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On Some Structural Properties of Gm,n Graphs
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Abstract

This is the continuation of the study on an undirected graph
Gm,n where vertex set V = In = {1, 2, 3, · · · , n} and a, b ∈ V
are adjacent if and only if a , b and a+ b is not divisible by
m, where m(> 1) ∈ N. In the present paper we computed
the diameter, Weiner index, degree distance, independence
number of the graph Gm,n. We also studied the complement
of the graph Gm,n.
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1. Wiener index and degree distance of Gm,n

Let G be a graph with vertex set V(G) and edge set E(G). The distance
d(u, v) between any two vertices u, v ∈ V(G) is the minimum number
of edges on a path in G between u and v. The diameter of a graph
G is the maximum of distances between the every pairs of vertices in
V(G).

The Wiener index of the vertex v in G is defined as W(v,G) =∑
u∈V(G) d(u, v). The Wiener index of a graph G is defined as W(G) =∑
{u,v}⊆V d(u, v). The degree distance of a graph G is defined as DD(G) =∑
{u,v}⊆V(deg (u) + deg d(v))d(u, v).

Lemma 1.1. For any m, n, the diameter of the graph Gm,n is less than or
equal to 2.

Proof. Let G = Gm,n. Let a, b ∈ V, where a , b and a, b are adjacent,
then d(a, b) = 1. Let m ≥ 2n, then the graph Gm,n is complete[3] so
d(i, j) = 1 for all i, j ∈ V. Let m < 2n.
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Case I. Let m < n, then the vertex set V = {1, 2, . . . ,m − i, . . . , 2m −
i, . . . , km − i, . . . , n}. Consider the set P(x) = {m − x, 2m − x, . . . , km − x}.
Let x, y ∈ V, the vertex x is adjacent to the vertex y if y < P(x). Let
y ∈ P(x), then the vertex x is not adjacent to the vertex y. Again for
each y ∈ V, the vertex y is not adjacent to any other vertex y1 ∈ P(y)
where P(y) = {m−y, 2m−y, . . . , km−y}. Consider the set V−{P(x)

⋃
P(y)}.

Let x, y ∈ V, where x, y , km for some k ∈ N. Then the vertex v = km ∈
V − {P(x)

⋃
P(y)}. Again let x , km, y = km for some k ∈ N then the

vertex v = y ∈ V − {P(x)
⋃

P(y)}. Lastly consider x = k1m, y = k2m,
where k1, k2 ∈ N then the vertex v = 1 ∈ V − {P(x)

⋃
P(y)}. Thus the

set V − {P(x)
⋃

P(y)} is nonempty. Let z ∈ V − {P(x)
⋃

P(y)}. Then the
vertex z is adjacent to the vertex x as well as to the vertex y. Thus the
vertices x, y are connected via the vertex z. Hence, d(x, y) = 2.

Case II. Let 2 < n < m < 2n. Let x, y ∈ V. By definition, the vertex x
and y are not adjacent if and only if m divides (x + y). But in this case
2n < 2m which implies m divides (x+y)⇔ m = x+y. Then the only non
adjacent pairs of vertices are P = {(n,m−n), (n−1,m−n+1), . . . , ( m

2 ,
m
2 )}

if m is even and P = {(n,m − n), (n − 1,m − n + 1), . . . , ( m+1
2 ,

m−1
2 )} if m is

odd. Let (x, y) ∈ P, then the vertices x, y are not adjacent. Then for
any z ∈ V, where z < {x, y}, the vertices x, y are adjacent to the vertex z.
Thus the vertices x, y are connected via the vertex z, hence d(x, y) = 2.
Again for any (x, y) 3 P, then the vertices x, y are adjacent.

Case III. Let m = n and a, b ∈ V.
Case A. Let the vertices a and b are adjacent, then d(a, b) = 1.
Case B. Let the vertices a, b are not adjacent. Since m = n, m does

not divide (n + a) for all a ∈ V which implies the vertices n and a are
adjacent. Similarly we can say the vertices n and b are adjacent. So
the vertices a, b are connected via the vertex n, which gives d(a, b) = 2.
Thus we can conclude that the distance between any two distinct
vertices in Gm,n is 1 or 2. �

Theorem 1.2. Let m ≥ 2n, then the diameter of the graph Gm,n is one.

