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Abstract

Since the time of Pythagoras (c.550BC), mathematicians
interested in music have asked, “What governs the whole
number ratios that emerge from derivations of the har-
monic series?” Simon Stevin (1548-1620) devised a math-
ematical underlay (where a semitone equals 2

1
12 ) that gave

rise to the equal temperament tuning system we still use to-
day. Beyond this, the structure of formalised musical order-
ings have eluded many of us. Music theorists use the tools
and techniques of their trade to peer into the higher-order
musical structures that underpin musical harmony. These
methods of investigating music theory and harmony are
difficult to learn (and teach), as complex abstract thought
is required to imagine the components of a phenomenon
that cannot be seen. This paper outlines a method to un-
derstanding the mathematical underpinnings of the equal
tempered tuning system. Using this method, musical struc-
ture can be quantitatively modelled as a series of harmonic
elements at each pulse of musical time.

Keywords: Western Music, Mathematics, Harmonic Structure, Geometry

Mathematics Subject Classification (2010): 00A65

1. Introduction

This paper outlines equal tempered musical structure using mixed
approaches. As researchers, we identify as hermeneutic phenome-
nologists. Three languages we adopt in this paper use my under-
standings of words, mathematics and music theory as their vehicles,

*Department of Music, CHRIST (Deemed to be University);
robert.linton@christuniversity.in

Received: May 2019. Reviewed: June 2019 53



Mapana Journal of Sciences, Vol. 18, No. 3 ISSN 0975-3303

where each appeal to different aspects of the hermeneutic conversa-
tion with regard to equal tempered musical structure. Words inform
a social tool for communication and understanding of musical struc-
ture. Mathematics inform ways of thinking that describe operations
of musical structure. Music theory informs sets of tools that contain
cyclic structures within the part /whole nature of harmony. We aim
to triangulate these languages to approach learning equal tempered
music structure.

As stated by Cooper & Barger (2009), “the many connections be-
tween music and mathematics are well known”[2]. From a physical
standpoint, the creation of string instruments from since medieval
times emerged from the simple observation that plucking a taught
string produces a consistent tone. It then followed that plucking a
taught string that is half the length of the original produces a higher
version of the original tone. Likewise, plucking a string that is twice
the length of the original tone creates a lower version of the same
tone. The distances between these tonal similarities is known as an
octave. It follows that an interval of one octave is either half or dou-
ble the frequency of a given tone. The tuning systems throughout
history have argued different approaches to which notes should be
used between an octave. A monochord is the traditional tool used to
divide an octave measurably to create new pitches and, “end results
of such a monochord division are an array of pitches (which can be ar-
ranged in a scale) and a set of intervallic relationships between them
specifically defined by numeric ratios (a tuning system)” [4]. The
different tuning systems for each set of pitches and intervals used to
divide an octave have been constantly redefined throughout musical
periods [7]. The consistent problem has been a question of balancing
the richest resonances between notes derived from an octave, and be-
ing able to replicate the patterns that underlie them in a modulatory
manner. The equal-tempered tuning system is used today to tune pi-
anos, and solves the previously mentioned modulatory problem with
a slight cost to resonance. In this system, each semitone–the smallest
interval that separates any two notes are equidistant. The remainder
of this paper will use mathematics to describe how this system can be
used to geometrically map musical structure.

2. The Chromatic Scale and Enharmonic Equivalence

We can assign letter names and a number to each pitch within a chro-
matic scale (the ordered set of all notes within an octave span) to
tabulate the data so it looks like a one octave span of a piano key-
board:

Of course, a piano keyboard spans more than one octave, with
Table 1 repeating for each octave span. The distance between any se-
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quential pitch in Table 1 is one semitone, and an octave spans twelve
semitones. To a music theorist, one octave is all that is required to
make sense of the entire range of a keyboard due to the axiom of
octave equivalence (Eq. 6, Section 4.). A span of zero semitones is
called a unison (i. e., the distance from C to the same C), which is
equivalent to an octave span (i. e., the distance from C to the next
C). Since the names of the two pitches remain the same, they are
considered equivalent. There are twelve pitches between any octave,
which can be signified using letter names or numbers from zero to
eleven. Hence, this system can be seen as counting in modulo 12
(mod 12). According to Mathieson (2006), “since pitches are related
to the number of motions of a string, the pitches of notes are com-
prised of certain numbers of parts; thus, they can be described and
compared in numerical terms and ratios”[6]. Hence, pitches (values
for n in Table 1) can be described as either note names or interval
spans.

