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On Self-Gravitating Polytropic Cylinders 
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Abstract 

In this review paper the 2-D Lane-Emden equation (LEEq) 
model of a self-gravitating gas distribution in the form of 
an infinitely long cylinder shaped polytrope of finite 
radius is obtained and its basic radial properties are 
outlined. Similarly reviewed is the derivation of the 1-D 
LEEq model of an infinitely wide planar polytrope of 
finite thickness and its basic properties across thickness 
are discussed. These two polytropes are solved 
numerically along with the 3-D models for comparison 
using the 2 nd order Euler-Richardson method (ERM) and 
their index based parameters are determined. The Python 
script used in these computations has been shown to be 
not only fast but is capable of matching fourth order 
performance. However, these models are found to have 
finite radii for all polytropic indices unlike the restricted 
spherical analogs and have astrophysical applications. 
Distortion due to rotation in polytropic rings has also 
been computed using ERM. 

Keywords: Polytropic Cylinders, Lane-Emden Models, Euler-
Richardson Solutions 

1. Introduction 

Huge self-gravitating gas distributions have been detected over 
many decades in many parts of the galaxy such as ISM, molecular 
clouds and even spiral arms. The approximate shape of these 
structures is in the form of huge planar sheets and long cylindrical 
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filaments.  Idealised models of such gas condensations consist of 
treating them as infinitely sized planar polytropes of finite 
thickness or as infinitely long cylindrical polytropes of finite radii 
respectively. While these polytropes have a reduced dimensionality 
(1-D and 2-D respectively), their theory is similar to that of 
spherical polytropes described by the Lane-Emden equation (LEEq, 
[1]). The theory and properties of simple polytropic cylinders will 
be briefly reviewed below followed by polytropic slabs as both the 
polytropes find applications for astrophysical modelling in many 
publications.   

2.1 The 2-D Lane-Emden Equation of Cylindrical Polytropes 

Consider an infinitely long cylinder of finite radius containing 
polytropic gas (or fluid) in a state of self-gravitating hydrostatic 
equilibrium. The problem is to determine the run of physical 
variables which have only a radial dependence from the axis of the 
cylinder. In this sense, it is a 2-D problem and so we may consider a 
thin disc of radius , axial length  and linear mass  in 

the cylinder. If we consider a cylindrical ring of radius r, width dr 
and mass dM(r) then it is gravitationally pulled by the mass M(r) of 
the inner disk toward the axis. To find this force, a Gaussian pillbox 
is placed around the inner disk of radius r and mass M(r). If 

denotes the radial gravitational field normal to the curved side 

which has a surface area , the total gravitational flux is 

. Then, the Gauss theorem requires that 

. Hence,  is the inward 

acceleration per unit mass of the surrounding ring which must be 
balanced by the outward radial force . If denotes the 

density, we can write , or, 

. This can be rewritten as 

. This expression is 

differentiated again to remove the integral which, after 
simplification, reduces to the 2-D Poisson equation given by 
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Figure.2.1:  Shown here is the interior cross-section of a disk of the radius  (and 

height dz) along with a Gaussian pillbox covering a mass M(r) for calculating the 
acceleration g(r) due to it on a unit mass placed at the same distance. 

             (2.1) 

Here the radial parameter has one degree less than that in the 3-D 
Poisson equation obtained for spherical polytropes [1,2]. Both can 
be combined into a single expression by rewriting (2.1) as 

                                                        (2.2)     

Here D denotes the dimensionality of the model problem and has 
values 2 and 3 for the 2-D Poisson and the 3-D Poisson equations 
respectively. It can be expected that the value  would 

correspond to a 1-D Poisson equation and this will be proved to be 
so in Sec.3. We can now obtain the 2-D Lane-Emden equation 
(LEEq) in the same way as was done in [1] for spherical polytropes 
of polytropic index n by substituting the polytropic EOS,  

where   into (2.1) to get 
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                                                            (2.3) 

Now, as in [1] define  where  is the central (=axial) 

density, n is the polytropic index and  is the parameter that 

fixes the density, we require  along the axis since there 

and  since  at the circular surface of the cylinder. Using 

this definition in (2.2) and simplifying it along with, 

,                                              (2.4) 

where  is the scaled radius of the disc, we get the 2-D LEEq of the 

cylindrical polytrope noting that this is different from the similar 
3-D LEEq ([1], [2]) as 

.                                                         (2.5) 

Here  is the Emden function for the cylindrical 

polytrope of index n as well as the solution,   and  

. The generalised LEEq can now be obtained from 

(2.2) and the expressions of (2.5) become generalised[7] as 

                             (2.6) 

Here too, the same values ( ) and comments which 

followed (2.2) apply.  

The first five terms of the power series solution of the 2-D Emden 
function are found [3] to be: 

  (2.7) 

The radius of the cylindrical polytrope is defined as  at which 

. For n = 0 this is found from (2.7) to be  and for n = 

1, it is found that (2.7) reduces to the Bessel function   so that 

its first root lies at . In the next section, and 

 will be solved numerically in a computer for a few values of 

the polytropic index ( ). Now the first three terms in the 

derivatives of (2.6) needed for computer solutions are as follows: 
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                                         (2.8) 

                                           (2.9) 

The mass and mean density will now be calculated. The mass per 
unit length within a radius r is given by (2.10) and after integrating, 
it takes the simplified form shown in (2.11) below. 

