ISSN 0975.3303
MIS, Vol, 8, No. 2, July - December 2009, pp. 59-72

https://doi.org/10.12725/mjs.15.7

AN EMPIRICAL COMPARISON OF
MAXIMUM LIKELIHOOD AND
MOMENT ESTIMATORS OF
PARAMETERS IN A ZERO-INFLATED
POISSON MODEL

G. Noanjundan*, A. Loganathan** and T. Raveendra
Naika***

ABSTRACT

The zero-inflated Poisson model is discussed in the context of a real
life situation. The moment estimators of the paramaeters in the model
are obtained and they are compared with the respective maximum
likelihood estimators through simulation.

Keywords: Zero-inflated models, Poisson distribution, Maximum
likelihood estimators, EM Afgorithm, Moment estimators, Asymptofic
normalify.

Dept. of Statistics, Bangalore University, Bangalore 560 056, e-mail: nanzundan@gmail.com
**  Dept. of Statistics, M.S. University, Tirunelveli 627 012
“** Mahorani's Science College for Women, Bangalore 560 001,

59



1. Introduction

There is a surge of interest in zero-inflated models because they are readily applicable
in many real life situations and also appropriate in count-regression models [see
Lambert (1992), Hall (2000), Jiang and Paul (2009), Erdman et ol (2008), Situations
where data are from a mixture of two distributions such that one produces only
zeros and the other produces non-negative integer valued observations are common.
Mixtures of a singular or degenerate distribution at zero and a non-negative integer
valued distribution like Poisson or negative binomial are suitable models in such
situations. These mixture distributions are over dispersed and are also known as
zero-inflated models.

A zero-inflated model which is a mixture of o distribution degenerate at zero and a
Poisson distribution is considered here. The moment estimators of the parameters
involved in the model are obtained and empirically compared with the maximum
likelihood estimators.

Suppose that we are interested in the number of insects {X) per leaf in o tree.
Usually insects live on leaves that are suitable for feeding. If a leaf is unsuitable
for feeding, then no insect lives on it. Suppose that the proportion of unsuitable
leaves in a tree is @ and the number of insecis on a suitable leaf follows o
Poisson distribution with mean @. If any insect is found on a ledf, then it is
suitable for feeding. If a leaf has no insect on it, then it may be due to the
unsuitability or the chance variation allowed by the Poisson distribution, Then,
the probability mass function (pmf) of X is

+l-pl® , x=0
pl) =1+ 04 (0.1
(-ge® ., x=123,..;0<p<]

= ¢p {x) + (1- ¢) m(x 6)

Lifx=0
where Po(x) = 0,ifx#0 and pyfx) =

e 9

,x=0,1,2,...,8>0.
x|

Thus the distibution of X is a mixture of a distribution degenerate at zero and a
Poisson distribution. Also, this is known as a zero-inflated Poisson model.
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2. Maximum Likelihood Estimation

X ={X,X, X, ..., X%n)is a random sample on X with the pmf specified in
(1.1), the tikelihood function is given by

6,0 x}= ﬁP(X,- =x)

—, X
e 99"

|
X

jown B

. i
{¢;+(l—¢)e“9}] “ {(1-49) } 80,0 <ps),

0,if =0
where %=1 i . 51
’ [

Since the above likelihood function does not yield closed form expressions for the
maximum likelihood estimators (MLEs) of 8 and ¢, numerical procedures like
Newton-Raphson method can be employted to compute them. Yip (1988} has

observed that due to the flat surface of {8, ¢|x) and boundary problems it is difficult
to find the MLEs by numerical procedures. Yip (1988), motivated by a criterion of
Cox (1958), has obtained the conditional MLE of & treating ¢ as a nuisance
parameter. Yip (1991) has also extended the conditional maximum likelihood

estimation procedure to the case of zero-inflated binomial and negative binomial
models.

Kale {1998) has derived, in the spirit of Godambe (1976}, the optimal estimating
equationfor g ignoring ¢ when p,(x) in (1.1) is the pmf of a general power series
distribution, The estimators obtained by Yip (1988, 1991) and Kale (1998} turn
outio be the same.

