ASSOCIATE RING GRAPHS

M. James Subhakar*

ABSTRACT

R is a commutative ring with unity. The associate ring graph $A G(R)$ is the graph with the vertex set $V=R-\{0\}$ and edge set $E=\{(a, b) / a, b$ are associates and $a \neq b\}$. Since the relation of being associate is an equivalence relation, this graph is an undirected graph and also each component is complete. In this paper, I present some of the interesting results majority of which are for the ring of integers modulo n, n is a positive infeger.

1) $A G(R)$ is an empty graph if R is a Boolean ring.
2) $A G\left(Z_{N}\right)$ is complete if and only if n is prime.
3) If n is even then $A G\left(Z_{2}\right)$ has an isolated vertex $n / 2$.
4) If p is prime and $p \neq 2$, then $A G\left(Z_{2 p}\right)=K, \cup K_{p, 1} \cup K_{\rho, 1}$.
5) $A G\left(Z_{p 2}\right)=K_{p, 1} \cup K_{p(p-1)}$
6) $A G\left(Z_{p q}\right)=K_{p, 1} \cup K_{q, 1} \cup K_{p q-p-q+1}$.
7) A C-program to find the components of $A G\left(Z_{N}\right)$.

1. Introduction

The motivation for associate ring graphs is from zero-divisor graphs defined by I. Beck in the year 1988. He introduced the idea of these graphs for commutative rings R with unity 1 . He defined $\Gamma_{0}(R)$ to be the graph whose vertices are elements of R and in which two vertices x and y are adjacent if and only if $x y=0$. Beck was

[^0]mostly concerned with coloring $\Gamma_{0}(R)$. In his paper [1] he studied the subgraph $\Gamma(R)$ whose set of vertices is $Z(R)^{\prime}=Z(R)-\{0\}$ where $Z(R)$ is the set of zero-divisors of R. $\Gamma(R)$ is non empty unless R is an integral domain and, by a result of G.Ganesan, $Z(R)$ and hence (R) is finite if and only if R is finite. It is shown that $\Gamma(R)$ is connected with diam $(\Gamma(R))$ d \leqslant. Lot of results were subsequently developed (Some of them can be seen in [2] and [3]) by several authors for zero-divisor graphs. If R is a field then (R) is empty or (R) has no edges when all non-zero elements are used as vertices. Since a field is very rich with respect to algebraic structure, it is quite reasonable to associate a graph which is also rich graph theoretically. We know that complete graphs take this place. So I thought of defining a graph from a ring R so that it is complete when R is a field. This graph is nothing but the so called ASSOCIATE RING GRAPH.

2. Preliminaries

All the fundamental concepts of ALGEBRA are from [4] and of GRAPH THEORY are from [5].

3. Associate Ring Graphs

3.1 Associate ring graph: Let R be a ring with unity 1 (not necessarily commutative). The associate ring graph of R denoted by $A G(R)$ is the graph (V, E) where the vertex set $V=R-\{0\}$ and the edge set $E=\{(a, b) / a$ is an associate of b and $a \neq b\}$.

Note: Throughout this paper a ring always means a ring with unity 1 .
3.2 Orbit of an element of a ring: If a is an element of a ring R then the orbit of a denoted by $\operatorname{Or}(a)$ is defined as $\operatorname{Or}(a)=\{a . u \mid v$ is a unit in $R\}$.
3.3 Theorem: The orbits of elements of a ring are either identical or disjoint.