                     (2.10) 

                   (2.11) 

The quantity  known as the mass per unit length parameter is 

the absolute value of the product of radius and the slope at that 

interior point. Its maximum value  occurs at the edge of the 

polytropic disk where  and this value is listed in Table 2.1. 

Thus, the total mass (per unit length) of the disk is 
. As the numerical values of  and  are 

computed, the related physical parameters such as the density 
fraction, , the pressure fraction, , the 

product  are quickly computed and finally, the mass fraction  

 is also computed. 

The volume per unit length of the disk within a radius  is 

 so that the mean density interior to this radius 

is . When this expression is evaluated 

over the entire disk, we get . Hence, after inverting 

it, the central condensation is given by the ratio, 

                                                                               (2.12) 

The magnitude of central condensation is also computed for 
selected polytropic indices and is shown in the last column of Table 
2.2.1.  
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2.2. Solving the 2-D Polytropic Cylinder Model 

The computer solution of the corresponding 2-D LEEq can be 
carried out by first writing (2.5) as a coupled set of two first order 

ODEs using two new variables y and z defined by  and 

 as 

  ;                                            (2.13) 

with the BCs now reading as   

 .  Two simple but 
rapid methods of integrating (2.13) were considered and tested 
here. They are respectively the stable first order Euler-Cromer 
Algorithm (ECM, [6]) and the second order Euler-Richardson 
Algorithm (ERM, [7]) both of which are discussed in Appendix A. 
Trials were conducted first with ECA and a step size like 

 to determine four parameters for several polytropic 
indices. They were then compared with a more accurate computer 
solution based on the use of the SciPy integrator module ‘dopri5’as 
it was capable of fifth order error controlled adaptive integration 
(see [2] for details). The parameters are listed in Table 2.2.1 below. 

Table 2.2.1: 2-D Polytropic Cylinder Radial Parameters 

Computing Algorithm: BVP with fitting + dopri5(*) integrator  
(see Ref: 2) 

Index Emden Radius Slope at  Mass param. Axial Rel. Dens.  

N 
    

  0.0  2.0 -1.0   2.0         1.0 

  1.0  2.40482555770 -0.51914749729  1.24845916969         2.316129395 

  1.5  2.64777676622 -0.40075689248  1.06111478882        3.303470029 

  3.0  3.57390098193 -0.20709082996  0.74012212054        8.628824808 

  5.0  5.42757458624 -0.09808145384  0.53234440623      27.668709903 

  8.0 10.4029169860 -0.03622778865  0.37687467788    143.576483339 

 10.0 16.2227407494 -0.01947836994  0.31599254581    416.429629293 

12.0 25.4531321698 -0.01069534195  0.27222995235  1189.916707644 

 

It was found that the ECM method produced values within 0.001% 
of the values seen in the table. Then, the trial with the larger step 
size, , was repeated with ERM and it was found that 
the ERM-produced values were within a remarkable 0.000001% 
from the values in Table 2.2.1. Hence, only these parameter values 
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are reported in Table 2.2.2. They are respectively the Emden radius 
in the 2nd column, the slope of Emden function in the 3rd column, 
mass per unit length in the 4th column and the relative axial density 
(central condensation) in the last column against the polytropic 
index in the first column. These parameters are also in excellent 
agreement with similar values reported by Horedt in Table 2.5.2 of 
[9]. 

In addition, the values listed in Table 2.2.2 are broadly in 
agreement but are more accurate than the values computed up to 6 
digits over 53 years ago by Ostriker ([3] and [4]) using the standard 
Runge-Kutta algorithm. A perusal of the values in Table 2.2.2 
indicates that as n increases the radius (2nd col) of the polytropic 
cylinder gets larger. Therefore, the mass parameter decreases (3rd 
col). This implies that the axial region gets more massive and this is 
confirmed by the rapid increase of central condensation along the 
axis as shown by the listing in the last column. 

Table 2.2.2: 2-D Polytropic Cylinder Radial Parameters 

Computing Algorithm: Euler-Richardson with step size = 0.00005 

Index Emden Radius Slope at  Massparam. Axial Rel. Dens. 

n 
    

  0.0 2.0000000000 -1.0000000000 2.0000000000 1.000000000 

  0.5   2.1896621900 -0.6975388627   1.5273744737 1.569562864 

  1.0   2.4048255572 -0.5191474973   1.2484591694 2.316129395 

  1.5   2.6477767660 -0.4007568923   1.0611147881 3.303470030 

  2.0   2.9213207237 -0.3167585341   0.9253532702 4.6112739024    

  3.0   3.5739009830 -0.2070908298   0.7401221201 8.628824818 

  5.0   5.4275745908 -0.0980814537   0.5323444059 27.668710164 

  8.0 10.4029170047 -0.0362277886   0.3768746776 143.576483968 

10.0 16.2227407555 -0.0194783699   0.3159925458 416.429629681 

12.0 25.4531322552 -0.0106953419   0.2722299521 1189.916716724 

20.0 160.5964733254 -0.0010933470   0.1755876774 73442.588987976 

 

In Fig. 2.2., the Radial properties of 2-D Polytropic Cylinders are 
graphed for n = 0, 1.5, 3, 5, 8 and 12. In the graph, at the top   is 

drawn against   which increases with n. In the middle graph, the 

density fraction  is drawn magnified against  showing that it 

increases with n and moves closer to the central axis of the 
polytrope. The constant density profile of the n = 0 polytropes may 
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also be noted. In the graph at the bottom, the mass fraction 
(normalised mass distribution) is drawn against  showing that 

more mass collects closer to the central axis due to an increase in 
the density with index n (see Table 2.2.2). Thus, as n increases to 
large values, the central condensation also rapidly increases while 
the polytropic disk becomes extended. However, the radius always 
remains finite (unlike that of polytropic spheres). 

