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ASSOCIATE RING GRAPHS

M. James Subhdkar*

ABSTRACT

R is o commutative ring with unity. The associate ring graph AG(R) is the
graph with the vertex setV = R - {0} and edge set £ = {(a,b) / 0, bare
associafes and @ = b}. Since the relotion of being associate is an
equivalence relation, this groph is an undirected graph and also each
component is complete. In this paper, | present some of the interesting
results majority of which are for the ring of integers modulo n, nis o
posifive infeger.

1) AG(R) is an empty graph if R is o Boolean ring.

2) AG(Z) is complete if and only if n is prime.

3) Hfniseventhen AG(Z) has an isolated vertex n/2,

4) Ifpis prime and p # 2, then AG({Z,) = KUK _, UK ,.

5) AG(Z,) =K UK,

6) AGIZ) =K, UK, UK, ...

7) A C-program fo find the components of AG(Z ).

1. Introduction

The motivation for associate ring graphs is from zero-divisor graphs defined by
I.Beck in the year 1988. He introduced the idea of these graphs for commutative
rings R with unity 1. He defined T~ (R} to be the graph whose verfices are elements
of R and in which two vertices x and y are adjacent if and only if xy = 0. Beck was
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mostly concerned with coloring T',(R). In his paper [1] he studied the subgraph
T'(R) whose set of vertices is Z{R)'=Z(R) - {0} where Z(R) is the set of zero-divisors
of R. T'(R) is non empty unless R is an integral domain and, by a result of
G.Ganesan, Z{R) and hence (R} is finite if and only if R is finite. It is shown that
I"(R) is connected with diem(I" (R)) d<3. Lot of results were subsequently developed
(Some of them can be seen in [2] and [3]) by several auihors for zero-divisor
graphs. f R is a field then (R) is empty or (R} has no edges when all non-zero
elements are used as vertices. Since a field is very rich with respect to algebraic
structure, it is quite reasonable to associate a graph which is also rich graph
theoretically. We know that complete graphs take this place. So | thought of defining
a graph from a ring R so that it is complete when R is a field. This graph is nothing
but the so called ASSOCIATE RING GRAPH.

2. Preliminaries

All the fundamental concepts of ALGEBRA are from [4] and of GRAPH THEORY
are from [5].

3. Associate Ring Graphs

3.1 Associate ring graph: Let R be a ring with unity 1{not necessarily commutative).
The associate ring graph of R denoted by AG(R) is the graph (V,E) where the
vertex set V = R-{0} and the edge set E = {{a,b) /o is an associate of b and
a#b}.

Note: Throughout this paper a ring always means a ring with unity 1.

3.2 Orbit of an element of aring: f a is an element of a ring R then the orbit of @
denoted by Or(o) is defined as Or{a} = {o.u | vis a unitin R}.

3.3 Theorem: The orbits of elements of a ring are either identical or disjoint.
Proof: LetR be a ring and @, b are two elements of R.
If Or{a) and Or(b) are disjoint we have nothing to prove.
Suppose that Or{a)NOr (b) = &.
Llet c € Or{a) N Or{b). Then ¢ = a.u and ¢ = b.v for some units u,v in R.
Jow = by =a =b.vu')and b = a.(uv!} and so o and b are
associates.
Let x be an arbitrary element in Or(a). Then x = a.s, s is a unitin R.
Sox = b.{v.u).s
i.e., x = b.fv.ul.s)
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i.e., x = b.{a unitinR).

i.e., x € Or(b) and so Orla) ¢ Or{b). Similarly we can show that Or{b) ¢
Or(a).

Thus Orla) = Or(b).

Hence the Orbits of any two elements of a ring are either disjoint or

identical. R

3.4 Observation: Since the relation of being associative is an equivalence relation
it partitions R in to disjoint sets and it can be easily seen that the equivalence
class containing an efement a is nothing but Or{a). Thus our graph contains
connected components equal in number to the number of disjoint equivalence
classes except {0}.

3.5 Example 1. Considerthering (Z, + , - ) of integers. We know that 1 and -1
are the only units of Z. Therefore forany 0= ainZ, Orla) = { o, -a }. Hence
AG(Z) consists of infinite number of components eachis a K, .

1 2 3 4
AGEZ) = e
-1 -2 -3 -4
Therefore AG(Z) = K,LUK, UK, K, ...........

Example 2. Consider {Z,,+, X,). This is a field. Every non zero element is a unit
and so any two non-zero elements are associates. Hence the graph is a complete
graph with four vertices 1,2, 3, 4.