Proof: Let R be a ring and a, b are two elements of R.
If $\operatorname{Or}(a)$ and $\operatorname{Or}(b)$ are disjoint we have nothing to prove.
Suppose that $\operatorname{Or}(a) \cap \operatorname{Or}(b) \neq \varnothing$.
Let $c \in \operatorname{Or}(a) \cap \operatorname{Or}(b)$. Then $c=a . v$ and $c=b . v$ for some units u, v in R.
$\therefore a . v=b . v \Rightarrow a=b .\left(v . v^{-1}\right)$ and $b=a .\left(u, v^{-1}\right)$ and so a and b are associates.
Let x be an arbitrary element in $\operatorname{Or}(a)$. Then $x=a . s$, s is a unit in R.
So $x=b$. $\left(v . u^{-1}\right)$.s
i.e., $x=b$.(v.v. v^{-1}.s)
i.e., $x=b$. $(a$ unit in $R)$.
i.e., $x \in \operatorname{Or}(b)$ and so $\operatorname{Or}(a) \subseteq \operatorname{Or}(b)$. Similarly we can show that $\operatorname{Or}(b) \subseteq$ Or(a).
Thus $\operatorname{Or}(a)=\operatorname{Or}(b)$.
Hence the Orbits of any two elements of a ring are either disjoint or identical.
3.4 Observation: Since the relation of being associative is an equivalence relation it partitions R in to disjoint sets and it can be easily seen that the equivalence class containing an element a is nothing but Or(a). Thus our graph contains connected components equal in number to the number of disjoint equivalence classes except $\{0\}$.
3.5 Example 1. Consider the ring $(Z,+, \cdot)$ of integers. We know that 1 and -1 are the only units of Z. Therefore for any $0 \neq a$ in $Z, \operatorname{Or}(a)=\{a,-a\}$. Hence $A G(Z)$ consists of infinite number of components each is a K_{2}.

-1

-2

-3

-4

Therefore $A G(Z)=K_{2} \cup K_{2} \cup K_{2} \quad K_{2} \ldots \ldots \ldots$.
Example 2. Consider $\left(Z_{5},+{ }_{5}, X_{5}\right)$. This is a field. Every non zero element is a unit and so any two non-zero elements are associates. Hence the graph is a complete graph with four vertices $1,2,3,4$.

The graph $A G\left(Z_{5}\right)$ is

Hence $\quad A G\left(Z_{5}\right)=K_{4}$.
Example 3. Consider $\left(Z_{6},{ }_{6}, \times_{6}\right)$. Here $Z_{6}=\{0,1,2,3,4,5\}$.
The Units of Z_{6} are 1,5.
$\operatorname{Or}(1)=\{1 \times 6,1 \times 5\}=\{1,5\}$.
$\operatorname{Or}(2)=\{2,4\}$
$\operatorname{Or}(3)=\{3\}$
$\operatorname{Or}(4)=\{2,4\}$
$\operatorname{Or}(5)=\{1,5\}$.
The graph $A G\left(Z_{6}\right)$ is

30

Hence $A G\left(Z_{6}\right)=K_{1} \cup K_{2} \cup K_{2}$.
3.6 Theorem: $A G(R)$ is an empty graph(without edges) if R is a Boolean ring.

Proof: Let R be a Boolean ring with unity 1 .
We show that R has no units other than the unity 1 .
Let $0 \neq a$ be a unit in R. i.e., $a . b=1$ for some $0 \neq b$ in R. Since R is Boolean, $a^{2}=a$.

Now $a . b=1 \Rightarrow a .(a . b)=a .1 \Rightarrow a^{2} \cdot b=a \Rightarrow a \cdot b=a \Rightarrow=a$.
Hence 1 is the only unit in R. Therefore the orbit of every non-zero element of R contains only itself.

Hence $A G(R)$ has no edges.
3.7 Theorem: $A G\left(Z_{n}\right)=K_{n-1}$ (the complete graph with $n-1$ vertices) if and only if n is prime.

Proof: Suppose that $A G\left(Z_{n}\right)$ is complete.
i.e., every pair of non zero elements of Z_{n} are connected by an edge.

We know that Z_{n} is a commutative ring with unity 1 .
If a is any non-zero element of Z_{n} then a and 1 are joined by an edge. i.e., a and 1 are associates.
i.e., $1=u$. a for some unit u in Z_{n}.
i.e., α is an invertible element in Z_{n}.
i.e., every non zero element in Z_{n} is invertible.