Most pitches in Table 1 have two names due to the axiom of enhar-
monic equivalence. Technically, every note and interval has multiple
names; those listed in Table 1 are simply the most common enhar-
monics. For instance, the names C# (C sharp) and Db (D flat) signify
exactly the same sounds aurally, yet each are notated differently in a
score. There is a system behind this note-naming convention. Scales
are ordered patterns which define particular musical atmospheres
(known as tonal centres or keys). Each scale begins on a note that
contains the least amount of tension in relation to any other notes
being played (called the tonic). A lone tone is a tonic, and hence the
first note of any piece is that piece’s tonic, which establishes its key.
Composers can use methods to exchange any tonic to modulate: the
action of transitioning a piece into a new key. An interval pattern
then tells which notes belong to a certain quality (type) of scale that
defines its key. For example, we can create an ascending major scale
quality using the ’white’ notes of Table 1 {0; 2; 4; 5; 7; 9; 11; 0}. Due
to octave equivalence, the set of notes {0; 2; 4; 5; 7; 9; 11; 0} is the
same as {0; 2; 4; 5; 7; 9; 11}. Adding any scale quality as a set of
intervals above any tonic note constructs that tonic’s scale quality. For
instance, adding the major scale quality to D (2) results in a D major
scale; also referred to as, “the key of D major”(Section 6.): i. e.,

{0; 2; 4; 5; 7; 9; 11} + 2 = 2; 4; 6; 7; 9; 11; 1→ {D; E; F#; G; A; B; C#}
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In this way, all major scale qualities can be formed using any tonic
as a base. To determine which note names are written, there cannot
be two of the same letter name in any scale quality. For instance, D
major contains the enharmonic notes {1, 6}. C# is written for 1 as
D {2} already exists in the set. Likewise, F# is written for 6 because
a G {7} already exists in the set. This system is used to consistently
name pitches contained within different keys. Scale qualities sound
similar to each other as they contain the same interval structure; yet
sound different as each tonic changes (leading to specific note names
in each scale set). Hence, keys are established using intervallic scale
qualities that form a collection of notes related to a tonic.

The axioms of octave and enharmonic equivalence are fundamen-
tal to the part / whole nature of music. Throughout this paper we
will be building upon these axioms to describe the fundamental in-
teractions of pitch structures from a music theorists’ perspective. In
this way, general readers can explore musical structures using a com-
mon system of relativistic measurement. Semitones are used to define
pitches as notes or intervals, which form the basis of musical struc-
ture.

3. The Problems with Pitches

To reiterate, an interval is the relative distance between notes, mea-
sured in semitones. The interval between any sequential note in Table
2. is one semitone, and an octave spans twelve semitones. Any in-
terval can be measured sequentially through time (melodic interval)
or simultaneously (harmonic interval). Harmonic and melodic in-
tervals are equivalent measurements of semitone distances between
notes. The concept of a semitone is easy enough to understand from
a musical perspective intuitively, but to address just what a semitone
represents in a mathematical sense is actually rather difficult, as there
are more factors to consider.

To consider pitches purely from a musician’s perspective neglects
a common mathematical perspective. For instance, musical notes can
be described to contain frequency f and wavelength λ. An octave
interval contains a frequency ratio of 2, meaning an octave interval
above or below a given note has its f doubled (n↑8ve = 2 f ) or halved
(n↓8ve = f /2). Opposingly, each note’s λ above or below a given note
is halved (n↑8ve = λ/2) or doubled (n↓8ve = 2λ). Hence, the direc-
tion of an interval is determined by the multiplicative operator used
to calculate a note’s f or λ. As multiplication is the opposite of divi-
sion, f and λ are inversionally equivalent. More specifically, any pair
of intervals which total an octave but have opposing directions are in-
versionally equivalent. Stevin’s identity can be used to calculate the f
or λ of pitches above or below a given note. There are twelve pitches
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between each octave span, and to preserve an octave’s frequency ratio
of 2, Stevin defined an equal tempered semitone equal to 2

1
12 . Trans-

positions of this identity can be used to measure all interval sizes [3].
Musicians use a system of simple addition and subtraction of semi-

tones to theorise with pitches, where sets of pitches are used to de-
fine larger harmonic structures. This means that semitones must also
behave logarithmically. Fortunately, a logarithmic system is already
established for the measurement of semitones in cents, where one
semitone equals one hundred cents. This makes it possible to add or
subtract semitones in the way musicians translate pitches. Musically,
the measurement of cents makes it easy to determine the proximity
of pitches, and guides intonation (tuning). As each semitone value
is equal to one hundred cents, it measures a relative percentage for
each semitone; and manipulating these percentages can lead to dif-
fering tuning styles. Moreover, melodic and harmonic intervals also
contain a particular type of resonance, known as their interval qual-
ity. Interval qualities are (individually and culturally) perceived to
contain consonance or dissonance.

As f and λ propagate through time, their velocity can be deter-
mined. Velocity is affected by temperature. For instance; in warmer
areas, molecules contain more energy, so can vibrate faster than in
colder areas, hence sound can propagate faster. Thus, temperature af-
fects intonation; as a difference in temperature affects velocity, which
in turn affects f and λ.

