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ESTIMATION OF STEADY STATE
PROBABILITY DISTRIBUTION OF
SYSTEM SIZE IN M/M/1 QUEUE

Jayakrishna Udupa H.

ABSTRACT

Recently Choudhury and Borthakur (2008) obtained classical and
Bayesian estimators of performance measures based on @ rondom
sample of size n from a geometric distribution with meon p/ (1- o),
which is the steady state probability distribution of system size. Here we
obtain classicol estimators, the Maximum Likelihood (ML) and Uniformiy
Minimum Variance Unbiased (UMVU) estimators, and Bayesion
estimators of P, k=0,1,2,.... refotive to beta prior distribution and
Weighted Squared Error Loss (WSEL) function as well as relafive o
Standard Two-Sided Power (STSP) distribution and squared error loss /
WSEL functions. Bayes, ML and UMV estimates of the probability that
the server is idle are also computed. Also Consistent Asymptotic
Normality (CAN) for P,, k=0,1,2..... are examined.

l. Introduction

Problems of estimation have been the inferest of queuing researchers since the mid
1950's. Early researchers in classical estimation problems of queving parameters
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include Clarke (1957), Wolf (1965) and Cox {1965} while that for Bayesian
estimation problems include Muddapur (1972}, Armero (1985} and Basawa et al.
(1981). In the past few decades there has been a surge in research related to
Bayesian inference for queving parameters. Research in the last decade includes
Armero and Conesa {1998, 2000), Conti (1998), Armero and Bayarri(1299), Butler
and Huzurbazaar (2000), Zheng and Seila (2000), and Keissler and Lund (2009).
Estimation in M/M/1 queue was studied by Srinivas et al. (2009) using the Imbedded
Markov Chain (IMC) analysis of M/G/1 queue. They obtained Maximum Likelihcod
{ML) and Uniformly Minimum Variance Unbiased (UMVU) estimators of steady
state measures of system performance. Sharma and Kumar (1999) obtained ML
estimators of the same measures as well as Bayesian estimators relative to Squared
Error Loss {SEL) function and beta prior distribution based on a sample of size K,
from K independent M/M/1 queves, from geometric distribution

px)=(1-p)p%  x=012,.. (1.1)

which is the steady state distribution of system size and is denoted by p_Recently
Choudhury and Borthakur {2008} derived the Bayes estimators of the fraffic infensity
parameter relative to SEL and beta / truncated uniform priors, based on a random
sample from {1.1) using the ergodicity property of IMC to argue that the sample
observations are independent. We assume throughout that there exists a random

sample of observations X = X, X,,..., X, on X with geometric p.m.tin (1.1).

In this paper we intend to obtain the classical and Bayesian estimators of the steady
state probability distribution of system size given by

p =0-20k=0,12...

which is the same as the distribution in (1.1} . The ML and UMV estimators are
derived insecfion 2 and 3 respectively. Section 4 deals with the CAN for p,. Bayesian
estimators of p, relative to beta prior and foss functions SEL and Weighted Squared
Error Loss (WSEL) are derived in section 5. In controst, in section &, the Bayes
estimators of p, relative to Standard Two-Sided Power (STSP) distribution and SEL /
WSEL functions are obtained.

2. Maximum Likelihood Estimation
The likelihood of the observed sample drawn from (1.1} is given by

Lpix) = (1- o o
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Now differentiating the log of the likelihood function with respectto 2 and equating

it to zero gives the MLE of pas -

. X
P

By using the invariance property of MLE, we thus obtain the MLE of steady state
probability distribution as

. (. XN 7Y
Pemwallwa) k0

3. Best Unbiased Estimation

The distribution in {1.1} is a member of the Power Series tamily of distributions
(RS.D) with p.m.{

o(x);?‘

——--—c(g) , xel!

flx| 6) =

n
where T'is the support of X. Further T = E‘:X,' is a Complete Sufficient Statistic

(C.S.5) for RS.D. It is well known (See Lehmann (1983, P 96 and Singh (1979)
that UMVU estimator of probabilities of PS.D based on a sample of size n from
PS.D is given by :

fgdA-xn) o L
f(xl&)-l A ,xel",

where Aft, n) is the coefficient of & inthe expansion of {c(e)}" . Using this for our -
case of estimation of geometric probabilities p, based on a sample of size n from
(1.1), we have the UMVU estimators of steady state probabilities given by

(n+t—k=-2)
. U -k
P = T

f

ot2k(20),n>1
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. CAN estimators,

as o(x) =1 and Aff,n}= (n-.l-:—l}

4. CAN Property

The Consistent Asymptotic Normality (CAN) property is examined for p, folldwing
Kale (2005). To accomplish this we first obtain the consistent estimators. Now using
the method of moments we can obtain the consistent estimator of £ as the solution

of moment equation X, = —£_ For this the condifion L --—~l~—-- #0 and is
! s dp ~(—pF
continuous for o (0,1} is satisfied, which is sufficient for 471 10 exist. The solution
of moment equation isp = )? I and is a consistent estimator of 2 Further, to
n
obtain CAN estimator of L = ]L we note that by Central Limit Théorem (CLT)
-p
X, ~ AN (L,;J
- n(l - p)

Thus, by definition, X . is CANforL as 5(“ —F 1 by Weak law of Large Numbers

(WLLN). As o= —— and 28] doll)