Thus Z_{n} is a field and hence n is prime.
Conversely suppose that n is prime.
Therefore Z_{n} is a field.
Let x and y be two non zero elements of Z_{n}.
Since Z_{n} is a field x and y are units.
So $x^{-1} \cdot y$ is also a unit in Z_{n}.
We have $x \cdot\left(x^{-1} \cdot y\right)=y$.
$\Rightarrow x$ is an associate of y.
$\Rightarrow x$ and y are joined by an edge.
Thus every pair of non-zero elements of Z_{n} are joined by an edge.
Hence $A G\left(Z_{n}\right)$ is complete.
3.8 Theorem: If n is even then $A G\left(Z_{n}\right)$ has an isolated vertex namely $n / 2$.

Proof: Suppose n is even.
i.e., $n=2 m$ for some m in $N=\{1,2,3, \ldots$.$\} .$

We show that $m=n / 2$ is an isolated vertex in $A G\left(Z_{n}\right)$.
We know that the units of Z_{n} are the non-zero elements of Z_{n} which are relatively prime to n. Since n is even these units must be odd.

Let $a=2 k+1$ be a unit in Z_{n}.
Then we have $m \cdot a=m \cdot(2 k+1)=2 m k+m=n k+m=m$ (Since $n k=0$ in Z_{n}).

Thus the only associate of m is m itself.
Since $A G\left(Z_{n}\right)$ has no self loops m is an isolated vertex of $A G\left({ }_{n}\right)$.
3.9 Theorem: If $n=2 p$ where p is a prime $(\neq 2)$ then $A G\left(Z_{n}\right)=K_{1} \cup K_{p, 1} \cup K_{p \cdot 1}$. Proof: Let $n=2 p$. By 3.8, $A G\left(Z_{n}\right)$ has an isolated vertex $n / 2=p$. So $A G\left(Z_{n}\right)$ contains K_{1}. Also $A G\left(Z_{n}\right)$ has a component $K_{\phi(n)}=K_{\phi(2) \mid}=K_{\phi(2|\varphi(p)|}$ $=K_{p, 1}$.
It is enough to prove that the graph has only one component leff and that is also a K K_{p-1}.

We show that the remaining vertices other than p and the units in $K_{\text {}(0)}=K_{p, 3}$ forms the vertices of the other $K_{p .1}$.
Clearly the number of vertices remaining are $[(n-1)-(p-1)-1]=p-1$.
We have m is a unit if and only if $(m, 2 p)=1$.
If and only if m is odd and not a multiple of p.
If and only if m is odd and $m \neq p$.
If and only if $m=1,3,5, \ldots \ldots,(p-2),(p+2), \ldots \ldots,(2 p-1)$.
Therefore the set of remaining elements is $D=\{2,4, \ldots(p-1),(p+1), \ldots$ (2p-2) \}.

We show that the orbit of any general element $2 k$ of D is D. The associates of $2 k$ are $2 k(1), 2 k(3), \ldots \ldots \ldots \ldots . ., 2 k(p-2), 2 k(p+2), \ldots \ldots, 2 k(2 p-1)$. These products are all even and so are elements of D. We show that that these products are distinct.

Suppose that $2 k(2 m-1)=2 k(2 s-1)$ where $m \neq s$ and $m>s$.
So $2 p$ divides $2 k(2 m-1)-2 k(2 s-1)=4 k(m-s)$.
So p divides $2 k$ ($m-s$).
Since p does not divide 2 and k, we must have $p \mid(m-s)$.
Since $(m-s)<p$ we must have $m=s$, a contradiction.
Thus the orbit of $2 k$ is D. Therefore every element of D is an associate to every other element of D. This shows that the elements in D form the required $K_{\rho-1}$.
Hence $A G\left(Z_{2 p}\right)=K_{1} \cup K_{p .1} \cup K_{p-1}$.
3.10 Theorem: $A G\left(Z_{\rho 2}\right)=K_{\rho .1} U K_{\rho(\rho \cdot 1)}$.

