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EFFECTS OF UNSTEADY FREE 
CONVECTIVE MHO NON­
NEWTONIAN FLOW THROUGH A 
POROUS MEDIUM BOUNDED BY AN 
INFINITE INCLINED POROUS PLATE 
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S. Vijay Kumar Varma*** 

ABSTRACT 
The problem of unsteady free convective MHD incompressible 
electrically conducting non-Newtonian fluid through porous medium 

bounded by on infinite inclined porous plate in the presence of constant 

suction and absorbing sinks is presented. Uniform magnetic field is 

applied normal to the plate. The equations governing the fluid flow 

have been solved using multi-parameter perturbation technique, subject 

to the relevant boundary conditions. It is noted thot the velocity of the 
fluid and skin friction ore increased as permeability parameter and 

angle of inclination increases, whereas rever.se phenomenon is observed 

in case of magnetic field strength ond sink strength. Velocity and 
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femperofure are greater for mercury than that of electrolytic solution. 
Rote of heat transfer decreases with increase in the sink strength. The 
results ore discussed through graphs and tables. 

Keywords: Free convection; MHD; heat sink; Permeability; inclined 
porous plate. 

NOMENCLATURE 

8
0 

magnetic field of uniform strength 81 kinematical visco-elasticity 

C specific heat at constant pressure T fluid temperature 
p 

r ... temperature at the plate 

A sink strength 

Ec Eckert number 

Pr Prandtl number 

Gr Grashoff number 

k' thermal conductivity 

k permeability parameter 

x,y cartesian coordinates along 
the plate and normal to it 

vo constant velocity 

(J electrical conductivity 

()) frequency parameter 

T.., temperature for away from 

the plate 

t time 

M Hartmann number 

R, Magnetic Reynolds number 

K permeability of the porous 
medium 

g acceleration due to gravity 

u fluid velocity component 
along x-axis 

v kinematic viscosity 

p coefficient of volumetric expansion 

p density of the fluid 

¢ angle mode by the plate with 
horizontal 

Super script ' denotes differentiation with y 

1. Introduction 

Free convection flow occurs frequently in nature. Flows of fluid through Porous 
media are of principal interest these days and have attracted the attention of a 
number of scholars due to their applications in the fast growing fields of Science 
and Technology, viz. in the fields of agriculture I engineering .to study the u nderg round 
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water resources, seepage of water in riverbeds, in petroleum technology to study 
the movement of natural gas, oil, and water through the oil reservoirs. In view of 
these applications, a series of specific investigations have been made. Jha and 
Prasad [1] studied MHO free-convection and mass transfer flow through a porous 
medium with heat source. Acharyo et of., [2] analyzed the steady two-dimensional 
free convection and mass transfer flow of a viscous incompressible electrically 
conducting fluid through a porous medium bounded by a vertical infinite surface 
with constant suction velocity and constant heat flux in the presence of a uniform 
magnetic field. Mixed convection of non-Newtonian fluids from o vertical plate 
embedded in a porous medium is studied by Wang eta/., [3]. Orhan and Ahmet 
[4] studied the steady, laminar, mixed convection heat transfer from an isoflux 
vertical impermeable plate embedded in a fluid-saturated porous medium. Unsteady 
two-dimensional laminar free convection flow of on incompressible, viscous fluid 
through a porous medium bounded by an infinite vertical plane surface of constant 
temperature has been studied by Kamal [5]. 

In most of the studies mentioned above the permeability of the porous medium has 
been assumed as constant. In fact, a porous material containing the fluid is a non­
homogeneous medium and there can be numerous inhomogeneities present in a 
porous medium. Therefore, the permeability of the porous medium may not 
necessarily be constant. Also, free convection along inclined sur-faces has received 
less attention than the cases of vertical and horizontal plates. Rees and Riley [6], 
Ingham et of., [7] and Kumari et of., [8] have presented detailed analytical and 
numerical solutions to the problem of free convection along a flat plate in a porous 
medium which are valid only for inclined plates at small angles to the horizontal. 
These sol-utions ore, however, not valid uniformly from the horizontal limit to the 
vertical limit, respectively. The problem of thermal diffusion and magnetic field 
effects on combined free-forced convection and moss transfer flow post o vertical 
porous flat plate, in the presence of heat generation is studied by Abdei-Rahmon 
[9]. The study of unsteady hydro magnetic free convective flow of viscous 
incompressible and electrically conducting fluids post on infinite vertical porous 
plate in the presence of constant suction and heat absorbing sinks has been made 
by Sahoo eta/., [1 0]. Through the present paper on attempt has been mode to 
study the effects of unsteady free convective MHO non-Newtonian flow through a 
porous medium bounded by on infinite inclined porous plate. 