Both Yip {1988, 1991) and Kale {1998) have estimated @ treating ¢ as a nuisance
parameter. But if one is interested in the spread of a disease which is responsible for
leaves becoming unsuitable for feeding, then @ isof significant interest and it can
not be treated os o nuisance parameter.

When the likelihood functions have complicated structures and their maximization
by numerical methods is difficult, @ popular and remarkably simple alternative
procedure is given by the Expectation Maximization (EM) algorithm. It is an iterative
procedure and in each of the iterations there are two steps, the Expectation step
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(E-step) and the Moximization step {M-step). This algorithm was developed by
Dempster, Laird, and Rubin (1977) who synthesized an earlier formulation in many
particular cases and gave a general method of finding the MLEs in o variety of
problems. See Mctachlan and Krishnan (1997) and Krishnan {2004} for o detailed

discussion.

Nanjundan (2006) has obtained the E- and M-steps by rewriting the likelihood
function so as to accommodate missing data. Let

b if the j-th sampledleaf is suitable
P 0, otherwise, :

Then, P(Z,= 1)= 1-p =1- P(z=0,i=123..,n.
Suppose that X = (X, X, X, ..., X) is a sample observed on X. Then,
X, 2,0, X, 2,0 .. (X, Z )], becomes a complete sample when (X Xy Xy
... X ) is augmented with (Z , Z,Z,...,Z). Notethat ifX’. > 0, then Zj =1 and
if X'. = 0, then Z'. = Jor 1. in other words, forXJ. = (0, we have no information on
Z,and hence {Z: X, = 0} can be treated as missing data.

The likelihood function of the complete data is given by

i
e g } :
4

x:1

L8 o|x,u)= f[]¢1-“f {(T - )
= )

where Y = h‘fX,-> 0 and y = Zi iin= 0.

In the E-step, the expectation of the likelihood function of the complete data is
taken and E{Z) is replaced by the conditional Expectation £ (Z,' | Bsr Po. X = 0),
where @ and @ are respectively the initial estimates of 8 and @ . In the M-step,
ElL. (@@ x, )] is maximized with respectto @ and @. If G and ¢, are the values
of gand ¢ which maximize E[LC(Q @] x,u)], then the E-step is repeated using &
and @, . Nanjundan (2006) has discussed these steps much in detail.
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The computational details of these steps can be summarized as follows:

a) Choose the initial estimates 8, and g, .

(1~ gple®

W=
b} Compute 20 +(1- @0)9“90

¢} Using the realization {x,, x,, . . ., x) of the observed sample,

compute
T x
FX >0 na(l—w
= J d o= 0( )
ng + now n

where n, and n_ are respectively the number of observations greater than zero and
equal i6 zero.

d) Repeat the steps b) and ¢) by fixing 8, = §and @, = ¢

A reasonable initial estimate of @ isn /1 and the mean of the observed sample
can be taken as an initial estimate of @. If {9 } _; and { } _; are respectively
the sequence of iterates of the estimates of g cmd @ and they converge, then their
limits are the MLEs of @ and @ . For proof see Dempster et al. (1977). Nanjundan
(2006) has observed that the above sequences of iterates converge for every sample
simulated for various combinations of ¢ and @ . Nanjundan {2007) has further
compared the maximum likelihood and conditional likelihood estimates of g and
has argued that the estimate suggested by Yip (1988) for the nuisance parameter
@ may turn out to be negative.

3. Moment Estimators

When X has the zero-inflated Poisson distribution specified in {1.1), it is easy to
observe that

E(X) = (1- ¢) 0 andE(X?) = (1- ¢) 601+ 1.

