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ASSOCIATE RING GRAPHS 

M. James Subhokor* 

ABSTRACT 
R is a commutative ring with unity. The associate ring graph AG(R) is the 
graph with the vertex set V = R • {0} and edge set E = {(a, b) I a, bare 
associates and a ~ b}. Since the relation of being associate is on 
equivalence relation, this graph is on undirected graph ond a/so each 
component is complete. In this paper; I present some of the interesting 
results ma;ority of which are for the ring of integers modulo n, n is a 
positive integer. 
1) AG(R) is on empty graph if R is o Boolean ring. 
2) AG(ZJ is complete if and only if n is prime. 
3) If n is even then AG(Z) has an isolated vertex n/2. 
4) If pis prime and p "2, then AG(Z

2
) = K1 U K,.1 U K,.1• 

5) AG(Zp.) = K,.1 U Kp(p-l)' 
6) AG(Z~ = K,.l u Kq.J u Kpq-p -q ~I' 
7) A C.progrom to find the components of AG(ZJ. 

1 . Introduction 

The motivation for associate ring graphs is from zero-divisor graphs defined by 
I. Beck in the year 1988. He introduced the idea of these graphs for commutative 

rings R with unity 1 . He defined r 0(R) to be the graph whose vertices are elements 

of Rand in which two vertices x andy ore adjacent if and only if xy = 0. Beck was 
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mostly concerned with coloring r 0 (R). In his paper [1] he studied the subgraph 
r(R) whose set of vertices is Z(R)'=Z(R)- {0} where Z(R) is the set ofzero-divisors 
of R. 1(R) is non empty unless R is on integral domain and, by a result of 
G.Ganeson, Z(R) and hence (R) is finite if and only if R is finite. It is shown that 
1(R) is connected with diom(r(R)) d~. Lot of results were subsequently developed 
(Some of them can be seen in [2) and [3]) by several authors for zero-divisor 
graphs. If R is a field then (R) is empty or (R) has no edges when all non-zero 
elements are used as vertices. Since a field is very rich with respect to algebraic 
structure, it is quite reasonable to associate a graph which is also rich graph 
theoretically. We know that complete g rophs toke this place. So I thought of defining 
a graph from a ring R so that it is complete when R is a field. This graph is nothing 
but the so called ASSOCIATE RING GRAPH. 

2. Preliminaries 

All the fundamental concepts of ALGEBRA ore from [4] and of GRAPH THEORY 
ore from [5). 

3. Associate Ring Graphs 

3.1 Associate ring graph: Let R be a ring with unity 1 (not necessarily commutative). 
The associate ring graph of R denoted by AG(R) is the graph (V,E) where the 
vertex set V = R-{0} and the edge set E = {(a,b) /a is an associate of band 
a:tb}. 

Note: Throughout this paper a ring always means a ring with unity 1. 

3.2 Orbit of an element of a ring: If a is an element of a ring R then the orbit of a 
denoted by Or(o) is defined as Or(a) = {a.u I u is a unit in R}. 

3.3 Theorem: The orbits of elements of a ring ore either identical or disjoint. 
Proof: Let R be a ring and a , bare two elements of R. 
If Or(o) and Or(b) ore disjoint we have nothing to prove. 
Suppose that Or(o)nOr (b) :t 0. 
Let c E Or(a) n Or(b). Then c = a.u and c = b.v for some units u,v in R. 

:.o.u = b.v ~ = b.(v.u·1
) and b = o.(u.¥'1) and so a and b ore 

associates. 
Let x be an arbitrary element in Or(a). Then x = a.s, sis a unit in R. 
Sox = b.(v.u·1).s 
i.e., x = b.(v.u·1.s) 
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i.e., x = b.(a unit in R) . 
i.e., x e Or(b) and so Or(a) ~ Or(b). Similarly we can show that Or(b) ~ 
Or( a). 
Thus Or(a) = Or(b). 
Hence the Orbits of any two elements of a ring ore either disjoint or 
identical. *** 

3.4 Observation: Since the relation of being associative is an equivalence relation 
it partitions R in to disjoint sets and it can be easily seen that the equivalence 
class containing an element o is nothing but Or(a). Thus our graph contains 
connected components equal in number to the number of disjoint equivalence 
classes except { 0 } . 

3.5 Example 1. Consider the ring (Z, + , · )of integers. We know that 1 and -1 
ore the only units of Z. Therefore for any 0 ;e a in Z, Or(a) = {a , -a}. Hence 

AG(~ con::~:f ;:l numb; r com1nents r ts a K, ..... . 

-1 -2 -3 -4 

Therefore AG(Z) = K2 u K2 u K2 K2 ......... .. 

Example 2. Consider (Z5 ,+ 5,X5). This is a field. Every non zero element is a unit 
and so any two non-zero elements ore associates. Hence the graph is o complete 
graph with four vertices 1 , 2 , 3 , 4 . 

The graph AG(Z5) is 

Hence AG(Z5) = K4 • 

Example 3. Consider (Z6,+ 6,xJ Here z6 = { 0 I 1 I 2 I 3 I 4 I 5 }. 