2. Formulation of the Problem: 

Let us consider x- axis in the direction along the infinite inclined plate andy- axis in 
the direction perp.endicular to the fluid flow. The inclined plate makes an angle <l> 
with the horizontal. In the investigation the following assumptions are made: 
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1. All the fluid properties are constant except the density in the buoyancy force 
term. 

2. The influence of the density variation in terms of momentum and energy 
equations, and the variation of the expansion coefficient with temperature, is 
negligible. 

3. The Eckert number Ec and the magnetic Reynolds number Rm are small, so 
that the induced magnetic field can be neglected. 

Using Boussineqs approximation with the above assumptions and following Sahoo 
et.ol [7], the basic flow equations through porous medium are: 

Equation of Continuity 

dv 
-=0 ==>v=-v0 (v0 >0) 
dy 

Equation of Motion 

Equation of Energy 

.... (1) 

.... (3) 

By disregarding Joulean heat dissipation, the boundary conditions of the problem 
are: 

y=O; u=O, v=-v0• T=Tw+e(T(J) -T.Je;ou} 

y -7 oo; u -t 0, T -t T~ 
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.... (4) 



3. Method of Solution: 

Introduce the following non-dimensional quantities into the equations (2) and (3), 

y* = yv0 lv, t* = tv0
2 I 4v, cv* = 4vcvlv0

2
, u* = u/v0, v = j.i/ p, 

Pr=vlk* A*=4Av/v 2 k*=k'lpC T*=(T-T )I(T -T) > 0 > p> oo w co ' 

Gr = vgj3(Tw- Too)lv0
3

, k = Kv0
2 /v2

, Ec = v0
2 I CP(Tw- T(JJ, ... (5) 

M = (aB0
2 1 p)vlv0

2
, Rm = B1v0

2 /v2 

Then we get, 

1 . 
-(oul ot) -oul oy = Grsincl>T + o2ul o.l + Rm(l/4).(83u/ oto/) 
4 

.... (6) 

(PrJ 4).(oT I ot)-Pr( oT I 8y) = o2T I o,? +(PrJ 4)AT + Pr Ec(oT I 8y)2 
.... (7) 

(after dropping the asterisks) 

The corresponding boundary conditions in non-dimensional form are: 

y=O: u=O, T=I+se 1
(J)

1 

y ---t oo : u ~ 0, T ---t 0 .... (8) 

To solve the equations (6) and (7), subject to the boundary conditions (8), the 
velocity u and temperature Tin the neighborhood of the plate are assumed to be of 
the form, 

u(y,t) = u0 (y) + se 1
(J)

1 u1(y) 

T(y,t) =: :fo(y) + se 1¢)
1 7; (y) 

... . (9) 

Substituting equation (9) in the equations (6) and (7), and equating harmonic and 
non-harmonic terms for velocity and temperature, after neglecting coefficients of 
f:J 2, the following set of equations ore obtained: 
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.... (10) 

.... ( 11) 

To" + PrTo' + (Pr AI 4)1'o =-Pr Ec(u0' i .... (12) 

r;" + PrT;' + (Pr/ 4)(A- iw)T; = -2Pr Ecu0' u/ .... (13) 

The corresponding boundary conditions are: 

y = 0; u0 = u1 = 0, To ;:;::: T.. ;:;::: 1 

y~oo;uo ~o. ul ~o. To ~o. r.. ~o .... (14) 

In equations (1 0) and (11 ), due to presenc;e of elasticity, we get third order differential 
equations. To solve these equations, we need three boundary conditions but we 
have two. So, following Beard and Walters [11], we assume the solutions as 

.... (15) 

.... (16) 

.... (17) 

.... (18) 

Zero - order of R..,: 

.... (19) 

.... (20) 
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II I I 2 
Too + PrTo0 +(Pr/ 4)AI'o0 =-Pr Ec(u00 ) .... (21) 

.... (22) 

First- order of Rm , 

II I (k-1 M) "' G . l'h '1' Uo• +uol - + Uo• = Uoo - rsm w lo• .... (23) 

" I (k-l M . /4) "' G . ""T. '( /4). II (24) u11 +u11 - + + uv u 11 = u10 - rsm w 11 -l (J) u10 .... 

.... (25) 

.... (26) 

In order to obtain a solution of above coupled nonlinear system of equations (19) 

to (26), we expand u00 , u0., u10 , u11 ,Too, To •. ~o. and~. in powers of Eckert 

number Ec. This is valid as Ec is very small (Ec< <]}for all incompressible fluids. 
So, we assumed that 

.... (27) 

.... (28) 

.... (29) 

.... (30) 

.... (31) 

.... (32) 
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.. .. (33) 

.... (34) 

Using equa.tions (27) to (34) in the equations (19) to (26) and equating the coefficient 
of Ec0 and Ec1, we get the following sets of differential equations. 