When X = (X, X,, X,, ..., X} is a random sample on X, the moment estimators
of @ and ¢ are given by the simultaneous equations
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(1- @) 6=M, and (1- ¢} 81+ 8) = My,

1n 12,9
where M, = n _Z]Xj and M = n _Z]Xj are the first two sample moments.
J= j=

Note that Man = 1+ . Hence, the moment estimator of gis
n

- M2
g, ={—L -1
m {M]n

Similarly, the moment estimator of @ is

2
oMy
MQn "Mln

‘;Bm=]

In both these estimators, we have the problem of inadmissibility when either

M, =0or M 12” > M,, - M,,.Henceitis reasonable to redefine these estimators
as follows

Mo 3, if My, = My,

O, = n

0, lf M]n =00ern =M2n

M
IR | P S VR VA
P = MQn - My, ! "

0, if My, =My, or M2 > My, — M,

Note that for a given sample the above estimates can easily be computed even with
simple devices such as pocket calculators.
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4. Comparison of ML and Moment Estimators

Generally MLEs are preferred because of their properties and the most important
among them is the asymptotic normality which gives way for large sample inference.
In the case of regular distributions like binomial, Poisson, exponential etc., the
moment estimators coincide with the MLEs. Moment estimators are always easy to
compute whereas it is quite common that MLEs do not have closed form expressions
and sophisticated computing facilities are required to compute them.

The asymptotic properties of the MLEs and the moment estimators of @ and ¢ in
the zero-inflated Poisson model have been investigated by a sufficiently large scale
simulation carried through the R software. One thousand samples of size n = 25,
50, 100 and 250 each were generated from the zero-inflated Poisson distribution

for two different combinations (8 = 3.0, ¢ = 0.2) and (8= 3.0, @ = 0.7) of the
model parameters. The MLEs and the moment estimates of @ (mle_th and me _th)
and @ (mle_phi and me_phi) have been computed for each sample. The
histograms of the estimates are presented in Figures 1 through 8.

A close perusal of the histograms indicates that the sampling distributions of the
MLEs and the moment estimates of the model parameters converge to normal
distributions as the sample size increases. The mean of the normal distribution in
each case s the frue value of the parometer used for simulating the samples. The
sampling distributions of MLEs of ¢ and @ exhibit normality even when the sample
size is so moderate as 25,
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Histogram of mie_th Histogram of mle_phi
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Histograms of the moment and maximum likelihood estimates of @ and ¢
based on 1000 somples of size 25 each drawn from the distribution 0.2p0(x) +

0.8p1{x,3)
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Histograms of the moment and maximum iikelihood estimates of  and @ based
on 1000 samples of size 50 each drawn from the distribution 0.2p,(x} + 0.8p,(x,3)
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Histogram of me_th Histogram of me_phi
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Histograms of the moment and maximum likelihood estimates of @ and ¢
based on 1000 samples of size 100 each drawn from the distribution 0.2p0(x) +

0.8p1(x,3)
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Histogram of mie_th Histogram of mle_phi
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Figure - 4

Histograms of the moment and maximum likelihood estimates of @ and @
based on 1000 samples of size 250 each drawn from the distribution 0.2p0{x) +

0.8p1{x,3)
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Histograms of the moment and maximum likelihood estimates of g and @
based on 1000 samples of size 25 each drawn from the distribution 0.7p0(x) +
0.3p1{x,3)
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Histogram of me_th Histogram of me_phi
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Histograms of the moment and maximum likelihood estimates of g and ¢
based on 1000 samples of size 50 each drawn from the distribution 0.7p0(x) +

0.3p1,3)
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Histogram of mle_th Histogram of mie_phi
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Histograms of the moment and maximum likelihood estimates of and based on
1000 samples of size 100 each drawn from the distribution 0.7p0(x) +

0.3p1(x,3)
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Histograms of the moment and maximum likelihood estimates of g and @
based on 1000 samples of size 250 each drawn from the distribution 0.7p0(x} +
0.3p1{x,3)
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5. Conclusion

The moment estimators of the parameters of the zero-inflated Poisson model have
closed form expressions and can be computed with simple computational devices
like pocket calculators. Whereas the maximum likelihood estimators have no closed
form expressions and the computations of the estimates for given sample requires
sophisticated computers and programming skill. Though both the moment and
maximum likelihood estimators are asymptotically normal, the maximum likelihood
estimators exhibit normality even for moderately small samples. Hence, the maximum
likelihood estimators are preferable to the moment estimators when sam ple sizes
are not large enough. But the moment estimators are easy to compute and perform
equally well when the sample size is large.
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