In this way, the computational work done here with the second 
order ERM has enabled solving the 2-D LEEq and computing quite 
accurate values of the parameters for several indices in fast 
sequence. Among the many applications of the cylindrical 
polytrope model, a recent one is described in [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.1: Radial parameter variations of 2-D Polytropic Cylinders are shown graphed 
together in three groups for n = 0, 1.5,3,5,8 and 12. At the top, middle and bottom the 

temperature fraction , the density fraction and the mass fraction are respectively 

drawn against  (see text for details).  
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The problem of computing the extent of distortion due to rotation 
in 2-D polytropic rings [4] has been briefly dealt with in Appendix 
B as an example application of the ERM described above and all the 
computed parameters listed in Table B.1 as several polytropic 
indices are in very good agreement with those given in [4]. 

3.1 The 1-D Lane-Emden Equation of Planar Polytropes 

Consider an infinitely large planar slab of finite thickness 
containing polytropic gas (or fluid) in a state of self-gravitating 
hydrostatic equilibrium with respect to the flat central plane of 
symmetry in the middle of the slab. The problem then is to 
determine the run of physical variables which have only height 
dependence from this central plane on both sides and in this sense, 
constitutes a 1-D problem. So, as shown in Figure 3.1, we may 
consider a slab of height both above and below the 

central plane, a total thickness which equals the slab thickness 

and a total mass density  per unit area in the slab. If we consider 

a cylindrical ring of horizontal radius , height  and mass 

, it is gravitationally pulled by the mass M(r) of 

the inner disk toward the central plane. To find this force, a 
Gaussian pillbox is placed around the inner disk of horizontal 
radius, thickness  and mass M(r). If  denotes the vertical 

gravitational field normal to the upper flat face which has a surface 

area , the gravitational flux through it is . An 

equal flux contribution comes from the lower flat face so this 
makes the total flux through the pillbox to be  directed at 

the central plane. Gauss theorem now specifies that 
.  Hence  is the inward 

acceleration acting on a unit mass at a height r from the central 
plane. The resulting force     must then be balanced 

by the net outward vertical force .  If  denotes the 

density, we can write, 

,  

.                                                (3.1)             
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This can be rewritten as   

. 

 

Figure 3.1: Shown here is the interior cross-section of a cylindrical disk 
(having a flat surface area dA) cut from an infinite polytropic slab along 
with the Gaussian pillbox surrounding a mass M(r) to find its gravity g(r) 
at both heights +r and -r. 

It may be noted here that M(r) is the sum of masses (per unit area) 
enclosed by the pillbox both above and below the central plane. 
This expression is differentiated again and after inserting 

, may be rewritten as 

 

Thus, we arrive at the 1-D Poisson equation given by, 

                                                                            (3.2) 

This expression results also by inserting the value  into the 

generalised Poisson equation (2.2). We can now transform (3.2) to 
obtain the 1-D planar LEEq in the same way as was done in Sec.2 
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for cylindrical polytropes of index n by inserting the EOS,   

into (3.2) to get 

                                                                (3.3) 

Defining  where  is the density at the central plane, n 

is the polytropic index and  is the (temperature) parameter 

that fixes the density. We require that  along the central plane 

since  there and also  since  at both the equidistant 

flat surfaces of the slab. Inserting this definition in (3.2) and 
simplifying it using the same definition as given in (2.4) 

where the scaled height from the central plane is now , we get the 

1-D LEEq of the polytropic slab as 

 .                                                                        (3.4) 

Here   is the 1-D Emden function for the 

polytropic slab of index n as well as the solution,    and  

 . This expression also results by inserting  into 

the generalised Lane-Emden equation (2.6). The first five terms of 
the usual power series solution of this equation were determined 
using standard procedure [1], to be 

       (3.5) 

The height of either flat surface from the central plane of the 
polytropic slab is defined as for which  . For n = 0, (3.5) 

shows that  and for all other values of n, no analytic 

solution is available. In the next section,  and  will be 

solved numerically in a computer for a few values of the polytropic 
index ( ).  Now the first four terms in the derivatives of 

(3.5) needed for computer solutions are as follows. 

           (3.6) 

          (3.7) 
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The mass and mean density will now be calculated. The mass per 
unit area within a radius r is given by (3.8) and after integration, it 
takes the simplified form shown in (3.9) below. 

                                   (3.8) 

                                (3.9) 

The quantity  known as the mass per unit area parameter is 

the absolute value of the slope at that interior point. Its maximum 

value  occurs at both the flat surfaces (edge) of the slab 

where  (aka, Emden height) and this value is listed in Table 

3.2. Thus, total mass (per unit area) of the slab is . 

As the numerical values of  and  are computed, other 

parameters such as the density fraction, , the pressure 

fraction,  are quickly computed and then finally the 

mass fraction,  is also computed.   