The Units of z6 ore 1 I 5 . 
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Or(2) = {2, 4} 

Or(3) = {3} 

Or(4) ={2, 4} 

Or(5) = {1, 5}. 

The graph AG(Z6) is 

3o 

1 4 

5 4 

3.6 Theorem: AG(R) is on empty graph(without edges) if R is a Boolean ring. 

Proof: Let R be a Boolean ring with unity 1 . 

We show that R has no units other than the unity 1 . 

Let 0 ~ o be a unit in R. i.e., a.b = 1 for some 0 ~ bin R. Since R is Boolean, 
o2 = o. 

Now a.b ::::; 1 ::>a.(o.b) ::::; o.1 ::>a2 .b = a ~.b = o~ ::::; o. 

Hence 1 is the only unit in R. Therefore the orbit of every non-zero element of 
R contains only itself. 

HenceAG(R) has no edges. *** 

3.7 Theorem: AG(Zn) ::::; Kn.J (the complete graph with n-1 vertices) if and only if 
n is prime. 

Proof: Suppose that AG(Z) is complete. 

i.e., every pair of non zero elements of Zn are connected by an edge. 

We know that Zn is a commutative ring with unity l. 

If o is any non-zero element of Z" then a and 1 ore joined by on edge. 
i.e., a and 1 are associates. 
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i.e., 1 = u . 0 for some unit u in zn. 

i.e., a is an invertible element in Z
0

• 

i :e., every non zero element in zn is invertible. 

Thus Z" is a field and hence n is prime. 

Conversely suppose that n is prime. 

Therefore Z is a field. 
n 

Let X andy be two non zero element~ of zn. 
Since zn is a field X and y ore units. 

So x·1.y is also a unit in Z". 

We have x.(x·1.y) = y. 

~x is on associate of y. 

~x and y are joined by an edge. 

Thus every pair of non-zero elements of Z" are joined by an edge. 

Hence AG(Z") is complete. 

3.8 Theorem: If n is even then AG (Z.) has on isolated vertex namely n/2. 

Proof: Suppose n is even. 

i .e., n =2m for some min N = { 1,2,3, ... .. }. 

We show that m = n/2 is an isolated vertex in AG(ZJ 

. ... 

We know that the units of Z are the non-zero elements of Z which are relatively 
prime to n. Since n is eve~ these units must be odd. " 

Let a = 2k+ 1 be a unit in Z . 
n 

Then we have m.o = m.(2k+ 1) = 2mk + m = nk + m = m (Since nk = 0 
in ZJ 

Thus the only associate of m ism itself. 

Since AG (Z) has no self loops m is an isolated vertex of AGL). *** 
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3 .9 Theorem: If n = 2p where pis a prime {¢2) then AG (ZJ = K1uKP_1u K p.J ' 

Proof: Let n = 2p. By 3 .8, AG(Z") has an isolated vertex n/ 2 = p. So 
AG(Z) contains K1• Also AG(Z) has a component K'iJ(nJ = K'iJ(2p) = K'Pf2l~P(p) 
= Kp·l' 

It is enough to prove that the graph has only one component left and that is 
also a KP_1• 

We show that the remaining vertices other than p and the units in K'!'(nl = Kp.J 

forms the vertices of the other KP_1• 

Clearly the number of vertices remaining are [(n-1 )-{p- l )-1] = p-1. 

We have m is a unit if and only if (m, 2p) = 1. 

If and only if m is odd and not a multiple of p. 

If and only if m is odd and m ¢ p. 

If and only if m = 1 ,3,5, ..... ,{p-2),{p+2), .. .... , {2p-1 ). 

Therefore the set of remaining elements is D = {2,4, .... {p-1 ), (p+ 1 ), ... 
(2p-2)} . 

We show that the orbit of any general element 2k of Dis D. The associates of 
2k are 2k(l) , 2k(3) , ... .... ..... , 2k (p-2), 2k (p + 2), ...... , 2k(2p-1 ). These 
products are all even and so ore elements of D. We show that that these 
products ore distinct. 

Suppose that 2k (2m-l) = 2k (2s-1) where m ¢sand m > s. 

So 2p divides 2k (2m-1)- 2k (2s-1) = 4k (m-s). 

Sop divides 2k (m -s). 

Since p does not divide 2 and k, we must hove p I ( m-s). 

Since (m-s) < p we must hove m = s, a contradiction. 

Thus the orbit of 2k is 0. Therefore every element of Dis an associate to every 
other element of D. This shows that the elements in D form the required 

Kp.l' 

*** 
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3.10 Theorem: AG(ZP2) == Kp. 1uKPIP·lJ' 

Proof: let p be a prime number. 

We hove zp2 == {0 I 1 I 2 I ... , {p2-1) }. 

For any 0 ::t a in ZP2 , (a, p2) == 1 if and only if p does not divide a. 

if and only if a is not a multiple of p. 

Hence Or(1) = units of Z 2 = { 1 , 2 , ... ,(p-1 ), (p+ 1 ), ... (2p-1 ), (2p+ 1 ), ... 
(p

2p 
(p- 1 }p-1, (p-1 )p + 1, . .. -1 )} . 