Proof: Let p be a prime number.
We have $Z_{\rho 2}=\left\{0,1,2, \ldots,\left(p^{2}-1\right)\right\}$.
For any $0 \neq a$ in $Z_{\rho 2},\left(a, \rho^{2}\right)=1$ if and only if p does not divide a.
if and only if a is not a multiple of p.
Hence $\operatorname{Or}(1)=$ units of $Z_{p 2}=\{1,2, \ldots,(p-1),(p+1), \ldots(2 p-1),(2 p+1), \ldots$ $\left.(p-1) p-1,(p-1) p+1, \ldots\left(p^{2}-1\right)\right\}$.
The remaining non-zero elements of $Z_{\rho 2}$ are $p, 2 p, 3 p, \ldots(p-1) p$.
Obviously the number of elements in $\operatorname{Or}(1)=$ number of units $=\left(p^{2}-1\right)-$ $(p-1)=p(p-1)$.

Thus $A G\left({ }_{p 2}\right)$ has $K_{\rho(p, 1)}$ as a component.
To prove the theorem it is enough to show that the remaining $(p-1)$ non-units(zero-divisors) forms a $K_{\rho-1}$.
Let $D=\{p, 2 p, \ldots,(p-1) p\}$.
We have $\operatorname{Or}(p)=\{p .1, p .2, \ldots, p .(p-1), p .(p+1), \ldots \ldots\}$.
Clearly the first ($p-1$) elements of Or(p) are elements of D.
So D is a subset of $\operatorname{Or}(p)$. \qquad
Since p is a non-unit, all elements of $\operatorname{Or}(p)$ are non-units.
So $\operatorname{Or}(p) \cap \operatorname{Or}(1)=\varnothing$
Therefore $\operatorname{Or}(p)$ is a subset of $\{\operatorname{Or}(1)\}^{c}=D$. \qquad
From (1) and (2) we get $\operatorname{Or}(p)=D$.
Thus the elements $p, 2 p, 3 p, \ldots,(p-1) p$ of $\operatorname{Or}(p)$ forms the vertices of the required $K_{(6-1)}$

Hence $A G\left(Z_{p 2}\right)=K_{p .1} \cup K_{p(p,-1)}$.
3.11 Theorem: $A G\left(Z_{p q}\right)=K_{(0.1)} \cup K_{(q-1)} \cup K_{p q-p-q+1)}$.

Proof: Without loss of generality we assume that $p<q$. The cases when $p=2$ and $p=q$ are already dealt in 3.9 and 3.10 respectively.

Now n is a unit in $Z_{p q}$ if and only if $(n, p q)=1$.
If and only if n is neither a multiple of p nor a multiple of q.
Also n is not a unit if and only if n is either a multiple of p or a multiple of q.
We have $\operatorname{Or}(1)=\{1,2, \ldots,(p-1),(p+1), \ldots(q-1),(q+1), \ldots \ldots,(p q-1)\}$.
Obviously $n[\operatorname{Or}(1)]=j(p q)=i(p) \cdot j(p)=(p-1) \cdot(q-1)=p q-p-q+1$.
Thus $K_{p q-p-q+}$; is a component of $A G\left(Z_{p q}\right)$.
Since p, q are distinct primes they are not associates.
For let $p=u . q$ where u is a unit in $Z_{p q}$.
i.e., $p-u . q$ is divisible by $p q$.
i.e., $p-u . q=k . p q$ where k is an integer.
i.e., $p=q(u+k p)$.
i.e., p is divisible by q, a contradiction.