The volume per unit area of the slab within a central planar 
distance  is  so that the mean density interior to 

this height is . Then the mean 

density of the entire slab is given by  and after 

inverting, the central condensation (central planar density relative 
to mean density) is given by the ratio, 

                                                                               (3.11) 

The magnitude of central condensation is now computed for 
selected polytropic indices and is then listed in the last column of 
Table 3.2.1 below.  

3.2. Solving the 1-D Planar Polytropic (Slab) Model 

The computer solution of the corresponding planar LEEq has been 
carried out by using the same second-order Euler-Richards on 
integration method as explained and was used earlier in Section 2.2 
with a small step size. The expression in (3.4) is written as a 
coupled set of two first order ODEs using two new variables y and 
z defined by  and  as 
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  ;                                                              (3.12a) 

The central plane ( ) and both flat surface ( ) boundary 

conditions are given by:  

              (3.12b)        

Table 3.2.1: 1-D Polytropic Slab Surface ( ) Parameter Values    

Computing Algorithm: Euler-Richardson (step size: 0.00005) 

Index Radius Slope Mass /area 
param. 

Mid Slab 
Rel.Dens 

n 
    

  0.0 1.41421356 -1.41421356 1.41421356 1.00000000 

  0.5 1.49366840 -1.15470058  1.15470058  1.29355473 

  1.0 1.57079633 -1.00000000  1.00000000 1.57079632  

  1.5 1.64534085 -0.89442719 0.89442719 1.83954699 

  3.0 1.85407468 -0.70710678 0.70710678 2.62205755 

  5.0 2.10327316 -0.57735027 0.57735027 3.64297597 

  8.0 2.43165668 -0.47140452 0.47140452 5.15832279 

10.0 2.62843161 -0.42640143 0.42640143  6.16421852 

15.0 3.06630469 -0.35355339 0.35355339 8.67281936 

20.0 3.44944436 -0.30860670  0.30860670  11.17747725 

 

As explained in Appendix A and also done in Sec.2.2 the second 
order ERM is used here also to integrate the 1-D LEEq given by 
(3.12a). Table 3.2.1 lists the set of four slab surface parameters 
(similar to those in Table 2.2.2) obtained for ten values of the 
polytropic index in the range . All of these parameters 

are in excellent agreement with similar values listed up to all nine 
decimal digits by Horedt in Table 2.5.2 of [10]. 

In Figure. 3.2.1, similar radial properties of 1-D polytropic slabs are 
graphed for n = 0, 1.5, 3, 6, 10 and 15.  In the graph, the top   is 

drawn against  which increases with n. In the middle graph, the 

density fraction  is drawn showing that it increases with n and 

moves closer to the central plane of the polytropic slab. The 
constant density profile of the n = 0 polytrope may also be noted. 
At the bottom of the graph, the mass fraction (normalised mass 
distribution) is drawn showing that more mass collects closer to the 
central plane due to an increase of density with index n (see Table 
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3.2.1). Thus, the central condensation also slowly increases with n 
while the polytropic slab itself becomes thicker but finite. However, 
the rate of increase is much lower than that of 2-D polytropic 
cylinders. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: Radial parameter variations of 1-D Polytropic Slabs are shown graphed together 
in three groups for n = 0, 1.5, 3, 6, 10 and 12. At the top, middle and bottom the temperature 

fraction , the density fraction  and the mass fraction are respectively drawn against 

 (see text for details).  

In this way, the computational work done here with the second 
order ERA method has enabled solving the 1-D LEEq and 
computing quite accurate values of the parameters for several 
indices in fast sequence and also draw an all-in-one graph. Among 
the many applications of the 1-D polytropic slab model, a recent 
one is described in [10]. 
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4. Discussion and Conclusion 

In Sec. 2 of this review paper, the 2-D LEEq describing the structure 
of polytropic cylinders was derived along with expressions for 
density fraction, mass fraction and the central (axial) condensation. 
Similarly, in Sec. 3 the 1-D LEEq describing the structure of 
polytropic slabs was derived along with other expressions for 
density fraction, mass fraction and the central (planar) 
condensation. Both the LEEqs were integrated using the second 
order Euler-Richardson method for several indices using the 
Python script listed fully in Appendix B and the computed physical 
parameters were collected in Table 2.2.2 and Table 3.2.1 
respectively. All of these parameters were found to agree very well 
with Horedt [10]. The 3-D LEEq describing spherical polytropes too 
was integrated by the same method and the relevant parameters 
which also agree with all the digits as given in [10], are listed in 
Table A.1 in Appendix A. Graphs were also drawn in all the three 
cases (Figures 2.2.1, 3.2.1 and A.1) for ease of comparison and 
understanding. 

It is interesting to notice that while the graphs appear similar for all 
the three polytrope models, the parameter magnitudes for the same 
indices reduce rapidly from that of 3-D models to those of 2-D and 
1-D models respectively. Also, the respective magnitudes remain 
finite in the lower dimensional models. There are many 
astrophysical applications of these models and some of them 
requiring more work may be found in [5], [9], [10]. 

