

ISSN 0975-3303 Mapana J Sci, **9**, 2 (2010), 53-61 https://doi.org/10.12725/mjs.17.7

GRAPH EQUATIONS FOR LINE GRAPHS, JUMP GRAPHS, MIDDLE GRAPHS, SPLITTING GRAPHS AND LINE SPLITTING GRAPHS

B. Basavanagoud* and Veena Mathad**

ABSTRACT

For a graph G, let \overline{G} , L(G), J(G) S(G), L_s(G) and M(G) denote Complement, Line graph, Jump graph, Splitting graph, Line splitting graph and Middle graph respectively. In this paper, we solve the graph equations L(G) = S(H), M(G) = S(H), L(G) = L_s(H), M(G) = L_s(H), J(G) = S(H), $\overline{M(G)}$ = S(H), J(G)

= $L_s(H)$ and $M(G) = L_s(G)$. The equality symbol '=' stands for an isomorphism between two graphs.

Keywords: Line graph, Jump graph, Middle graph, Splitting graph, Line splitting graph.

^{*} Dept. of Mathematics, Karnatak University, Dharwad - 580 003. e-mail : bgouder) @yahoo.co.in

^{**} Dept. of Mathematics, University of Mysore, Mysore-570 006. e-mail : veena_mathad@rediffmail.com

1. Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Definitions not given here may be found in [5]. For a graph G, V(G) and E(G) denote its vertex set and edge set respectively.

The open-neighborhood N(u) of a vertex u in V(G) is the set of vertices adjacent to u viz. $N(u) = \{v \mid uv \in E(G)\}.$

For each vertex u_i of G, a new vertex u'_i is taken and the resulting set of vertices is denoted by $V_1(G)$.

The splitting graph S(G) of a graph G is defined as the graph having vertex set $V(G) \cup V_1(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u_i' of $V_1(G)$ and the other to a vertex w_i of G and w_i is in $N(u_i)$. This concept was introduced by Sampathkumar and Walikar in [7].

The open-neighborhood $N(e_i)$ of an edge e_i in E(G) is the set of edges adjacent to e_i viz. $N(e_i) = \{e_i / e_i \text{ and } e_i \text{ are adjacent in } G\}$.

For each edge e, of G, a new vertex e_i^{\downarrow} is taken and the resulting set of vertices is denoted by $E_1(G)$.

The line splitting graph $L_s(G)$ of a graph G is defined as the graph having vertex set $E(G) \cup E_1(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e_i' of $E_1(G)$ and the other to an element e_i of E(G) where e_i is in $N(e_i)$. This concept was introduced by Kulli and Biradar in [6].

The jump graph J(G) of G is the graph whose vertices are edges of G and two vertices of J(G) are adjacent if and only if they are not adjacent in G. Equivalently, the jump graph J(G) of G is the complement of the line graph L(G) of G. This concept was introduced by Chartrand in [3].

The middle graph M(G) of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if they are adjacent edges of G or one is a vertex and other is an edge incident with it. This concept was introduced by Akiyama, Hamada and Yoshimura in [1]. In this paper, we solve the following graph equations :

I.L(G) = S(H)V.J(G) = S(H)II.M(G) = S(H)VI. $\overline{M(G)} = S(H)$ III. $L(G) = L_s(H)$ VIII. $J(G) = L_s(H)$ IV. $M(G) = L_s(H)$ VIII. $\overline{M(G)} = L_s(H)$

Beineke has shown in [2] that a graph G is a line graph if and only if G has none of the nine specified graphs $F_{i'}$, i = 1, 2, ..., 9 as an induced subgraph. We depict here three of the nine graphs which we use. They are $F_1 = K_{1,3}$, F_3 (see Figure 1(a)], and F_5 [see Figure 1(b)]

Figure 1

A graph G⁺ is the endedge graph of a graph G if G⁺ is obtained from G by adjoining an endedge $u_i u_i^{\ddagger}$ at each vertex u_i of G. Hamada and Yoshimura have proved in [4] that $M(G) = L(G^+)$.

2. The Solution of L(G) = S(H)

Any graph H which is a solution of the above equation, satisfies the following properties:

- i) H must be a line graph, since H is an induced subgraph of S(H).
- H does not contain a cut-vertex, since otherwise, F₁ is an induced subgraph of S(H).

