants.  
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