The remaining non-zero elements of ZP2 are p, 2p I 3p, .. . (p- 1 )p. 

Obviously the number of elements in Or(l) = number of units = (p2-1)­
(p- l) = p(p- 1 ). 

ThusAG(P2) has KPIP·lJ as a component. 

To prove the theorem it is enough to show that the remaining (p-1) non­
units(zero-divisors) forms a KP.1• 

let D = {p , 2p , .. . I (p-1 }p}. 

We hove Or(p) = { p. 1, p.2, ... 1 p.(p-1 )1 p.(p+ l ), ...... }. 

Clearly the first {p-1) elements of Or(p) are elements of D. 

SoD is a subset of Or(p). --------- (1) 

Since p is a non-unit, all elements of Or(p) are non-units. 

So Or(p) 11 Or(1) = 0 

Therefore Or{p) is a subset of {Or(l }}' =D.--~ {2) 

From (1) and (2) we get Or(p) =D. 

Thus the elements p, 2p, 3p, ... , (p-1 )p of Or(p) forms the vertices of the 

required K~lJ' 

Hence AG(ZP2} = Kp.1 U KPIP·lJ' *** 

3.11 Theorem: AG (Zpq) = KIP· II U K1q.11 U Kpq ·p·q+l' 

Proof: Without loss of generality we assume that p < q. The cases when 
p = 2 and p = q are already dealt in 3.9 and 3.10 respectively. 
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Now n is o unit in Z if and only if ( n , pq ) = 1 . pq 

If and only if n is neither a multiple of p nor a multiple of q. 

Also n is not a unit if and only if n is either a multiple of p or a multiple of q. 

We have Or(1) = { 1, 2, ... , {p-1 ), {p+ 1 ), ... (q-1 ), (q + 1 ), ...... , (pq- l)}. 

Obviously n[Or(1 )] =i (pq) = j (p).j (p) = {p-1 ).(q-1) = pq- p- q + 1. 

Thus K + 1 is a component of AG (Z ) . pq ·p-q pq 

Since p, q are distinct primes they ore not associates. 

For let p = u.q where u is a unit in Zpq . 

i.e., p- u.q is divisible by pq. 

i.e., p - u.q = k.pq where k is an integer. 

i.e., p = q(u + kp) . 

i.e., p is divisible by q , a contradiction. 

Hence Or{p) r1 Or(q) =0. 

Here (p + q) is neither a multiple of p nor o multiple of q. 

So (p + q) is a unit in Zpq and hence p(p + q) is an associate of p . 

But p(p + q) = p2 + pq ::: p2 (since pq ::: 0 in Z ). 
pq 

Thus p2 is on associate of p. 

Similarly we can show that p3, p4, ... are associates of p. 

Thus 1.p , 2.p , ... , p.p , . ... , (q- l ).p are distinct elements in Or{p). 

Therefore n[Or{p)] ~ q- 1 and similarly n[Or(q)] ~p-l. 

We have Or( 1) Or{p) Or{q) ~ Zpq ' (l) 

Also n[Or(l) Or(p) Or{q) J = n[Or{1)] + n[Or{p)] + n[Or(q}] {the union is 
disjoint) 

~ (pq-p-q+ 1) + {p-1) + (q-1) 

= pq-1 
= n [Zpq '] 
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Therefore n[Or(1) U Or(p) U Or(q)J;:: n[Zpq ']---- --(2) 

From (1) and (2) we get Or(1) U Or(p) U Or(q) = Zpq. 

Now Or(p) cannot contain more than (q- 1) elements otherwise Or(q) contains 
less than (p- 1) elements which is not true. Thus n (Or(p)] = (q-1) and so 
n[Or(q)) = (p-1) . 

Hence Zpq has only three distinct orbits namely Or(1), Or(p) and Or(q) with 
elements (pq-p-q+ 1 ), (q- 1) and (p-1) respectively. 

HenceAG (Zpq) = K(p.tJ U K1q.tJ U Kpq ·p-q+t· *** 

3. 12 C- program to find the components of AG(Z): A c-programming is prepared 
to find the components ofAG(Zj for a given positive integer n. 

Example: 

Enter 'n' value: 50 

ORBIT 1: { 1, 3, 7, 9, 11 , 13, 17, 19, 

21, 23, 27, 29, 31, 33, 37, 39, 41, 43 

47, 49 }. 

No. of elements is : 20 

ORBIT 2: { 2, 4, 6, 8, 12, 14, 16, 18, 

22, 24, 26, 28, 32, 34, 36, 38, 42, 44, 

46, 48 }. 

No. of elements is : 20 

ORBIT 5: { 5, 15, 35, 45 }. 

No. of elements is : 4 

ORBIT 10: { 10, 20, 30, 40 }. 

No. of elements is: 4 

ORBIT 25: { 25 }. · 

39 
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No. of elements is: 1 

FINAL SET is: { 1, 4, 4, 20, 20}=49. 
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