The graph AG(Z,} is 1 2

Hence AG(Z) = K,.
Example 3. Consider (Z,,+, X,). HereZ, ={0,1,2,3,4,5}.
The Unitsof Z,are 1, 5.

or(1) ={1x,1,1x,5} = {1, 5}.
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Or(2) = {2, 4}
Or(3) = {3}
Or(d) ={2, 4}
Or(5) = {1, 5}.

The graph AG(Z)) is

3o

Hence AG(Z,) = KUK, UK,.

3.6 Theorem: AG(R) is an empiy graph{without edges) if R is a Boolean ring.
Proof: Let R be a Boolean ring with unity 1.
We show that R has no units other than the unity 1.

LetO# abeaunitinR. i.e.,a.b = 1 forsome 0# b inR. Since R is Boolean,
o? =g,

Now a.b = 1 =0.(a.b) = a.1=a¢?b = 0 =.b = o=l = q.

Hence 1 is the only unit in R. Therefore the orbit of every non-zero element of
R contains only itself.

Hence AG(R) has no edges. ek

3.7 Theorem: AG(Z ) = K, (the complete graph with n-1 vertices) if and only if
nis prime.

Proof: Suppose that AG(Z } is complete.
i.e., every pair of non zero elements of Z_are connected by an edge.
We know that Z_is a commutative ring with unity 1.

If @ is any non-zero element of Z then a and 1 are joined by an edge.
i.e., a and 1 are associates.
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3.8

i.e., 1 =v.aforsomeunituinZ.

i.e., o is an invertible element in Z .

i.e., every non zero element in Z_is invertible.

Thus Z_is a field and hence n is prime.

Conversely suppose that n is prime.

Therefore Z_is a field.

Let x and y be two non zero elements of Z .

Since Z_is a field x and y are units.

So xy isalso aunitinZ .

We have x.(x".y) = y.

=x is on associate of y.

=x and y are joined by an edge.

Thus every pair of non-zero elements of Z_ are joined by an edge.
Hence AG(Z ) is complete. T
Theorem: If n is even then AG (Z ) has an isolated vertex namely n/2.

Proot: Suppose n is even.

ie,n=2mforsomeminN={1,23,....}.

We show that m = n/2 is an isolated vertex in AG(Z ).

We know that the units of Z_are the non-zero elements of Z which are relafively
prime fo n. Since n is even these units must be odd.

leta = 2k+1 be a unitinZ .

‘Then we have m.a = m.(2k+1) = 2mk + m = nk + m = m (Sincenk =0

inZ).
Thus the only associote of m is m itself.

Bl

Since AG (Z, ) has no self loops m is an isolated vertex of AG( ).
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3.9 Theorem: lf n = 2p where p is a prime (#2) then AG (Z) = K\ K UK .

Proof: Letn = 2p. By 3.8, AG(Z) has an isolated vertex n/2 = p. So

AG(Z,) contains K,. Also AG(Z) has a component K, =K., =K, "
=K

Pt

It is enough to prove that the graph has enly one component left and that is
also a K.

We show that the remaining vertices other than p and the units in Ko™ Ko
forms the vertices of the other K_,.

Clearly the number of vertices remaining are [(n-1)-(p-1)-1] = p-1.
We have m is a unit if and only if (m, 2p) = 1.

if and only if m is odd and not a multiple of p.

If and only if m is odd and m # p.

Fandonlyif m =1,3,5.....00-2),fo+2)-.....L2p-1).

Therefore the set of remaining elements is D = {2,4,....(0-1),(p+1),...
(2p-2)}.

We show that the orbit of any general element 2k of D is D. The associates of
2kare 26(1Y , 2K(3) , .couvionans , 2k {p-2), 2k (p+2), ...... , 2k(2p-1). These
products are all even and so are elements of D. We show that that these
products are distinct.

Suppose that 2k (2m-1) = 2k (2s-1) where m#sand m > s.
So 2p divides 2k (2m-1) - 2k (2s-1) = 4k {m-s).

So p divides 2k (m-s).

Since p does not divide 2 and k, we must have p | { m-s).
Since (m-s) < p we must have m = s, a contradiction,

Thus the orbit of 2k is D. Therefore every element of D is an associate to every
other element of D. This shows that the elements in D form the required
K

e-1"

Hence AG (Z,) = KUK, UK ,. o

%
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3.10 Theorem: AG(Z ;) = K K.

Proct: Let p be a prime number.
WehaveZ,={0,1,2,..,(*1)}.

ForanyO#ainZ,, (o, p?) =1 if and only if p does not divide a.
it and only if a is not a multiple of p.