Proof. For m ≥ 2n, Gm,n is complete, hence the diameter of the graph
Gm,n is one. �

Theorem 1.3. Let m < 2n, then the diameter of the graph Gm,n is two.

Proof. For m < 2n, the diameter of Gm,n is two, which follows from the
lemma 1.1. �

Theorem 1.4. Let G = Gm,n be a graph. Then the Wiener index of
any vertex i ∈ V, where V is the vertex set of the graph G is W(i,G) =
2n − deg i − 2.

Proof. Let i ∈ V(G). Then the Wiener index of i is W(i,G) =
∑

j∈V(G) d(i, j).
The distance between any two distinct vertices in G is 1 or 2. The to-
tal number of vertices of distance 1 from i is equal to the number of
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vertices adjacent to i which is nothing but the degree of the vertex i.
Again the vertices which are not adjacent to the vertex i are at the
distance two and the number of such vertices are n − deg i − 1. Thus
W(i,G) =

∑
j∈V(G) d(i, j) = deg i + (n − deg i − 1) · 2 = 2n − deg i − 2. �

Theorem 1.5. Let m = 2 and n be even. The the Wiener index of the
graph G2,n is 3

4 n2 − n.

Proof. Let m = 2 and n be even. Let V1 = {1, 3, · · · , n − 1},V2 =

{2, 4, · · · , n} where V = V1
⋃

V2. Then the degree of each vertex
i ∈ V1 and j ∈ V2 is n

2 . Let i, j be adjacent, then d(i, j) = 1 and∑
(i, j)⊆V d(i, j) = 1

2 (n · n
2 · 1). Again consider i, j ∈ V where i, j are not

adjacent, then d(i, j) = 2 and each vertex is not adjacent to n− n
2 num-

ber of vertices, thus
∑

(i, j)⊆V d(i, j) = 1
2 n · (n− n

2 − 1) · 2. Thus the Wiener
index of the graph G2,n is

W(G2,n) =
∑

(i, j)⊆V

d(i, j) =
1
2

(n ·
n
2
· 1) +

1
2

n · (n −
n
2
− 1) · 2 =

3
4

n2 − n.

�

Theorem 1.6. Let m = 2 and n be even. The degree distance of Gm,n is
1
4 [n2(3n − 4)].

Proof. Consider the graph G = G2,n where n be even. Let V1 =

{1, 3, · · · , n − 1},V2 = {2, 4, · · · , n} where V = V1
⋃

V2. The order of
the sets V1 = V2 =

n
2 . Again the degree of each vertex in V1 and V2

is n
2 . Again no two vertices in V1 or in V2 are adjacent, hence the dis-

tance between any two vertices either in V1 or in V2 are 2. But the
distance between any two vertices where vi ∈ V1, v j ∈ V2 is 1 as they
are adjacent. Let i ∈ V1 and j ∈ V2 then

∑
(i, j)⊆V(deg (i)+deg ( j))d(i, j) =

( n
2 +

n
2 ) · 1 · n

2 ·
n
2 .

Again let i, j ∈ V1 or i, j ∈ V2 then
∑

(i, j)⊆V(deg (i) + deg ( j))d(i, j) =
( n

2 +
n
2 ) ·2 ·

( n
2
2

)
. Thus

∑
(i, j)⊆V(deg (i)+deg ( j))d(i, j) = ( n

2 +
n
2 ) ·1 · n

2 ·
n
2 + ( n

2 +

n
2 ) · 2 · ( n

2 )( n
2−1)
2 + ( n

2 +
n
2 ) · 2 · ( n

2 )( n
2−1)
2 = n3

4 +
n2(n−2)

4 +
n2(n−2)

4 = n2

4 (3n− 4). �

Theorem 1.7. Let m = 2 and n be odd. Then the Wiener index of the
graph G2,n is 1

4 (n − 1)(3n − 1).