- iii) H does not contain a vertex which is adjacent to two nonadjacent vertices, since otherwise, F₁ is an induced subgraph of S(H).
- iv) H does not contain C_n , $n \ge 4$ as a subgraph since otherwise, F_1 is an induced subgraph of S(H).

It follows from above observations that H has no cut-vertices. We consider the following cases:

Case 1. Suppose H is disconnected. Then components of H are K_1 or K_2 or K_3 . Therefore, $(2nK_2, nK_1)$, $n \ge 2$; (nP_5, nK_2) , $n \ge 2$; (nK_3^+, nK_3) , $n \ge 2$; $(2mK_2 \cup nP_5, mK_1 \cup nK_2)$, $m, n \ge 1$; $(2mK_2 \cup nK_3^+, mK_1 \cup nK_3)$, $m, n \ge 1$; $(mP_5 \cup nK_3^+, mK_2 \cup nK_3)$, $m, n \ge 1$; $(mP_5 \cup nK_3^+, mK_2 \cup nK_3)$, $m, n \ge 1$; and $(2mK_2 \cup nP_5 \cup IK_3^+, mK_1 \cup nK_2 \cup IK_3)$, $m, n, I \ge 1$ are the solutions.

Case 2. Suppose *H* is connected. Then *H* is K_1 or K_2 or K_3 . The corresponding *G* is $2K_2$ or P_5 or K_3^+ respectively.

From the above discussion, we conclude the following :

Theorem 1. The following pairs (G,H) are all pairs of graphs satisfying the graph equation L(G) = S(H):

 $(nP_{s}, nK_{2}), n \ge 1; (2nK_{2}, nK_{1}), n \ge 1; (nK_{3}^{+}, nK_{3}), n \ge 1; (2mK_{2} \cup nP_{s}, mK_{1} \cup nK_{2}), m, n \ge 1; (2mK_{2} \cup nK_{3}^{+}, mK_{1} \cup nK_{3}), m, n \ge 1; (mP_{s} \cup, mK_{2} \cup nK_{3}), m, n \ge 1; and (2mK_{2} \cup nP_{5} \cup , IK_{3}^{+}, mK_{1} nK_{2} \cup IK_{3}), m, n, I \ge 1.$

3. The solution of M(G) = S(H)

We have investigated the solutions (G,H) of equation 2 in Theorem 1. Among these solutions $(2nK_2, nK_1), n \ge 1; (nK_3^+, nK_3), n \ge 1;$ and $(2mK_2 \cup nK_3^+, mK_1 \cup nK_3), m, n \ge 1$ are as (G⁺,H). Therefore, the solutions of the equation 3 are $(2nK_1, nK_1), n \ge 1$, $(nK_3, nK_3), n \ge 1$ and $(2mK_1 \cup nK_3, mK_1 \cup nK_3), m, n \ge 1$. Thus we have the following.

Theorem 2. The solutions (G,H) of the graph equation M(G) = S(H) are $(2nK_1, nK_1) n \ge 1$; $(nK_3, nK_3), n \ge 1$; and $(2mK_1 \cup nK_3, mK_1 \cup nK_3), m, n \ge 1$.

4. The Solution of $L(G) = L_s(H)$

We observe that in this case H satisfies the following properties:

- i) H does not contain a component having more than one cut-vertex since otherwise, F, is an induced subgraph of L_s(H).
- ii) H is not a complete graph K_n , $n \ge 4$, since otherwise, F_1 is an induced subgraph of $L_s(H)$.
- iii) H does not contain P_4 as a subgraph since otherwise, F_1 is an induced subgraph of L(H).
- iv) H does not contain $K_{1,4}$ as an induced subgraph since otherwise, F_1 is an induced subgraph of $L_{\epsilon}(H)$.
- v) H is not a cycle C_n , $n \ge 4$ since otherwise, F, is an induced subgraph of $L_n(H)$.
- vi) H does not contain a cut-vertex which lies on blocks other than K_2 .

From observation (i) it follows that every component of H has at most one cutvertex. We consider the following cases.

Case 1. Suppose H has no cut-vertices. Then H is nK_2 , $n \ge 1$ or nK_3 , $n \ge 1$, or $mK_2 \cup nK_3$, $m, n \ge 1$.