Hence Or(1) = unitsof Z, = {1,2,....[e-1), [p+1),...22p-1), (2p+1),...
b-p-1, (o-Np+1, .o 1)},

The remaining non-zero elementsof Z , are p,2p, 3p, ...{o-1)p.

Obviously the number of elements in Or{1) = number of units = (p?-1) -

(-1} = plp-1).

Thus AG(,} has K

op-1) 98 G component,

To prove the theorem it is enough to show that the remaining (p-1) non-
units(zero-divisors) forms a K_,.

letD={p,2p, ..., (p-1)p}-

We have Orlp) = { p.1,p.2, ..., p.lp-1), p.lo+1), ......}.
Clearly the first (p-1) elements of Or(p) are elements of D.

So D is a subset of Or(p). (1

Since p is a non-unit, all elements of Or{p) are non-units.
So Orlp) N Or(1) = &

Therefore Or(p) is a subsetof {Or(1)}=D._______, (2)
From (1} and (2) we get Or(p) = D.

Thus the elements p, 2p, 3p, ..., (p-1)p of Or(p) forms the vertices of the
required K_.

Hence AG(Z,) = K, UK o

olo-1)’
3.11 Theorem: AG (Z,) = K, ,, UK UK _ ...

fa-1

Proof: Without loss of generality we assume that p < q. The cases when
p=2and p =g arealready dealtin 3.9 and 3.10 respectively.
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Now nisaunitinZ ifand onlyif (n,pq)=1.

If and only if n is neither a multiple of p nor @ multiple of g.

Also n is not a unit if and only if n is either a multiple of p or a multiple of g.
We have Or(1) = {1, 2, ..., [p-1}, (p+1), ...(g-1}, {g+1), ...... . (pg-1)}.
Obviously n[Or(1)] =i (pa) = (o} (p) = (p-1)-a-1) = pg—p—q + 1.
Thus K, ,_, ., is a component of AG (Z,) -

Since p , g are distinct primes they are not associoles.

For let p = v.q where uis a unitin Z_.

i.e., p-u.qis divisible by pq.

i.e., p - u.g = k.pg where k is an integer.

ie., p=glu+ kp).

i.e., pis divisible by g , o contradiction.

Hence Or{p) n Or{q) =2.

Here {p + q) is neither a multiple of p nor a multiple of .

So (p + g)is a unitin Z_ and hence p{p + g} is an associate of p.
Butplp + q) = p? + pg = p? (sincepg = 0inZ_ ).

Thus p? is an associate of p.

Similarly we can show that p?, p?, ... are associates of p.

Thus 1.p, 2.p, ..., p.p 4 ...., [g-1).p are distinct elements in Or(p).
Therefore n[Or(p)] 2 g-1 and similarly n[Or{g)] 2 p-1.

We have Or(1) Or(p) Or{g)c qu' (1)
Also n[Or(1) Or(p) Or{g) ] = nlOr(1)] + n[Orlp)] + n[Or(q)] fthe union is
disjoint)
2 (pg-p-g+1) + {p-1) + (g-1)
= pg-1
=nl(Z]
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* Therefore n[Or(1} U Or{p) U Or{q)] 2 n{Z, '] 2)
From (1} and (2) we get Or(1) U Or{p) UOr(q) =Z,.

Now Or{p) cannot contain more than {g-1) elements otherwise Or(g) contains
less than (p-1) elements which is not true. Thus n[Or(p)] = (g-1} and so

n[Or@)] = (p-1).

Hence Z, has only three distinct orbits namely Or{1) , Or{p) and Or(g) with
elements (pg-p-q+ 1}, (g-1) and (p-1) respectively.
Hence AG (Z ) =K, UK, UK i

le-1) fe-1) pq-p-q+l’

3.12 C- program to find the components of AG(Z ): A c-programming is prepared
to find the components of AG(Z ) for a given positive integer n.

Example:

Enter 'n’ value: 50

ORrsImi: {1, 3 7, 92 N, 13 1. 19,
21, 23, 27, 29 31, 33 37, 39, 41, 43
47, 49}

No. of elementsis : 20

ORBIT 2: {2, 4, 6 8 12, 14, 16, 18,
22, 24, 26, 28, 32, 34, 36, 38, 42, 44,
46, 48},

No. of elementsis : 20

ORBIT 5: {5 15 35 45}

No. of elements is : 4

ORBIT 10: {10, 20, 30, 40}.

No. of elements is : 4

ORBIT 25: {25}.
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No. of elementsis : |
FINALSETis: { 1, 4, 4, 20, 20}=49.
Thus AG(Z,) = K, UK, UK, UK, UKy,
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