We can summarise these aspects using the following scaffold to-
ward defining pitches:

1. Pitches allow for octave equivalence, and are notated in a score
using enharmonic equivalence.

2. Pitches can be interpreted as note or interval, signified by an
integer n.

3. Harmonic and melodic intervals are equivalent measurements
of semitone distances between notes.

4. Intervals that add to an octave are inversionally equivalent via
direction.

5. Intervals contain a particular degree of resonance, known as
their interval quality.

6. Translations by semitone interval n must be the same as multi-
plicative changes of n for f and λ.

7. Stevin’s identity defines a semitone interval as I = 2
1

12 , which
preserves an octave’s frequency ratio of 2.
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8. Transpositions of this identity lead to In = 2
n

12 [3].

9. Converting to cents: [log(In)/log(2)] ∗ 1200[7]; assists with into-
nation.

10. Temperature affects intonation, as temperature affects velocity,
which affects notes, since v = fλ.

Using this scaffold to bound my phenomenon of inquiry, we at-
tempt to describe semitones (the building blocks of musical struc-
tures) from differing, yet intersecting mathematical approaches. We
aim to demonstrate how these points intersect throughout the re-
mainder of this paper. It is hoped that by doing so, the general reader
will be able to understand the above scaffold from a perspective that
links musical and mathematical approaches. The next section will un-
pack deliberations algebraically, focusing on the intersection between
core items from this scaffold. Building from this juncture, trigonom-
etry, set theory and matrices will be used to describe methods for
interacting, categorising and exploring musical structures.

4. Pitch Identities and Octave Equivalence

In order to align mathematical and musical perspectives of pitches,
the stretching (multiplication) and compressing (division) of frequen-
cies and wavelengths must align with the translation (addition or sub-
traction) of semitones. One way to accommodate this issue considers
the argument or angle to be the operator of pitch motion. The amount
of rotation (radians θ or degrees o) of any angle remains consistent
despite any translative or multiplicative motion along a radius to a
point on a circle’s circumference. The circumference of any circle can
be found using the formula C = 2πr. Taking a unit circle (a circle that
has a radius length r = 1), its circumference is 2π and C = 2π. In or-
der to calculate the angle θ inherent to each of the twelve pitches, we
simply take the circumference of a unit circle and divide it by twelve
(Eq. (1)):

θ = C/12 & θ = π/6 (1)

This means we can plot all twelve pitches as points around a unit
circle, each separated by π/6 radians. Hence, each semitone can be
measured as a point (x, y) using standard Pythagorean trigonometric
functions (cos(θ), sin(θ)). Since angles are mapped around a circle,
we can also use polar form to approach pitches. Since any pitch n
can be described as a note or interval, a duality exists that suggests
also using exponential form (i. e., notes and intervals signified by
cos(θn) + i sin(θn) and the term, ‘pitches’ refer to eiθn to measure
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angles on the complex plane. Using the complex plane also solves
a problem graphically, as cos(θ) + sin(θ) yields one superimposed
waveform (i. e., not congruent with note and interval descriptions of
pitch n); whereas the polar form cos(θ) + i sin(θ) yields the required
dual waveforms, which can be used as references to map any pitch
n. This may all be a lot to take in at once, so we will show this
progressively.

In the complex plane, a point z can be defined by the translation
x+yi, where i =

√
−1. Another way to represent a point z is to express

its coordinate in polar form (r, θ). Here r is the distance from the
origin to the point (radius of a unit circle), and θ is the angle from
the positive X-axis to the radius (anticlockwise, in radians). There
are conversion formulas for switching between polar and Cartesian
coordinates (Eq. (2)), giving the polar form of a point z in terms of
the trigonometric functions (Eq. (3)):

(x, y)→ (r, θ) : x = rcosθ, y = rsinθ (2)

Therefore,

z = r(cosθ + isinθ) (3)

The complex plane allows the use of waveforms simultaneously
for visual mapping (Section 5.). Since r = 1 on a unit circle, we can
reduce the equation further to get something very similar to Euler’s
formula. Using Euler’s formula, the polar form of z can be notated in
exponential form.

z = r(cosθ + isinθ),

where r = 1.

eiθ = cosθ + isinθ

Hence,

z = eiθ (4)

where, θ = π/6.
Hence z represents a point of interest – a pitch that can be a note

or interval. The angle θ is also called the argument, denoted by θ =
arg(z). Using this convention, we can define octave equivalence. For
each complete rotation around the circle (±2π), the resulting angle
θ remains the same. As each note can be represented as an angle,
the distance between each octave higher or lower is ±2πk (Eq. (6)).
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Hence, each argument has multiple solutions. The principal argument
refers to the angle that falls within the range {−π < arg(z) ≤ π},
and is denoted using a capital letter Arg(z). It follows that arg(z) is
equivalent to Arg(z)±2πk (Eq. (7)).