For
$$H = nK_2, n \ge 1$$
, $G = 2nK_2$
For $H = nK_3, n \ge 1$, $G = nK_3^+$

For $H = mK_2 \cup nK_3$, $m, n \ge 1$, $G = 2mK_2 \cup nK_3^+$

Case 2. Suppose H has cut-vertices. We consider the following subcases :

Subcase 2.1. Assume H is connected. Then H is $K_{1,2}$ or $K_{1,3}$. The corresponding G is P_5 or nK_3^+ respectively.

Subcase 2.2. Assume *H* is disconnected. Then each component of *H* has atmost one cut-vertex. Then *H* is $mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3$, $m \ge 1$ and n, l, $r \ge 0$ or $mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3$, $n \ge 1$ and m, l, $r \ge 0$. In this case $(mP_5 \cup (n+r) K_3^+ \cup 2mK_2, mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3)$ is the solution.

From above discussions, we conclude the following:

Theorem 3. The following pairs (G,H) are all pairs of graphs satisfying the graph equation $L(G) = L_s(H)$:

 $\begin{array}{l} (2nK_2, nK_2), n \geq 1; (nK_3^+, nK_3), n \geq 1; (2mK_2 \cup nK_3^+, mK_2 \cup nK_3), m, n \geq 1; (mP_5 \cup (n+r) \ K_3^+ \cup 2lK_2, mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3), m \geq 1, n, l, r \geq 0; \text{ and } (mP_5 \cup (n+r) \ K_3^+ \cup 2lK_2, mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3), n \geq 1, m, l, r \geq 0. \end{array}$

5. The Solution of $M(G) = L_s(H)$

Theorem 3 provides solutions of the equation $L(G) = L_s(H)$. Among these solutions $(2nK_2, nK_2), n \ge 1; (nK_3^+, nK_3), n \ge 1; (2mK_2 \cup nK_3^+, mK_2 \cup nK_3), m, n \ge 1;$ and $(mP_5 \cup (n+r) \ nK_3^+ \cup 2lK_2, mK_{1,2} \cup nK_{1,3} \cup lK_2 \cup rK_3), r, l \ge 0, n \ge 1$ and m = 0 are as (G^+, H) . Therefore, solutions of equation 5 are $(2nK_1, nK_2), n \ge 1; (nK_3, nK_3), n \ge 1; (2mK_1 \cup nK_3, mK_2 \cup nK_3), m, n \ge 1;$ and $((n+r) \ K_3 \cup 2lK_1, nK_{1,3} \cup lK_2 \cup rK_3), n \ge 1$ and $r, l \ge 0$. Now we state the following result.

Theorem 4. The solutions (G,H) of the graph equation $M(G) = L_s(H)$ are $(2nK_1, nK_2)$, $n \ge 1$; (nK_3, nK_3) , $n \ge 1$; $(2mK_1 \cup nK_3, mK_2 \cup nK_3)$, $m, n \ge 1$; and $((n+r)K_3 \cup 2lK_1, nK_{1,3} \cup lK_2 \cup rK_3)$, $n \ge 1$ and $r, l \ge 0$.

6. The Solution of J(G) = S(H)

First, we observe that in this case H satisfies the following properties:

- i) If H has atleast one edge, then it is connected since otherwise, $\overline{F_3}$ is an induced subgraph of S(H).
- ii) H does not contain a cut-vertex, since otherwise, $\overline{F_3}$ is an induced subgraph of S(H).
- iii) If H is a block, then it is a complete graph since otherwise, $\overline{F_5}$ is an induced subgraph of S(H).

It follows from observations (i), (ii) and (iii), that H is nK_1 , $n \ge 1$ or K_n , $n \ge 2$. The corresponding G is $K_{1,2n}$ or , $K_{1,n}^+ \cdot v$ where v is a pendant vertex of $K_{1,n}^+$ which is adjacent to the vertex of maximum degree respectively.

Hence equation 6 is solved and solutions are given in the following theorem.

Theorem 5. The following pairs (G,H) are all pairs of graphs satisfying the graph equation J(G) = S(H):

 $(K_{1,2n'}, nK_1)$ $n \ge 1$; and $(K_{1,n}^+, K_n)$ $n\ge 2$ where v is a pendant vertex of which is adjacent to the vertex of maximum degree.