A highlight of this paper has been to demonstrate that the second-
order Euler-Richardson algorithm combined with a suitable step 
size is computationally capable of producing highly accurate 
parameter values for all the polytrope models considered and also 
is quite fast.  
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Appendix A 

Here is a brief description of the stable first order Euler-Cromer 
Method (ECM aka symplectic Euler and semi-implicit Euler, [6],[7]) 
and the second order Euler-Richardson Method (ERM, [8]). The 
scripting was done in Python 3.6 and executed in Anaconda Spyder 
IDE. The 2-D LEEq which is given by  (2.13), is 

redefined here as the function, 

                                     (A.1)          

The variables y and z are defined by  and . 
Integrating twice we can write each integrated step in 
terms of the current and next updated values as, 
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                                               (A.2) 

                                                    (A.3) 

The two steps (A.2) and (A.3) with  as the pre-settable step size 
constitute the core of the first order ECM. Cromer discovered that 
inserting the just updated value of from (A.2) in (A.3) 
leads to improved global accuracy and imparts stability to the 
integration. The difference with the Forward Euler method is that 
the ECM uses the newer value  in (A.3) while the Euler 
method uses the older value  leading to instability issues and 
so is not preferred. 

The second order ERM similarly adds two mid-step evaluations 
using the Euler method in (A.4) and (A.5) which are then used to 
update the two parameters in (A.6) and (A.7) respectively. These 
four integration steps are given by, 

                                    (A.4) 

                                                   (A.5) 

(A.6) 

                                               (A.7) 

The set of these four equations should be used in the same order 
shown and it is found that integration using ERM is as fast as or 
faster than using ECM as larger step sizes could be employed. In 
the computing work reported here, the ERM has therefore been 
employed to integrate the 2-D LEEq for a few indices and the 
results obtained are displayed in Table 2.2.1. 

In the case of the 1-D LEEq given by (3.12a), we redefine (A.1) as, 

                                                      (A.8) 

Notice that (A.8) is used updated in (A.6) 
as . 

The ERM is applied to solve the 1-D LEEq using the five 
expressions (A.4) to (A.8). The results obtained are displayed in 
Table 3.2.1 along with the step size used. Further discussion of the 
results is continued in Sections 2.2 and 3.2 respectively. 
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For the sake of completeness, we mention that before applying the 
ERM to solve the 3-D LEEq of spherical polytropes that (A.1) must 
be modified by inserting the factor 2 as shown below. 

                                  (A.9) 

The integration then proceeds with the four expressions (A.4) to 
(A.7) as explained above. The results obtained for a few indices of 
3-D spherical polytropes are shown in Table A.1 below and are also 
plotted together in Figure A.1 for enabling comparison with similar 
properties of polytropic cylinders given in Sec.2 and polytropic 
slabs gave Sec.3 respectively. 

Table A.1: 3-D Polytropic Sphere:  Radial Parameters 

Computing Algorithm: Euler-Richardson with step size  = 0.00005 

Index Emden 
Radius 

Slope at  Mass Central Condens. 

npol 
    

0.0 2.4494897444 -0.8164965810 4.8989794954 1.0000000000 

1.0 3.1415926507 -0.3183098871 3.1415926573 3.2898681208 

1.5 3.6537537336 -0.2033012824 2.7140551124 5.9907045204 

2.0 4.3528745899 -0.1272486508 2.4110459998 11.4025428728 

3.0 6.8968485892 -0.0424297573 2.0182359193 54.1824811855 

3.25 8.0189374727 -0.0303219610 1.9498039207 88.1532416562 

4.0 14.9715459597 -0.0080180786 1.7972297650 622.4078834608 

4.5 31.8364590809 -0.0017145487 1.7377981706 6189.4731792802 

 
The tabulated 2nd column values are found to be in very good agreement 
with the values listed in [2], [1] and all the values are found to completely 
agree with Horedt (Table 2.5.2 in [10]). 
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Figure A.1: The temperature, density and mass fractions of 3-D spherical polytropes are 
graphed together in the top, middle and bottom parts of the figure respectively for a few 
indices (see [1] for details). 

Appendix B 

We can consider huge self-gravitating polytropic rings as an 
interesting variation in the configuration of the infinitely long 2-D 
polytropic cylinders treated in Sec.2 above. All the relevant 
physical parameters have the same radial distribution as discussed 
in that section with respect to the axis of a non-rotating ring. 
Ostriker [12] has provided a detailed theory of static as well as 
solidly rotating rings. Also in [4], he has provided a non-linear DE 
in terms of the 2-D Emden function , its derivatives (see 2.7, 2.8 

and 2.9) and a perturbation function   which quantifies the 
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effects of rotation as well as curvature in distorting the cylindrical 
structure (see [12] for details). This perturbation function is defined 
by the non-linear differential equation given by 

                                           (B.1) 

The purpose of this appendix is to numerically solve this equation 
using mostly the same computer program described in Appendix 
C. That program is used to supply the run of values of the three 
parameters, namely, the Emden radius , the 2-D Emden function 

and its slope which are used as constants in (B.1) so that it 

can also be integrated by the same Euler-Richardson Method for a 
few indices of interest. To do this (B.1) is written as two coupled 
first-order equations given by, 

, and,       (B.2) 

The steps in implementing ERM for (B.2) are similar to the set (A.4) 
to (A.7): 

    (B.3) 

                    (B.4) 

                                                   (B.5) 

 (B.6) 

                                               (B.7) 