θnote − θ8ve(k) = 2πk (5)

arg(z) = Arg(z) ± 2πk (6)

Hence (Eq. (6)) defines the axiom of octave equivalence, where the
span of any numbers of octaves up or down from any pitch can be
considered equal to its unison. Returning to (Eq. (4)), exponential
form was used to denote pitches. Here, arg(z) refers to the angle θ
of any pitch i. Pitches behave multiplicatively and in polar or expo-
nential forms, de Moivre’s formula (Eq. (8)) enables a path forward.
With de Moivre’s formula, we can define the exponential form of a
pitch’s argument using values of n (Eqs.(9)-(11)).

zn = e(iθ)n (7)

(cosθ + isinθ)n = cosθn + isinθn (8)

zn = eiθn = eiπn/6 (9)

Therefore,

Arg(zn) = θn = πn/6 (10)

Therefore,

arg(zn) = θn ± 2πk = πn/6 ± 2πk (11)

This gives an interesting insight to what the values of z and n
represent. Here, n acts as an intervallic scalar factor of each point
z. Pitches allow for octave equivalence as: (a.) each Arg(zn) can
be determined by multiplying θ by an integer from 0 to 11; and,
(b.) any integer value outside this range yields some arg(zn) (i. e.,
n = –12 ≡ –2π ± 2πk, n = 13 ≡ π6 ± 2πk, . . . ). This scalar multiplica-
tion is why in musical parlance, a formal collection of melodic pitches
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are called scale sets (simplified to scales); which outline tonal atmo-
spheres (known as keys, or tonal centres). The multiplicative nature
of pitches can also be shown when the frequency f and wavelength λ
of a pitch are considered. The span of one octave is a twelve semitone
span, which equates to a frequency twice that of a unison (Eq. (12))
so, f ∗ I12 = 2 f . Therefore, we have the Steven’s identity,

I = 2
1

12 (12)

Thus arriving at Simon Stevin’s identity of an equal-tempered semi-
tone. To solve for all twelfth roots of two, simply multiply (Eq.(12))
by (Eq.(9)). i. e., I ∗ (zn) for {0 ≤ π ≤ 11}.

There are twelve solutions to the twelfth root of two due to the
fundamental theorem of algebra (any polynomial of degree x has x
roots). Coincidentally, in musical terminology the, “nth scale degree”
refers to, “the pitch at the nth position of a scale set,” and is denoted
by an integer with a hat, known as a carat: Stevin’s identity can also
be used to measure all interval sizes[3]. We have notated (Eq. (13))
to show how this relationship can be formed in the necessary multi-
plicative sense.

In = (2
1

12 )n = (2
n
12 ) (13)

When we substitute {0 ≤ n ≤ 11} into (Eq. (13)), we get the
frequency ratios underpinning Stevin’s identity:

The values in Table 4. have been approximated as they contain on-
going decimals, yet if these values are kept in exact form (Eq. (13)),
they can be used to accurately calculate interval sizes in cents [7].

In
cents = [log(2

n
12 /log(2))] ∗ 1200 (14)
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Performing the calculation (Eq. (14)) yields the values shown in
Table 4.,

Hence an octave contains 1200 cents, and each semitone contains
100 cents. Cents are a logarithmic measure, which means that inter-
val sizes can be translated (added or subtracted) as needed. Table 4.
also demonstrates that n is one percent of its value in cents. Hence,
the measurements of n and its value in cents contains a part/whole
ratio of 1:100. Instrumentalists often adjust their tunings whilst per-
forming, and it is not uncommon to adjust the tuning of specific
chordal members to adhere to just intonation. For instance, tuning
in just intonation for a major chord quality demands its chordal third
thirteen cents flat and fifth two cents sharp from its tonic. In other
words, play the major third interval 13% flatter than usual, and the
perfect fifth interval 2% sharper. Equal temperament and just intona-
tion are still both used today: the former as an aligned scaffold that is
completely modulatory, the latter as a performance methodology that
contains richer consonances.

Using (Eq. (13)), we can calculate the f and λ of any pitch above
or below any given note by any interval n. As Stevin’s identity focuses
solely on defining n as interval measurements, a starting note is re-
quired to calculate f and λ of any note separated by some interval n.
To calculate the frequency of an interval n semitones above a note,
simply multiply f by 2

n
12 . To get the frequency of a note below, divide

f by 2
n

12 . Inversely, to calculate the wavelength of a note n semitones
above, divide λ by 2

n
12 ; for below, multiplyλ by 2

n
12 . Instead of divid-

ing, one can also multiply by negative n. This works for any interval n
between any two notes’ f and λ. Any f or λ of a note above or below
a given reference note’s f or λ by interval n is given by (Eq. (15)),

f2 ↑= f1 ∗ 2
n

12 ∧ λ2 ↓= λ1 ∗ 2
n

12 ; f2 ↓= f1 ∗ 2
−n
12 ∧ λ2 ↑= λ1 ∗ 2

−n
12 (15)

Combining these aspects, we can show the f and λ of each n above
or below any pitch; say, middle C (C4).