7. The Solution of $\overline{M(G)} = S(H)$

Theorem 5 gives solutions for the equation J(G) = S(H). But none of these is as (G^+, H) . Hence, there is no solution of the equation $\overline{M(G)} = S(H)$.

Thus we have the following result.

Theorem 6. There is no solution of the graph equation $\overline{M(G)} = S(H)$.

8. The Solution of $J(G) = L_s(H)$

In this case H satisfies the following properties:

- i) H does not contain more than one cut-vertex, since otherwise, $\overline{F_5}$ is an induced subgraph of $L_1(H)$.
- ii) H does not contain a cut-vertex, which lies on blocks other than K_2 , since otherwise, $\overline{F_5}$ is an induced subgraph of $L_{\epsilon}(H)$.
- iii) H does not contain a cycle C_n , $n \ge 4$, since otherwise, $\overline{F_5}$ is an induced subgraph of $L_1(H)$.
- iv) If *H* is disconnected graph then every component of *H* is K_2 , since otherwise, $\overline{F_3}$ is an induced subgraph of $L_2(H)$.

We consider the following cases.

Case 1. Suppose H is disconnected. Then from observation (iv), H is nK_2 , $n \ge 2$. The corresponding G is $2nK_2$.

Case 2. Suppose *H* is connected. Then from observation (i), *H* has atmost one cut-vertex. We consider the following subcases.

Subcase 2.1. Assume H has a cut-vertex. Then from observation (ii), H is $K_{1,n}$, $n \ge 2$. The corresponding G is $K_{1,n}^+ - v$, where v is a pendant vertex adjacent to the vertex of maximum degree.

Subcase 2.2. Assume *H* is a block. Then *H* is K_2 or K_3 . The corresponding *G* is $K_{1,2}$ or $K_{1,3}^+$, where v is a pendant vertex of $K_{1,3}^+$ adjacent to a vertex of maximum degree.

Thus equation 8 is solved and we have the following.

Theorem 7. The following pairs (G,H) are all pairs of graphs satisfying the graph equation $J(G) = L_s(H)$:

 $(2nK_2, nK_2), n \ge 2; (K_{1,2}, K_2); (K_{1,3}^+ - v, K_3)$, where v is a pendant vertex adjacent to the vertex of maximum degree; and $(K_{1,n}^+ - v, K_{1,n}), n \ge 2$, where v is a pendant vertex adjacent to the vertex of maximum degree.

9. The Solution of $\overline{M(G)} = L_s(H)$

Theorem 7 gives solutions for the equation $J(G) = L_s(H)$. Among these $(2nK_2, nK_2)$, $n \ge 2$ is of the form (G^+, H) . Therefore, the solution of the equation is $(2nK_1, nK_2)$, $\overline{M(G)} = L_s(H)$ is $(2nK_1, nK_2)$, $n \ge 2$.

Now, we state the following result.

Theorem 8. The solutions of the graph equation are $\overline{M(G)} = L_s(H)$ are $(2nK_1, nK_2)$, $n \ge 2$.

References

- J.Akiyama, T.Hamada and I.Yoshimura, (1974), Miscellaneous properties of middle graphs, TRU Mathematics, 10, 41-53.
- L.W.Beineke, (1967), On derived graphs and digraphs, in : Beiträge zur Graphentheorie (Manebach 1967), 17-24.
- G.T.Chartrand, H.Hevia, E.B.Jarette, and M.Schulty, (1997), Subgraph distance in graphs defined by edge transfers, Discrete Mathematics, 170, 63-79.
- T.Hamada and I.Yoshimura, (1976), Traversability and Connectivity of the middle graph of a graph, Discrete Mathematics, 14, 247-256.
- 5. F.Harary, (1969), Graph Theory, Addison-Wesley, Reading, Mass,.
- V.R.Kulli and M.S.Biradar, (2002), The line-splitting graph of graph, Acta Ciencia Indica, Vol. XXVIII M.No. 3, 317-322.
- E.Sampathkumar and H.B.Walikar, (1980-81), On splitting graph of a graph, J. Karnatak Univ. Sci., 25 and 26 (combined), 13-16.