Proof. Let m = 2 and n be odd. Let V1 = {1, 3, · · · , n},V2 = {2, 4, · · · , n−
1} where V = V1

⋃
V2. Then the degree of each vertex i ∈ V1 is n−1

2
and the degree of each vertex j ∈ V2 is n+1

2 . Thus n−1
2 vertices of V1 are

at distance one from n+1
2 vertices of V2 and vice versa. Again ( n+1

2 − 1)
vertices of V2 are at distance two from n+1

2 vertices of V2. Similarly
( n−1

2 − 1) vertices of V1 are at distance two from n−1
2 vertices of V1.

Thus the Wiener index of G2,n is W(G2,n) =
∑

(i, j)⊆V d(i, j) = 1
2 [( n−1

2 · 1 ·
n+1

2 )+(( n+1
2 −1)·2· n+1

2 )+( n+1
2 ·1·

n−1
2 )+(( n−1

2 −1)·2· n−1
2 )] = 1

4 (n−1)(3n−1). �
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Theorem 1.8. Let m = 2 and n be odd. Then the degree distance of the
graph G2,n is n2−1

4 (3n − 4).

Proof. Let m = 2 and n be odd. Let V1 = {1, 3, · · · , n},V2 = {2, 4, · · · , n−
1} where V = V1

⋃
V2. Then the degree of each vertex i ∈ V1 is

n−1
2 and the degree of each vertex j ∈ V2 is n+1

2 . Let i ∈ V1, j ∈ V2,∑
(i, j)⊆V(deg (i) + deg ( j))d(i, j) = ( n−1

2 +
n+1

2 ) · 1 · n+1
2 ·

n−1
2 . Again let

i, j ∈ V1, then
∑

(i, j)⊆V(deg (i)+ deg ( j))d(i, j) = ( n−1
2 +

n−1
2 ) · 2 ·

( n+1
2
2

)
. Sim-

ilarly let i, j ∈ V2, then
∑

(i, j)⊆V(d(i) + d( j))d(i, j) = ( n+1
2 +

n+1
2 ) · 2 ·

( n−1
2
2

)
.

Thus the degree distance of G2,n is
∑

(i, j)⊆V(d(i) + d( j))d(i, j) = n(n2−1)
4 +

(n−1)(n2−1)
4 +

(n−3)(n2−1)
4 =

(n2−1)(3n−4)
4 . �

Theorem 1.9. Let m(, 2) be a prime and n be multiple of m. Then the
graph Gm,n contains k vertices of degree n− k and n− k vertices of degree
n − k − 1 where n = km, k ∈ N.

Proof. Let m(, 2) be a prime and n = km, k ∈ N. Let

V = {1, 2, . . . , n} = {1, 2, . . . ,m − 1,m, . . . , 2m − 1, 2m, . . . , km − 1, km}.

The vertices k1m where k1 = 1, 2, . . . , k are adjacent to all other vertices
except k2m where k1 , k2 and k2 = 1, 2, . . . , k. Thus the degree of the
vertices of the form k1m is n− (k−1)−1 = n−k. Again the vertex k1m− i
is not adjacent to the vertex k2m − j where k1 , k2, k1, k2 = 1, 2, . . . , k,
i, j = 1, 2, . . . ,m and i + j = m. Thus the degree of the vertices of the
form k1m − i is n − k − 1 (subtracting 1 because k1m − i is not adjacent
to itself). �

Theorem 1.10. Let m(, 2) be a prime and n = km where k ∈ N. Then
the Wiener index of the graph Gm,n is 1

2m (n − 1)(n + nm).

Proof. Let G = Gm,n, m(, 2) be a prime and n = km where k ∈ N.
Let i ∈ V such that i , k1m, where k1 = 1, 2, · · · , k(= n

m ). Then the
vertex i is not adjacent to any other vertex of the form k1m − i, thus
d(i, k1m − i) = 2. And there are n − k = n − n

m number of vertices
of the form i , k1m. So for each vertex of the form i , k1m there
are k = n

m vertices which are at distance two and (n − n
m − 1) ver-

tices which are at distance one. Again there are n
m number of ver-

tices of the form i = k1m where k1 = 1, 2, . . . , k. Consider i ∈ V such
that i = k1m, then the vertex i is not adjacent to the vertex j ∈ V
where i , j and j = k1m. Thus in that case also d(i, j) = 2. And
for each vertex of the form i = k1m, there are n − n

m number of ver-
tices which are at distance one. Thus the Wiener index of Gm,n is
W(Gm,n) =

∑
(i, j)⊆V d(i, j)

= 1
2 [(n − n

m ){ n
m 2 + (n − n

m − 1)1} + n
m {(

n
m − 1)2 + (n − n

m ).1}]
=

(n−1)(n+mn)
2m .