The formulae in (Eq. (15)) show the multiplicative nature of f
and λ by ratios of n. They state that when a note moves up by n, f is
stretched by a factor of 2

n
12 , whilst λ is compressed by that same scalar

factor. Conversely, when a note moves down by n, f is compressed
and λ is stretched by 2

n
12 . Hence, when we hear musical pitches move

up or down in a seemingly linear motion (translating in an additive or
subtractive sense), the waveforms are actually scaling up or down in
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a multiplicative sense (being stretched or compressed by some scalar
factor). The velocity of any note can be given by multiplying its fre-
quency and wavelength together:

v = fλ (16)

This (Eq. (16)) is a common formula to a physics class, and gives
a good platform to see how intonation is affected when consider-
ing temperature affects velocity. For example, sound travels faster in
warmer areas (where molecules contain more energy, so can vibrate
faster than in colder areas). Using the ideal gas law, it is possible to
link this with basic chemistry study by defining the speed of sound in
a pure gas. Suits (2015) shows this can be done by combining the
heat ratio for the gas (adiabatic constant γ), absolute temperature
T (Kelvins), the mass of one gas molecule M and Boltzmann’s con-
stant kB (1.38064852 × 10-23 m2 kg s−2 K−1, which converts absolute
temperature units into energy units) [8].

v =
√

((γ ∗ kB ∗ T )/M) (17)

The speed of sound is also affected by other factors such as humid-
ity and air pressure, which lead to wider plateaus of learning, yet are
beyond the scope of this paper. This section can also lead nicely into
studies of the mathematics behind musical instrument creation: the
story of musical structure underpins many intersecting areas of quan-
titative study. Pedagogical tangents aside, for music instrumentalists,
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temperature affects tuning (intonation), as a difference in tempera-
ture affects velocity, which affects f and λ. Hence, instruments are in
tune with each other when all musicians play notes that have aligning
f and λ. With skillful alignment, amplitude (dynamics, volume) also
increases as waveforms are additive. Hence, the sound quality of any
particular instrument (timbre) refers to the overall shape of the wave-
form being created by an instrument. Thus, tonal blending is the skill
of matching waveforms; whereas intonation is the skill of matching
periodicity.

This section has addressed many of the listed elements contained
in the scaffold of section 4.. In sum:

• Pitches allow for octave equivalence (arg(z) = Arg(z)±2πk).

• Pitches can be interpreted as note or interval, signified by an
integer n.

• Harmonic and melodic intervals are equivalent measurements
of semitone distances between notes.

• Translations by intervals n can be made in cents, multiplicative
intervals n for f and λ use 2

n
12 .

• Temperature affects velocity (Eq. 17), which affects intonation,
since v = fλ.

The next section will add to deliberations by addressing the re-
maining elements listed in the scaffold of section 3.. In the next sec-
tion, we will use a trigonometric approach toward unpacking interval
quality and general inversional equivalence. We will continue delib-
erations in section 6. by outlining ways musical structures can be
categorised and indexed using mathematical set theory approaches.
Proceeding sections will unpack one of the main ideas behind the doc-
toral thesis[1]: that all musical structures can be represented using
matrix form. Hence, we will adopt a mathematical approach to con-
structing a platform that can be used to explore musical structures
that underpin any stylistic use of equal tempered music.

5. Trigonometric Representation and Inversional Equivalence

The last section described how any pitch n can be found around the
circumference of a unit circle, so this section will show this using
Pythagorean trigonometry. When we map θ on a unit circle, all pitches
can be seen to contain inversional equivalence. Inversional equiva-
lence is the name given to any set of two intervals whose spans sum
to an octave in opposing directions. Rather, opposing directions are
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equal when interval spans total one octave. For example, the inter-
val eight semitones above a given note (interval quality of a minor
sixth) has an inversional equivalent four semitones below that same
note (interval quality of a major third) as both intervals sum to an
octave (8 + 4 = 12). Hence, moving down by four semitones yields
the same note as moving up by eight semitones (via differing interval
qualities). This holds for all values of n in Table 4..

For sake of interlinkage, on the complex plane, n = 3 is found at
(0, i); and at n = 9, (x, y) = (0, -i). Mapping n around a unit circle
clearly shows all pitches. One advantage of tabulating or mapping
the chromatic scale as per Table 5. or Figure 1 is pedagogical.

Figure 1. Values for n around a unit circle. Sinusoidally, each n-value represents a
point on the sin wave. This unit circle can also be mapped in the complex plane.
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In this visual setting, the inversional equivalence of intervals can
be easily shown as equivalent distances spanning opposite directions.
In other words, for any note, two interval qualities in opposite direc-
tions can be used to reach any other note. To a musician, the inver-
sion of any pitch n is found by the simple equation (n2 = 12–n1, mod
12). Alternatively, interval inversions can also be calculated using
n1 ± n2 = 2π or 360o, where n is in radians or degrees respectively.

Figure 1 shows that each value plotted around the unit circle cor-
responds to a point on a sine wave for θ moving anticlockwise. Look-
ing at Table 5., sin(θ) is equivalent to the y-coordinate (or imaginary
value yi on the complex plane). Likewise, cos(θ) represents the x-
coordinate (or real values of θ on the complex plane). In Figure 1,
all pitches on the unit circle would correspond to points on a cosine
wave if values for n were ordered like a clock face (with its twelve re-
placed by a zero). This approach would consider each hour division
still equal to each previous θ, except motion proceeds in the opposite
direction (clockwise motion).