Hence $\operatorname{Or}(p) \cap \operatorname{Or}(q)=\varnothing$.
Here $(p+q)$ is neither a multiple of p nor a multiple of q.
So $(p+q)$ is a unit in $Z_{p q}$ and hence $p(p+q)$ is an associate of p.
But $p(p+q)=p^{2}+p q=p^{2}\left(\right.$ since $p q=0$ in $\left.Z_{p q}\right)$.
Thus p^{2} is an associate of p.
Similarly we can show that p^{3}, p^{4}, \ldots are associates of p.
Thus 1.p, 2.p, ..., p.p , ..., (q-1).p are distinct elements in Or(p).
Therefore $n[\operatorname{Or}(p)] \geq q-1$ and similarly $n[\operatorname{Or}(q)] \geq p-1$.
We have $\operatorname{Or}(\mathrm{T}) \operatorname{Or}(\mathrm{p}) \operatorname{Or}(q) \subseteq \mathrm{Z}_{\rho q}{ }^{\text {. }}$
Also $n[\operatorname{Or}(1) \operatorname{Or}(p) \operatorname{Or}(q)]=n[\operatorname{Or}(1)]+n[\operatorname{Or}(p)]+n[\operatorname{Or}(q)]$ (the union is disjoint)

$$
\begin{aligned}
& \geq(p q-p-q+1)+(p-1)+(q-1) \\
& =p q-1 \\
& =n\left[Z_{p q}\right]
\end{aligned}
$$

Therefore $n[\operatorname{Or}(1) \cup \operatorname{Or}(p) \cup \operatorname{Or}(q)] \geq n\left[Z_{p q}{ }^{\circ}\right]$

From (1) and (2) we get $\operatorname{Or}(1) \cup \operatorname{Or}(\rho) \cup \operatorname{Or}(q)=Z_{\rho Q}$.
Now $\operatorname{Or}(p)$ cannot contain more than $(q-1)$ elements otherwise $\operatorname{Or}(q)$ contains less than $(p-1)$ elements which is not true. Thus $n[\operatorname{Or}(p)]=(q-1)$ and so $n[\operatorname{Or}(q)]=(p-1)$.

Hence $Z_{p q}$ has only three distinct orbits namely $\operatorname{Or}(1), \operatorname{Or}(p)$ and $\operatorname{Or}(q)$ with elements $(p q-p-q+1),(q-1)$ and $(p-1)$ respectively.

Hence $A G\left(Z_{p q}\right)=K_{(p-1)} \cup K_{(q-1)} \cup K_{p q-p, q+1}$.
3.12 C - program to find the components of $A G\left(Z_{n}\right)$: A - programming is prepared to find the components of $A G\left(Z_{n}\right)$ for a given positive integer n.

Example:
Enter ' n ' value: 50
ORBIT 1: $\{1,3,17,9,11,13,17,19$,
$21,23,27,29,31,33,37,39,41,43$
47, 49$\}$.
No. of elements is : 20
ORBIT 2: $\{2,4,6,4,12,14,16,18$,
$22,24,26,28,32,34,36,38,42,44$, 46, 48$\}$.

No. of elements is: 20
ORBIT 5: $\{5,15,35,45\}$.
No. of elements is : 4
ORBIT 10: $\{10,20,30,40\}$.
No. of elements is : 4
ORBIT 25: \{ 25 \}.

No. of elements is: 1
FINAL SET is: $\{1,4,4,20,20\}=49$.
Thus $A G\left(Z_{50}\right)=K_{1} \cup K_{4} \cup K_{4} \cup K_{20} \cup K_{20}$.

References

1. I. Beck, Coloring of Commutative Rings, J. Algebra 116 (1988), 208-226.
2. D.D. Anderson and M. Nseer, Beck's Coloring of a Commutative Ring, J. Algebra 159 (1993), 500-514.
3. V.K. Bhat and Ravi Raina, Neeraj Nehra, A Note on Zero Divisor Graph Over.
4. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited.
5. F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1972.

[^0]: * Department of Mathematics, Noble College, Machilipatnam, A.P-521001. misubhakar@gmail.com (Corresponding author)