�
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Theorem 1.11. Let m(, 2) be a prime and n = km where k ∈ N. The
degree distance of Gm,n is (n − k)((n + k)(n − 2) + 1).

Proof. Let G = Gm,n where m(, 2) be a prime and n = km for k ∈ N.
The degree distance of G is DD(G) =

∑
{i, j}∈V(d(i) + d( j))d(i, j). Let

V = {1, 2, . . . ,m − 1,m, . . . , 2m − 1, 2m, . . . , km − 1, km}. The degree
of the vertices k1m is n − k and the degree of the vertices k1m − i is
n − k − 1. There are k vertices of degree n − k and n − k vertices
of degree n − k − 1. Again for each n − k vertices there are k ver-
tices of degree n − k which are at distance one, k vertices of degree
n − k − 1 at distance two and (n − k − k − 1) vertices of degree n − k − 1
at distance one. Similarly for each vertex k of the form k1m, there
are k vertices of degree n − k at distance two and (n − k) vertices of
degree n − k − 1 at distance one. Thus the degree distance of G is
DD(G) =

∑
{i, j}∈V(d(i) + d( j))d(i, j)

= 1
2 (n − k)(n − k − 1 + n − k − 1)2k + (n − k − 1 + n − k).1.k
+(n − k − 1 + n − k − 1).1.(n − k − k − 1)
+k(n − k + n − k)2k + (n − k + n − k − 1)1.(n − k)

= (n − k)((n + k)(n − 2) + 1).

�

Theorem 1.12. Let m, n be primes and m = n = p. Then Gm,n has one
vertex of degree p − 1 and (p − 1) vertices of degree p − 2.

Proof. Let m = n = p. Let V = {1, 2, . . . , p}. Let i(, p) ∈ V. Then the
vertex vi = i is not adjacent to the vertex v j = j = p − i. Thus the
degree of the vertex vi = i is p − 2 (as it is not adjacent to itself too).
Again the vertex m = n = p is adjacent to all other vertices other than
itself as p - i + p where i(< p) ∈ V. Thus the degree of the vertex n = p
is p − 1. Hence the result follows. �

Theorem 1.13. Let G = Gm,n where m = n = p, p be a prime. Then the
Wiener index of the graph G is p2−1

2 .

Proof. Let m = n = p, where p be a prime. The Weiner index of a
graph G is W(G) =

∑
{i, j}⊆V d(i, j). From the above theorem, it follows

that d(p, i) = 1 for all i(, p) ∈ V. Thus
∑
{p,i}⊆V d(p, i) = deg (p), where

deg (p) represents the degree of the vertex p. Again the vertex i(, p) is
not adjacent to two vertices one is itself and the other one is p−i. Thus∑
{i, j}⊆V d(i, j) = (p−2)·1·(p−1)

2 where i, j , p and i, j are adjacent. Again
for each vertex i , p there is only one vertex p− i which is at distance
2, so

∑
{i, j}⊆V d(i, j) = 2·(p−1)

2 where i, j , p and i, j are not adjacent.

Hence W(G) =
∑
{i, j}⊆V d(i, j) = (p − 1) + (p−1)·(p−2)·1

2 + (p − 1) = p2−1
2 . �

Theorem 1.14. Let m = n = p, where p be a prime. Then the degree
distance of Gm,n is (p − 1)(p2 − p − 1).
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Proof. Let G = Gm,n and m = n = p where p be a prime. Then the
degree distance of G is DD(G) =

∑
{i, j}⊆V(d(i)+d( j))d(i, j) = d(p) ·(d(p)+

d(i)) · d(p, i) + (d(i) + d( j)) · 1 · (p − 3) · p−1
2 + (d(i) + d( j)) · 2 · (p−1)

2 =

(p−1)((p−1)+(p−2))·1+(p−2+p−2)·1·(p−3)· (p−1)
2 +(p−2+p−2)·2· (p−1)

2 =

(p−1)(p2−p−1), where p represents the vertex n = p and i, j represents
the vertices i, j(, p) ∈ V. �

2. Complement of the graph Gm,n, independence number and in-
dependence sets of the graph Gm,n

Let the graph Ḡm,n be the complement of the graph Gm,n. Then the
two distinct vertices a, b ∈ Ḡm,n are adjacent if m divides (a+ b) where
the vertex set V = {1, 2, . . . , n}.