In Table 4., if we begin at cos(0) and look at each cos(θ) value go-
ing down, it has the same pattern as if we were to begin at sin(π/2)
and go up for each value of sin(θ). Comparing the properties of clock
face motion from mathematical convention algebraically; θ would be-
come negative motion; the starting point of cos differs from sin by π/2
where n remains consistent. We can write this difference as sin(πn/6)
= cos(π/2-πn/6) (Eq. (18)).

One trigonometric identity is that cos(θ) equals the derivative
(change over time) of sin(θ). This derivative signifies the rate of
change of a pitch through time by calculating its gradient over a tiny
nudge in time (Eq. (19)). When any note is played it also contains a
rhythmic element that marks its place in time. This rhythmic element
is called a note’s articulation. When the articulation of a note is clear,
musicians playing together are informed of exactly how time is being
understood by those around them. See the following algebraic and
derivative analogies

cos((π/2) − (πn/6)) = sin(πn/6) (18)

d
dn

(sin(πn/6)) = (π/6)(cos(πn/6)) (19)

Here (Eqs. 18-19) demonstrate that both approaches are equiv-
alent. A learner may find it easier to think of motions around the
unit circle as clock motion, or as normal mathematical convention.
Where the clock analogy refers to real values of y through time (as a
derivative point on a cosine wave), the conventional approach refers
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to imaginary values of y (as a point on a sine wave) on the complex
plane. Converting between the two approaches enable the mapping
of pitches on either sine or cosine waveforms. These approaches are
also inversionally equivalent as from any pitch, cos(π/2-πn/6) will
reach the same value for n as sin(πn/6). Musically, the derivative
comfortably signifies a melodic interval, and harmonic intervals span
the length of time it takes to articulate their sound. Harmonic in-
tervals are often thought of as instantaneous sounds, or sounds oc-
curring over the time of its articulation, and hence can be measured
as the limit as time approaches zero (when time equals zero, sounds
are instantaneous). As harmonic and melodic intervals are equivalent
measurements using values of n, harmonic pitches can be used to de-
scribe melodic operations through time and vice versa. It follows that
we can simply interpret n as harmonic intervals to describe the con-
struction of any greater musical structure occurring through or at any
point in time. This means we are able to represent pitches related to
each other in a way that does not need to include time.

The next section will focus on using set theory to categorize pitches
into larger musical structures. Such structures are created using dif-
fering combinations of notes and intervals in different ways. Simply
put, the formation of larger musical structures involves finding pat-
terns of notes or intervals that contextualize any musical element.
The proceeding section will use matrices to summarize deliberations.

6. Indexing Formal Orderings via Set Theory

Consider the set S of chromatic pitches situated between the number
of musical notes n within an octave (8ve). For the ascending and
descending versions of S ,

S ascending = {0; 1; 2; . . . ; n − 1} ∧ S descending = {n − 1; n − 2; n − 3; . . . ; n − n}

Therefore,

S asc. = {0; 1; 2; . . . ; 11} ∧ S desc. = {11; 10; 9; . . . ; 0} (20)

These sets can be easily indexed. This will allow easy recall of any
formalized harmonic interval combination (like scales, modes, penta-
tonics, tetrachords or chordal qualities to name a few). As musicians
can use any combination of notes from the chromatic scale to create
music, it is useful to map all possible ordered combinations within set
S . Hence, we wish to find the Power Set of S ; which is the set of
all subsets of S . So, listing all subsets of S yields the Power Set. For
instance, for the set {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11}:

67



Mapana Journal of Sciences, Vol. 18, No. 3 ISSN 0975-3303

• The empty set { } is a subset of {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10;
11}.

• All single note combinations of C are subsets: 0, {1}, {2},. . . ,
{11}.

• All two-note combinations are also subsets: {0; 1}, {0; 2}, . . . ;
and so on.

• In fact, any n-note combinations of values in the set S are also
subsets of S .

• Including {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11}, which is also a
subset of S .

Every member of P(S ) is an ordered set, as each subset contains
numbers grouped from smallest to largest. As pitches contain note
/ interval duality, subsets of P(S ) can be read as notes or intervals.
Since all ordered sets allow for both octave and inversional equiva-
lences they can be found within the span of an octave. The Power Set
is found by raising 2 to the power of the number of members in the
set.

|P(S )| = 2n = 212 = 4096 (21)

Hence, there are 4,096 different formal orderings within P(S ).
Another way to create a power set is to use the binary system, letting
“1” mean “put the matching member into this subset”. This gives a
useful way to categorise all possible sets as a binary index.