Zero - order of Ec : 

.... (35) 

" I (k-1 M) G . h\'1' Ill 
UoiO + Uo•o - + UoJo =- rsm 'V.loiO + Uooo .... (36) 

.... (37) 

.... (38) 

" I I Tooo + PrTaoo + (Pr 4) A Tooo = 0 .... (39) 

" I I ) 1'o10 + Pr1'o10 +(Pr 4 ATo10 = 0 .... (40) 

7;00" + Pr7;00' + (Pr/ 4)(A- im)J;00 = 0 .... (41) 

... . (42) 

First- order of Ec : 

.... (43) 

II , (k-1 M) G . t'h'T' , Uoll +uou - + Uoll =- rsm'*'.~oll +uooJ .... {44) 
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T00/' +PrTIXu' +(Pr/4)A1Q01 = -Pr(u000')
2 

) 

, I ( I ) I I 1Q11 +PrTo11 + Pr 4 A 1Q11 = -2Pru000 u010 

The corresponding boundary conditions ore: 

y=O: Uooo =uoto =uoot =Uott =0, Tooo =1; Tow =Toot =To,, =0 
u,oo = u,,o = Uwt = U111 = 0, 7;oo = 1; 7;10 =I;o1 =7;,, = 0 

.... (45) 

.... (47) 

.... (48) 

.... (49) 

.. .. (50) 

Y ~ 00 : Uooo ~ Uoro ~ Uoot ~ Uo11 ~ 0, Tooo ~Tow ~ Toot ~ To11 ~ 0 

U100 ~ U110 ~ UlOI ~ Ulll ~ 0, 7;00 ~ 7; 10 ~ 7;01 ~ T.11 ~ 0 

4. Solution of Problem: 

Solving these differential equations from (35) to (50) using the above boundary 
conditions, making use of equations (27) to (34 ), making the appropriate substitutions 
in equations (15) to (18) and finally we obtain the expressions for velocity u and 
temperature T from the equation (9). 

u(y,t) = Ale-lJ>' + ~e-t2Y + A3e-2tt>' + A4e-212Y + Ase-13>' + A6e-IJ>' + A,e-tsy 

+ Age-t6Y + ~e-17y + Awe~tsY + A
11

e-'9Y 
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T(y,t) = Dte-'l>' + D2e-2'tY + D3e-2'2Y + D4e-'3Y + Dse-'4Y + D6e-'6Y 

+ D,e-''Y + Dse-'SY + D9e-'9Y 

4.1 Skin friction: The skin friction at the plate in dimensionless form is given by 

(au) I .(1), I 
'l'= a = U0 (O)+Ee' u1 (0) 

Y yeO 

4 .2 Rate of Heat Transfer. The rate of heat transfer at the plate in dimensionless 
form in terms of Nusselt number is given by 

(()T) ' . Nu = a =To (0) + Ee ICLII I;tO) 
y y• O 

5. Results and Discussions: 
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In order to get physical 
insight into the problem, 
the velocity, temperature 
fields, skin friction and 
rote of heat transfer hove 
been discussed by 
assigning numerical 
values forM, Gr, Pr, A, 
k and <I> while keeping 
Rm = 0 .05, (l) = 5.0, 
e=0.2, rot = 1r./2 and 
Ec=O.OO 1 constant. The 
results obtained are 
illustrated through the 
figs 1 - 4 and tables 1 
and 2 . 

Fig. l : Velocity profiles for variations in M and k 
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Fig.2: Velocity profiles for variations in Pr, Grand A 
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All the results are in 
excellent agreement with 
those of Sahoo(l OJ in 
absence of magnetic 
Reynolds number (Rm), 
permeability 
parameter(k) and the 
plate being vertical ('I> 
= 1t/2). From Fig.l, it 
is observed that as the 
permeability parameter 
(k) increases, velocity (u) 
also increases. But as 
the external magnetic 
field strength (M) 
increases, the velocity 
(u) decreases. It 
indicates that magnetic 
field suppresses the free 
convection. 

It is also clear from 
Fig .2 that velocity (u) is 
greater for mercury 
(Pr=0.025) than that of 
electrolytic solution 
(Pr= 1.0) i.e., velocity 
(u) for viscous fluid is 
more than the visco­
elastic one. As sink 
strength (A) increases, 
the velocity (u) 
decreases. The effect of 
Gr on -velocity (u) is 
directly proportional. It 
is noted that as the 
angle of inclination (<1>) 
with the horizontal is 
increased, the velocity 
(u) also increased as 
shown in fig.3. 