33 d #0andis conhnuous, by invariance property of

X,
X " is CAN for 2 with

Y ( 0
r =N pai ) |

n

As pi ={1- p)pk =g(p} and === 0 and is continvous, by invariance propery

4 Jel2)
dp
. of CAN estimators




(X, #, 21k=p) - A
%+ "‘ANL“ oy

5. Bayes Estimation Relative to Beta Prior

The parametric space of p, is © = {Pk :0<p. <1, k=0,1,2,... } .The Bayes
estimators of p, relative to SEL function given by

U pe) = (B —pef’s k=0,12,... | (5.1)

where B, is an estimote of p,, and beta prior distribution for o, denoted by
Be, (a8}, given by

”(Plaaﬁ')-m “-pf, 0<p<l, {5.2)

with the parameter space of the prior parameters being {(a, B:az20,82 0} , can
be easily derived and turns out to be

»  _BinX+a+kn+pB+)

= £ , k=012,...
P BlnX + a,n+ B)

The Bayes estimator of p, relative to WSEL function given by
LBk pe)=wlol(Be ~ e, k=012,... (5.3)
and prior (5.2) turns out to be

. _BpX+a+k-1n+B+3)

= — , k=0,12,...
PO = T X + a~Tn+ A1)

1- 2
where the weight function w(p)= (_.,p.i
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Arandom sample of size 10 was simulated 10000 times from the distribution {1.1)
and the Bayes estimates of p, (probability that the server is idle) relative to beta
prior distribution {& = 2,8 = 5}(5.2) and loss function {5.3) were obtained and is
given in the following table.

Tablel. Bayes (WSEL), ML, UMVU estimates of P,

p MLE UMVUE Po,
0.19 0.81103 0.794351 0.797
0.39 0.610128 0.584795 0.669555
0.59 0.409668 0.384451 0.50883
0.79 0.210261 0.193299 0.300566
0.99 0.0099914 0.0090013 0.016834

6. Bayes Estimation Relative to STSP Prior

The STSP distribution was introduced by Van Dorp and Kotz (2002) as a distribution
which models the difference between maturity interest rates of two successive time
periods (month). This distribution is used as the prior distribution of £ and is given

by

a-1
a[—pJ ., O<pséd
”(Plofa}: ._|

all!‘-’)a 9<p<l
1-e) ' °=F

(6.1}

The posterior distribution of & given the data, is given by

%=1

W BV
Epni-l-a—](-l__p)n
nte=1

271~ p)
\ Epni('!_p)n-i-aul

, O<pse@

wp|8.a}=1
, B<pgl]
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Thus the Bayes estimator of p,, relative fo Squored Error Loss (SEL) in (5.1), is given
by ‘

B(O,6,nX + & +K,n+2)
A + ’ , 0 £
.| B0.60X+ant) -
Phay BB 1,nX +k+1n+a+)) gsp<l

B nX+n+a) '

for k=0,1.2,... and B(p, q, 1, 5} is the generalized incomplete beta function
q

defined by J‘Pr—]{i -pfdp
. .

The Bayes estimator of p,, relative to WSEL function {5.3) and STSP priorin (6.1),
is given by

B(O,0,nX + &t +k -1,n+4)
. | B08nX+a-1n+3)

Pho = B(6,1,nX + k,n+ a +3)
B ,nXn+a+2) '

O<p=zé@

8<p<l

Arandom sample of size 10 was simulated 10000 times from the distribution (1.1 )
and the Bayes estimates of p, (probability that the server is idle) relative to STSP
prior distribution (6.1) and loss function (5.3) was obtained and is presented in the
following table.

Table 2. Bayes (WSEL), ML, UMVU estimates of P,

0/ p 0.19 0.39 0.59 0.79 0.99
0.1 0.812544 | 0.685398 | 0.492784 | 0.271528 | 0.0139323

0.2 . 0.868666 | 0.664285 OA92735 0.271528 | 0.0139323
0.3 0.827506 | 0.610774 | 0.490143 | 0.271528 | 0.0139323
0.4 0.805688 | 0.698192 | 0.470981 0.271528 03139323
0.5 0.797908 | 0.658887 | 0.423153 _0271436 0.0139323
- 046 0.796264 | 0.641683 | 0.499428 | 0.267626 10.0139323
0.7- 0.796088 | 0.637869 | 0.4657 .| 0.239382 | 0.0139323
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Table 2. Contd.

8/p 0.19 0.39 0.59 0.79 0.99
0.8 0.796081 | 0.637572 | 0.457899 | 027189 | 0.0139323
0.9 0.796081 | 0.637567 | 0.457586_ | 0.252315 | 0.0139323
MLE 0.81103 | 0.610128 | 0.409668 | 0.210261 |0.00999141
UMVUE | 0.794351 | 0.584795 | 0.384451 | 0.193299 | 0.0090013

7. Conclusion

The Bayes, ML and UMVU estimators of Pk were obtained and computed for
Py following the research in Srinivas and Jayakrishna {2009), where the interest
was in expected system size. We are aware of the fact that computations do not
reveal about the performance of estimators. Also Bayes estimation was restricted to
SEL ond WSEL loss functions. However, Bayes estimation relative to other loss
functions as well as comparison of estimators is under consideration and may
possibly be part of another communication.
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