The two Emden variables and its slope are held constant in 

the ERM steps (B.4) to (B.7) and only the Emden radius is changed 
for updating as shown in the above step sequence.  The relevant 
python function module, rhs_2D_Rot_ERm () is provided at line 
101 in Appendix C. Along with the index and Emden radius, the 
Table B.1 lists the three distortion parameters as shown. The values 
in the last two columns are in excellent agreement with the values 
reported by Ostriker in various tables in [4]. 
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Table B.1: Rotational Distortion Parameters in Polytropic Rings (Ref. [4]) 

 

Index Emden Radius Slope:  Distortion 
Parameter #1 

Distortion 
Parameter #2 

n     
  1.0 2.4048255572 0.4083503443 0.982011 0.519159 

  1.5 2.6477767660 0.4455296025 1.179663 0.576370 

  2.0 2.9213207237 0.4699228976 1.372795    0.654680 

  3.0 3.5739009830 0.4971514279 1.776770 0.868391 

  5.0 5.4275745908 0.5142767224 2.791275 1.542781 

  8.0 10.4029170047 0.5147210132 5.354600 3.466777 

10.0 16.2227407555 0.5122874307 8.310706 5.786567 

12.0 25.4531322552 0.5100107209 12.981370 9.538241 

16.0 63.5140212207 0.5067567412 32.186158 25.416213 

20.0 160.5964733254 0.5048037529 81.069702 66.972774 

 
Appendix C 

The listed 196 line Python script is based on purpose specific 
function modules, namely, main() at line 184,  rhs_EulerCromer() 
at line 71,  rhs_EulerRichardson() at line 83,  rhs_2D_Rot_ERm () 

at line 101,   integrate () at line 118,  do_interpolate1 ( ) at line 62 
and  plot_EmdenModel( ) at line 5. This script is designed to use 
either ECM or ERM to solve the 2-D LEEq for polytropic cylinders 
and to output the parameter values as well as the relevant graph. It 
can very easily be adapted to solve either the 1-D LEEq for 
polytropic slabs or the 3-D LEEq for polytropic spheres also by 
modifying the return statements both at lines 78 and 94 according 
to the expressions (A.8) or (A.9) in Appendix A. This author can 
also be contacted by email for any desired assistance.                    

 #  Appendix  C 

 #  PolytropicCylinder_2D_Model.py 

 #  Python Script  written by Mandyam  N. Anandaram  (run in Python 3.5 or later ) 

0 # -*- coding: utf-8 -*- 

1 import scipy as np  

2 from scipy.interpolate import interp1d 

3 from matplotlib import pyplot as plt 

4 #  

5 def plot_EmdenModel(  list_dic  )  : 

6         """ 

7         Plot all 2-D cylindrical polytrope solutions 
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8         """ 

9         import itertools  # comes with python 

10         # 

11         fig    =   plt.figure(figsize=(7,10), dpi=175) 

12         top   =   fig.add_subplot(311) 

13         mid  =   fig.add_subplot(312) 

14         bot    =   fig.add_subplot(313) 

15         plt.subplots_adjust (  left=0.11,   right=0.98,   bottom=0.1,   top=0.95) 

16         colr_list = itertools.cycle ( [  'black',   'blue',   'red',   'green',   'purple'  ] ) 

17         lnstyl_list  = itertools.cycle ( [  'solid',   'dashed',   'dashdot',   'dotted'  ] ) 

18         # 

19         for  i_dic,   dic   in   enumerate (  list_dic  )  : 

20                n    = dic["n"] 

21                Xi   = dic["Xi"]; Xi1 = Xi[-1] 

22                Txi  = dic["Txi"] 

23                d_Txi = dic["d_Txi"]; d_Txi1 = d_Txi[-1] 

24                Dxi = Txi**n; Dxi[-1] = 0.0 

25                #Pxi = Dxi * Txi; Pxi[-1] = 0.0 

26                Mxi = -Xi * d_Txi; Mxi1 = Mxi[-1]  # Mxi[Xi1] 

27                Mxi /= Mxi1  # normalize mass parameter here 

28                print("npol=%2.2f: Xi1 = %3.10f; d_Txi1 = %3.10f" %( n, Xi1, d_Txi1 ) ) 

29                #lnsty = lnstyl_list.next(); colr = colr_list.next() in py27 

30                lnsty = next(lnstyl_list);  colr = next(colr_list)  # in py36 

31                lbl = r'n=%.1f'%n  # + str(dic['n']) 

32                top.plot(Xi, Txi, linestyle=lnsty, color=colr, lw=2, label=lbl) 

33                mid.plot(Xi, Dxi, linestyle=lnsty, color=colr, lw=2, label=lbl) 

34                bot.plot(Xi, Mxi, linestyle=lnsty, color=colr, lw=2, label=lbl) 

35         top.set_xlim(-0.2, 18.0) #17.0) 

36         #top.set_xticklabelnsty(())  # uncommenting removes xticks in top plot 

37         top.set_title(r"2-D Polytropic Cylinder") 

38         top.set_ylim(-0.02, 1.02) 

39         top.grid();top.text(4.0,0.85,r"Temp Fraction: $T(\xi)/T(0)=\theta(\xi)$") 

40         top.set_ylabel(r'Temp Fraction, $\theta(\xi)$') 

41         #top.set_xlabel(r"Emden Radius $\xi$") 

42         mid.set_xlim(-0.1, 5.0) 

43         #mid.set_xlabel(r'Emden Radius $\xi$') 

44         mid.set_ylim(-0.02, 1.02) 