1 0.5 1.6 2 2.5 J 3.6 4 4.6 

fig.3: Velocity profiles for variations in <1> 
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1.4 

Q4 

Q2 

y--~ 

- Pr,,.o2S. A: .0.05 
· ••• • Pra1.0 , A= <1.05 
·-·-·- Pra0.025. A: <1.15 

Fig.4: Temperature profiles for variations 
in Pr and A 

Fig.4 depicts the effect of 
Prandtl number (Pr) and 
sink parameter (A) on fluid 
temperature. It is worth 
mentioning to note that 
temperature (T) is more for 
mercury (Pr=0.025) than 
for electrolytic solution 
(Pr= 1.0). It is noted that 
temperature (T) decreases 
as sink strength (A) 
increases which is in 
accordance with the 
existing results in literature. 

From Toble.l, it is evident 
that on increase in M and 
A decreases the skin­
friction for both mercury 
and electrolytic solution. 

But on increase in k and <I> increases the skin-friction for both mercury and electrolytic 
solution. Skin friction is more for viscous flow than a non-Newtonian flow. From 
Table.2. Rote of heat transfer decreases with increase in the sink strength while the 
effect of permeability parameter is negligible. 

Table.2 : Variations in Rate of heat transfer 

M A k C!> Skin Friction 

Pr""0.025 Pr= 1.0 

2 -0.05 0.2 x/4 1.9066 1.3360 

5 -0.05 0.2 rt/4 1.5517 1.1499 

2 -0.10 0.2 x/4 1.9022 1.3323 

2 -0.05 0.6 x/ 4 2.8066 1.7323 

2 -0.05 0.2 Tt/2 2.6964 1.8894 
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· Table.2: Variations in Rate of heat transfer 

A k Nusselt Number Nu 

Pr=0.025 Pr= 1.0 
Mercury Electrolytic 

solution 

-0.05 0.2 -0.0391 -1.2122 

-0.10 0.2 -0.0454 -1.2233 

-0.05 0.6 -0.0391 -1.2122 

6. Conclusions: 

In this paper, the effect of unsteady free convective MHO non-Newtonian flow 
through a porous medium bounded by on infinite inclined porous plate has been 
studied numerically. Neglecting the induced magnetic field, the equations governing 
the velocity and temperature of the fluid ore solved by multi-parameter perturbation 
technique in terms of dimensionless parameters. The following conclusions are 
summarized: 

• external magnetic field retards the free convection flow 

• velocity of viscous fluid is more than that of visco-elastic fluid 

• angle of inclination of the plate with the horizontal is directly proportional to 
the velocity of the fluid 

• increase in permeability param~ter strengths the fluid flow and skin friction 

• temperature of the fluid is more for mercury than for on electrolytic solution 

These results are most applicable in the studies of geothermal activities, underground 
transport of pollutants, paper processing, building insulation, drying of grains, 
and solar pond designs that of heating from horizontal, vertical and inclined surfaces, 
if the study is extended to different media. Porous media are widely used in high 
temperature heat exchangers, turbine blades jet nozzles etc. In practice cooling of 
porous structure is achieved by forcing the liquid or gas through capillaries of 
solid. 
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Appendix 

Pr+ ~Pr2 - (Pr .A) 
t - . 
I- 2 I 

t3 = t 1 + t 2 ; B1 = Pr( A- ico ); 

Pr+.JPr2
- B 

t =-----
4 2 

1 + ~1 + 4( 1 I k + M) 
t = . 
2 2 I 

1 + ~ 1 + 4( 11 k + M + i(l) I 4) 
Is= 2 . i 

4 =-c. +c10&+£2~n +( c13 +c18 )1\,.Ec; ~ = c1 + c11 Ec- c2 Rm + c14RmEc ; 

~ =c8Ec+c16R111Ec; A4 =~Ec+c11R111Ec; 

As = c9Ec + c15 }\,Ec; 4; = k1 + k8Ec + k13R111 + k19~Ec; 

~ = -k1 + "'Ec- k13R111 + k20R111EC ; Ag = k9Ec + k21 R111EC ; 

~ = k10Ec+ k22R,,Ec; A10 = k11Ec+k23 R111Ec; 

A1 1 = k12Ec + fs4RmEc ; 

D1 = 1 + Rm +c12RmEc; 

D3 = c3Ec- 2c3 ( c2 I c1 )R,Ec ; 

D
1 

= &e iwt( k4 Ec + k 15 R
111

EC) i 

D
9 

= &e lwt( k9 Ec + k11 R
111

EC) 

D2 = c4Ec - 2c4 ( c2 I c1 )R,.Ec ; 

D4 = c5Ec + c5 ( c2 I c1 )R
111

EC ; 

Where c1 ,c2 , •• ••• .c17c18 , k1 ,k2 , ••••• • k24 are the constants not mentioned here 
because of brevity. 
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