Theorem 2.1. Let n = m, then the independence number of Gm,n is 2.

Proof. Consider the graph Ḡm,n. Let V = {1, 2, . . . , n}. The pair of
vertices (i, n−i) where i ∈ V, i , n and i , n

2 forms cliques in Ḡm,n. Thus
the independent sets of Gm,n are {i, n − i}. Hence the independence
number of Gm,n is 2 which is the cardinality of the set {i, n − i}. �

Theorem 2.2. Let m = n where m is odd. Then the number of indepen-
dent sets of Gm,n is

⌊
n
2

⌋
.

Proof. Consider the graph Ḡ = Ḡm,n, where m = n and m is odd. Let
the vertex set V = {1, 2, . . . , n}. Then the vertex v = n is isolated vertex
in the graph Ḡ as m - i + n for i(i , n) ∈ V since i < n. And for any
vertex i ∈ V where i = 1, 2, . . . , n − 1 is adjacent to the vertex n − i and
the number of such pairs is

⌊
n
2

⌋
. Thus the number of cliques in Ḡ is⌊

n
2

⌋
. Hence the number of independence sets of Gm,n is

⌊
n
2

⌋
. �

Theorem 2.3. Let m = n where m is even. Then the number of indepen-
dent sets of Gm,n is n

2 − 1.

Proof. Consider the graph Ḡm,n where m = n and m be even. Let the
vertex set V = {1, 2, . . . , n}. The vertices n and n

2 are not adjacent as
m - n + n

2 . Thus the vertices n and n
2 will not form a clique in the graph

Ḡm,n. Again let j ∈ V where j , n, n
2 . Consider the vertex i = n − j

where j = 1, 2, . . . , n
2 −1. Then the vertices j, n− j forms cliques in Ḡm,n

for all j as m divides j + (n − j). Thus the number of cliques in Ḡm,n is
n
2 − 1. Hence the number of independent sets of Gm,n is n

2 − 1. �

Theorem 2.4. Let m > n. Then the independence number of Gm,n is 2.
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Proof. Consider the graph Ḡm,n where m > n and the vertex set V =
{1, 2, . . . , n}. Then the vertices n and m − n form a clique in Ḡm,n. Thus
the independence number of Gm,n is 2 for m > n. �

Theorem 2.5. Let m < n where m , 2. Then the independence number
of Gm,n is

⌊
n
m

⌋
.

Proof. Let m < n where m , 2. The vertices {m, 2m, . . . , km} where
km ≤ n forms an independent set in Gm,n as they form a clique in Ḡm,n.
And the cardinality of the set {m, 2m, . . . , km} is

⌊
n
m

⌋
. Hence the results

follows. �

Theorem 2.6. Let m = 2 and n ∈ N. Then the independence number of
Gm,n is

⌊
n
2

⌋
. The number of independent set is 2.

Proof. Let G = Gm,n where m = 2 and n ∈ N. Let V = {1, 2, . . . , n}.
The set E1 = {2, 4, . . . } ⊆ V form the independent set of G as no two
vertices of E1 are adjacent in G. This set is maximal. Since for a given
n there are

⌊
n
2

⌋
number of even numbers in the set {1, 2, . . . , n}. Thus

the independence number of G is
⌊

n
2

⌋
. Thus the sets O1 = {1, 3, 5, . . . }

and E1 = {2, 4, 6, . . . } are the independent sets of G as no two vertices
in E1 are adjacent as well as no two vertices in O1 are adjacent. Thus
the number of independent set is two. �

3. Conclusion

In this article, we computed the diameter, Weiner index of a vertex,
and Weiner index and degree distance of the graphs G2,n, Gm,n, where
m , 2 is a prime, n is a multiple of m and Gp,p, where p is a prime. In
future one can study various energies, domination, planarity etc. of
the graph Gm,n.
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