45         mid.set_ylabel(r"Density Fraction, $\theta^n$") 

46         mid.grid() 

47         mid.text(2.12,0.3,r"Density Fraction: $\rho(\xi)/\rho(0)=\theta^n$") 

48         bot.set_xlim(-0.1, 5.0) 

49         bot.set_xlabel(r'Emden Radius $\xi$') 

50         bot.set_ylim(-0.02, 1.02) 

51         bot.set_ylabel(r"Mass Fraction, $M(\xi)/M$") 

52         bot.grid();  

53           bot.text(1.9,0.2,r" MassFraction: $M(\xi)/M=[\xi\theta']/[\xi\theta']_{\xi_1}$") 
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54         leg1 = top.legend(loc="best",frameon=False) 

55         leg1 = mid.legend(loc="best",frameon=False) 

56         leg1 = bot.legend(loc="best",frameon=False) 

57         # save plot in png format 

58         plt.savefig(  "2D_CylindricalPolytrope.png"  ) 

59         print("New plot saved as '2D_CylindricalPolytrope.png' ") 

60         return   None 

61 # 

62 def do_interpolate1 (  XiLst,    YxLst,    ZxLst) : 

63         #interpolate full range of all huge lists to 501 points 

64         Xi_1k  =  np.linspace(  0.0,    XiLst[-1],    501) 

65         fXY  =  interp1d(    XiLst,    YxLst  ) 

66        Yx_1k  =  fXY(  Xi_1k  ) 

67         fXZ  =  interp1d(    XiLst,     ZxLst  ) 

68         Zx_1k  =  fXZ(    Xi_1k    ) 

69         return    Xi_1k,    Yx_1k,    Zx_1k 

70 # 

71 def rhs_EulerCromer(xi,d_theta,theta,stepxi,npol): 

72         """ 

73         Use  first  order Euler-Cromer algorithm for 2-D  polytropic cylinders : 

74         d_theta[i+1] = d_theta[i]  

75         - d_xi*[ (1/xi[i]).(d_theta[i]/d_xi) + theta[i]^n ] <---2D 

76         theta[i+1] = theta[i] + d_xi * d_theta[i+1] # ECM used here 

77         """ 

78 def  fzdot ( n, x, y, z ) : return   - z/x - y**n # this is for the 2-D case 

79         d_theta_next = d_theta + stepxi * fzdot(npol,xi,theta,d_theta)   

80         theta_next = theta + stepxi * d_theta_next 

81         return   d_theta_next,   theta_next 

82  # 

83 def rhs_EulerRichardson(xi,d_theta,theta,stepxi,npol): 

84         """ 

85        Use 2nd order Euler-Richardson algorithm for 2-D polytropic cylinders : 

86         d_theta[i+1/2] = d_theta[i] - 0.5*d_xi*[d_theta[i]/xi[i] + theta[i]**npol] 

87         theta[i+1/2] = theta[i] + 0.5*d_xi * d_theta[i] #  

88         d_theta[i+1] = d_theta[i] -  

89          d_xi*[d_theta[i+1/2]/xi[i+1/2] + theta[i+1/2]**npol ] <-2-D 

90         theta[i+1] = theta[i] + d_xi * d_theta[i+1/2] #  

91         return d_theta[i+1], theta[i+1] 

92         """ 

93         stepxi_mid  =  0.5 * stepxi;       xi_mid  =  xi + stepxi_mid 

94         def   fzdot ( n, x, y, z ) :       return   - z/x - y**n    # this is for the 2-D case 

95         d_theta_next_mid = d_theta + stepxi_mid*fzdot(npol,xi,theta,d_theta) 

96         theta_next_mid = theta + stepxi_mid * d_theta 

97         d_theta_next= d_theta + 
stepxi*fzdot(npol,xi_mid,theta_next_mid,d_theta_next_mid) 

98         theta_next = theta + stepxi*d_theta_next_mid 
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99         return   d_theta_next,   theta_next 

100 # 

101 def rhs_2D_Rot_ERm ( X,  Y,  Z,  npo ) : 

        # use ERM for Rotational Distortion params of 2-D polytropic Rings 

        nrws = len(X); dxi = X[2]-X[1]; dxi2 = dxi/2.0 #const step size 

        xg1Lst = [xg1]; f1Lst = [f1]; df1Lst = [0.0]; npo1 = npo - 1.0 

        for ipt in range ( nrws): 

               xi = X[ipt]; ytx = Y[ipt]; zdtx = Z[ipt]; xi15 = xi + dxi2 

               if ipt == 0: xi = 0.00000001 

               g1_nxt2 = g1 + dxi2*(-g1/xi- f1*(npo*ytx**npo1 - 1.0/xi/xi) - zdtx)   

               f1_nxt2 = f1 + dxi2 * g1 

110                 g1_nxt = g1 + dxi*(-g1_nxt2/xi15- f1_nxt2*(npo*ytx**npo1 - 1.0/xi15**2) - zdtx) 

               f1_nxt = f1 + dxi * g1_nxt2 

               g1 = g1_nxt; f1 = f1_nxt 

               df1Lst.append(g1);      xg1Lst.append(xi * g1);         f1Lst.append(f1) 

        f1Lst = np.array(f1Lst);    df1Lst = np.array(df1Lst); 

        xg1Lst = np.array(xg1Lst); 