All subsets of P(S ) can have an assigned value in binary, decimal
and hexadecimal, shown in Table 4.. This is a efficient way to index
every formal note set individually. Each subset represents all ordered
interval sets, such as chord or scale qualities. Here we represent both
notes and intervals as pitches with numbers 0 to 11 in each subset.
Arithmetic on those numbers performed modulo 12 keep the results
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with the defined set of 12 notes/intervals. Even though this represen-
tation can be used for notes and intervals, we treat them as separate
things, just like a set of notes is different than a single (non-set) note.
As such, we are implicitly defining the addition of an interval I, to a
note, N1, as: N2 = N1 + I, which is evaluated as N2 ≡ N1 + I (modulo
12). Similarly, adding an interval I2 to an initial interval I1 gives a
new interval I3: I3 ≡ I1 + I2 (modulo 12).

Two other forms of addition are available but have a less immedi-
ate real world meaning:

• Note + Note (more often used as a reference to specific notes
in larger constructions)

• Interval + Note (this is the same as note + interval, yet is rarely
used since musicians often start with a note (or notes / scale /
chord / composition) and shift by an interval (addition); the
note is referred to first and the interval second).

Now we can get back to looking at addition involving notes/intervals
and sets of same. The obvious candidate is through performing a set
union:

• S 3 = S 1+S 2 when S 3 contains the combined elements of S 1 and
S 2

• i. e., {2; 5; 9} ∪ {0; 2; 4; 7; 11} ={0; 2; 4; 5; 7; 9; 11}

Similarly to the four ways we can define addition of notes and
intervals, there are now multiple ways of defining addition of notes,
intervals and sets of same (listing only the sensible ones):

• Note + Interval

• Interval + Interval

• Set of Notes + Set of Notes ≡ Union of Sets

• Set of Intervals + Set of Intervals ≡ Union of Sets

• Set of Notes + Interval

• Note + Set of Intervals

The last two are particularly interesting. A set of notes can repre-
sent a scale, a chord, a composition. That set of notes can be trans-
posed by adding an interval to all included elements. Starting with
the set of notes in a C major chord, {0; 4; 7} we can add the A inter-
val, 9, to get the set of notes in a A major chord, {9; 1; 4}. Likewise,
adding the D interval to the set of notes in a C major scale yields the
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set of notes in a D major scale: {0; 2; 4; 5; 7; 9; 11} + 2 = {2; 4; 6;
7; 9; 11; 1} (Section 2.). A set of intervals can represent the the qual-
ity of a scale/chord/composition. For example, the quality of a major
chord could be represented as {0; 4; 7}. Note that this is different
than the specific C major chord. Such chordal quality representations
will always contain the interval 0, which signifies the musical root of
the chord. Musically, a chordal root simply points to the reference
note of the chord. Now that we have the major chord quality we can
make any major chord we want:

Note + major chord quality = major chord for note (i. e., the D
major chord: 2 + {0; 4; 7} = {2; 6; 9}).

This discussion on addition was all modulo 12 but would work
just as well with standard addition of integers positive and negative.
Having expanded the range of notes, we would need to define which
note is zero. In section 4., we described any point of interest as zn (Eq.
(9)); yet it could be the definition from a MIDI input; it could repre-
sent middle C on the keyboard or the A musicians use to tune. The
note defined as zero is often a tonic, root of a chord or some other sig-
nificant point of reference. In this way, sets of intervals become more
interesting and zero is still well defined. Allowing intervals outside of
0 to 11, we can represent more larger musical structures, such as:

• A major chord with added ninth {0; 4; 7; 14}

• The harmonic series on a brass instrument with one set of fin-
gerings {0; 12; 19; 24; 28; 31; 34; 36; ...}

• The three inversions of the major chord quality {0; 4; 7}, {-5;
0; 4} and {-8; -5; 0}

With such indexing, any patten of notes or intervals can be cat-
egorised as an ordered set. Such sets can emerge through the use
of either melodic or harmonic intervals, and hence can describe any
larger musical structure. Such a system for constructing ordered sets
of melodic or harmonic intervals requires an understanding of the
aforementioned musical convention based around enharmonic equiv-
alence (Section 2.). The next section will tether this concept by using
matrices to demonstrate the underlying system that defines musical
atmospheres known as tonal centres or keys.

7. Matrix Representation

Recall that pitches are contextualized by intervallic qualities that form
the basis of a musical atmosphere in the form of a melodic interval
set known as a scale. Hence, the collection of pitches that define
a particular scale quality also define a particular key. When read-
ing musical scores, it is natural to see melodic interactions reading
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left-to-right and harmonic interactions occurring horizontally. Matri-
ces make good use of displaying information this way. One can read
columns as harmonic interval interactions and rows as melodic inter-
vals. We can show all chromatic scales as a matrix, created by adding
the values of S asc. and S desc. (Eq. (20)) in base twelve:

Table 7. outlines every possible chromatic scale. One property of
the matrix S is that it is circulant, meaning each row ‘i’ has been ro-
tated one element n to the right relative to the preceding row. More
generally, we can recreate the matrix S through the method of cyclic
permutation, which refers to the action of shifting all elements of a
set by some fixed offset. Cyclic permutation allows for octave equiva-
lence, with elements shifted off the end of a row being inserted back
at the beginning. For the matrix S , with the first row made of ele-
ments {0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11}, a cyclic permutation of
one place to the left would yield {1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 0};
and a cyclic permutation of one place to the right would yield {11;
0; 1; 2; 3; 4; 5; 6; 7; 8; 9; 10}. The mapping of Table 4. can be
described as each row ‘i’ of n is shifted to the right by one (ni → ni+1
(mod 12)). Generally,

ni → ni+k(mod 12) (22)

for any shift of k places to the right.

ni → ni−k(mod 12) (23)

for any shift of k places to the left.
The matrix approach is not entirely different from conventional

musical set theory approaches [4, 5, 9]. It is not my intention to give
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an exegesis of musical set theory techniques in this paper; we wish to
show how the general method can be extended to yield all harmonic
combinations in a manner aligned with tonal approaches to harmony.
We can finally introduce the harmonic context to my deliberations. A
fundamental harmonic reference is the cycle of fourths / fifths. Its
ordering can be created by having a gap of five or seven semitones
between each note. When five semitones are used, the order is called
the cycle of fourths, when seven semitones are used, it is called the
cycle of fifths. We do this to get the following definition of the set H:

H = {0; 5; 10; 3; 8; 1; 6; 11; 4; 9; 2; 7; 0}& {0; 7; 2; 9; 4; 11; 6; 1; 8; 3; 10; 5; 0}
(24)

The previous keyboard visual (Table 2.) changes to a tonally or-
dered configuration:

Tables 7. and 10 are mirror images of each other, making them
inversionally related. This inversional relationship has to do with the
amount of raised or lowered notes found in each key with tonic n.
To unpack, each subsequent key increases or decreases the amount of
raised (sharp) or lowered (flat) notes in its pitch collection by one.
We can show this by comparing Sets S and H additively,

Table 7. provides a very clear view of the underlying system to
harmonic orderings. It is also circulant,

ni → ni+7(mod 12) (25)

for a shift of 7 places to the right.

ni → ni−5(mod 12) (26)

for a shift of 5 places to the left.
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As the cycles of fourths and fifths move in opposing directions
and their shift values add to an octave (i. e., 5 + 7 = 12), they are
inversionally equivalent. The addition of enharmonics can be seen
in Table 7.. Substituting the enharmonic names for each element n
in H yields Table 7.. Recall from Section 2. that any major scale
quality can be formed using the set {0; 2; 4; 5; 7; 9; 11} added
to any tonic note. In both Tables 7. and 7., the columns marked
zero signify the tonics of each key (row). Hence, in Table 7., we
have shaded columns that pertain to every major scale quality. As can
be seen, each shaded column is simply a corresponding value of the
scale quality set. Also notice that for each change of row, either one
sharp or flat has been added or taken from the previous key signature.
Hence, Table 7. demonstrates how each key is ordered using either
cycle of fifths or fourths orderings. In table 7., we have labelled notes
as per the convention outlined previously (Section 2.).

This process is generalizable. To see which keys contain which
notes, shade the appropriate columns that pertain to the scale quality
in question. For instance, a harmonic minor scale quality is created
using the melodic interval pattern {0; 2; 3; 5; 7; 8; 11}. Shading
these columns over Table 7. – or Table 7., using the appropriate en-
harmonic naming convention (Section 2.) – will yield all notes con-
tained within every harmonic minor scale quality. In this way, all
ordered sets of notes can be found in all keys. Looking back at the
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ordered sets contained within Table 4., such indexed formal order-
ings tell which columns to shade in matrix H when its first “1” means
“n = 0 is in this set.” Where the first “1” to appear from the left in bi-
nary is not n = 0, the pattern maps to the row with that corresponding
tonic. As each row can accommodate any binary lookup in this way,
all 4096 formal orderings mentioned in Section 2..4. can be mapped
to matrix H.

In sum, this paper has outlined the underpinning structure and
intersecting concepts surrounding equal tempered music. For all that
we have unpacked in this paper, there is still much remaining in or-
der to proceed from this juncture. This entire process can be com-
puterised. We have been working on such a project and have come
to some interesting insights. Firstly, the approach we have outlined
in this paper enables the visualisation of harmonic structures from a
common point (the matrix H). In taking snapshots of musical struc-
tures at any given pulse of time, animations can be made that fol-
low musical movements that occur over any durations of time in any
piece. These structures can also be analysed and compared with one
another. Moreover, linking this approach with the internals of a MIDI
reader could efficiently and accurately translate scores into an analyz-
able structure. It follows that from the build up of such a database of
mappings with a common underlying structure; a repository of music
can be created which enables the quantitative measurement of any
equal tempered music. Lastly, holographic representations of musical
structure may be possible with the development of techniques in op-
tics. Through such developments, the structure of music can be seen
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true to its mathematical underpinnings.
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