116        return    df1Lst,    xg1Lst,      f1Lst 

 # 

118 def  integrate ( n = 3.0 ) : 

         """ 

120         integrate the Lane Emden equations, and 

         return the solution as a dictionary 

         """ 

         if n > 20.01: raise SystemExit("Achtung: n =%.3f > 20.0 limit!"%n) 

         # Define empty list  containers for various parameters 

         Xi_list = []  # container for emden radii xi 

         Txi_list = []; # container for the L-E function, theta(xi)  

         d_Txi_list = []  # container for slope dtheta/dxi  

         # Initial Conditions at the center of polytrope 

         xi, Txi, d_Txi = 0.0, 1.0, 0.0  #Dxi = 1.0; Pxi = 1.0; Mxi = 0.0 

130         # Stepsize 

         xi_step = 0.00002 

         # append (store) the central values to the respective lists 

         ic = 0 

         Xi_list.append(xi) 

         Txi_list.append(Txi) 

136         d_Txi_list.append(d_Txi) 

         # 

         ic = 1 # compute theta and d_theta from truncated power series 

         xi += xi_step 

140         Xi_list.append(xi) 

         Txi = 1.0 - xi**2/4.0 + xi**4 * n/64.0 - xi**6 * n*(3*n-2)/2304.0 

         Txi_list.append(Txi) 

         d_Txi = -xi/2.0 + xi**3 * n/16.0 - xi**5 * n*(3*n-2)/384.0 

144         d_Txi_list.append(d_Txi) # slope of theta = d_theta/d_xi 
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         #d_dtheta = -1.0/2.0 + xi**2 * 3*n/16.0 - xi**4 * 5*n*(3*n-2)/384.0 

146         #print '%4d %.11f %.11f %.11f'%(i,xi,theta,d_theta) 

         # 

148         Txi_next = Txi 

         #   

150         while Txi_next  >=  0.000001  : 

               #d_Txi_next, Txi_next = rhs_EulerCromer(xi,d_Txi,Txi,xi_step,n) 

               d_Txi_next, Txi_next = rhs_EulerRichardson(xi,d_Txi,Txi,xi_step,n) 

               if (Txi_next > Txi): raise ValueError('theta increasing:', ic, xi, Txi, 
Txi_next) 

               ic     += 1 

155               xi     += xi_step 

               Txi     = Txi_next; #-->temperature, T/Tc = theta 

               d_Txi   = d_Txi_next 

               Xi_list.append(xi) 

               Txi_list.append(Txi) 

160               d_Txi_list.append(d_Txi) 

         # 

162         print ( "Solved for n = {0} after {1} steps of {2}".format( n, i, xi_step ) ) 

         Xi_list = np.array(Xi_list) 

         Txi_list = np.array(Txi_list) 

         d_Txi_list = np.array(d_Txi_list) 

         #print(n,Xi_list[-2],Xi_list[-1]); 

         #print(n,Txi_list[-2],Txi_list[-1]); print(n,d_Txi_list[-2],d_Txi_list[-1]) 

         # Set theta=0 and Compute by linear extrapolation xi1,& d_Theta at Xi1. 

         Xi_list[-1] = Xi_list[-2] - Txi_list[-2]/d_Txi_list[-2] 

170         Xi1 = Xi_list[-1]  # Emden radius 

         d_Txi_list[-1]  =  d_Txi_list[-2] + (Xi_list[-1]-Xi_list[-2])*( 

          -d_Txi_list[-2] / Xi_list[-2] - Txi_list[-2]**n) #2-D 

         Txi_list[-1] = 0.0   #    theta = 0 at edge/surface  of  polytrope,  xi1 

         d_Txi1 = d_Txi_list[-1] 

         print ( "n =%2.2f: xi1 = %.10f; Mxi1 = %.10f; ccn = %.10f" %( n,  

                                                                         Xi1, -Xi1*d_Txi1,-Xi1/2.0/d_Txi1)  ) 

177         Xi_1k, Txi_1k, d_Txi_1k = do_intrplt1(Xi_list, Txi_list, d_Txi_list) 

         #uncomment below only if want to compute rotational distortion params 

179         #df1Lst, xg1Lst, f1Lst = rhs_2D_Rot_ERm(Xi_1k, Txi_1k, d_Txi_1k, n) 

180         #print("df1Xi1 = ",df1Lst[-1],"; Xi1G1 = ",xg1Lst[-1], "; F1xi1 = ",f1Lst[-1]) 

181         dic = {"n":n, "Xi":Xi_1k, "Txi":Txi_1k, "d_Txi":d_Txi_1k } 

182         return    dic 

 # 

184 def main () : 

         """ 

         The main caller which  kick starts the computational engine above. 

         """ 

         n_arr = [ 0.0,  1.5,  3.0,  5.0,  10.0,  15.0 ]    #   used  for 1-D and 2-D polytropes 

         list_dic = []        #   empty list to hold all  arrays for plotting  etc. 
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190         for npol in n_arr :    list_dic.append(integrate(npol))   #    list is now filled 

191         plot_EmdenModel ( list_dic )  #   draw graphs using  arrays from  the list  

192         plt.show()                          #   display the graph 

193         return  None 

194 # 

195 if __name__ == '__main__': 

196         status = main()       # this starts the main caller at line 164 above till 172 

 
 
 
 
 
 
 
 
 
 
 
 
 


