GRAPH EQUATIONS FOR LINE GRAPHS, JUMP GRAPHS, MIDDLE GRAPHS, SPLITTING GRAPHS AND LINE SPLITTING GRAPHS

B. Basavanagoud* and Veena Mathad**

ABSTRACT
For a graph G, let $\bar{G}, L(G), J(G) S(G), L_{s}(G)$ and $M(G)$ denote Complement, Line graph, Jump graph, Splitting graph, Line splifting graph and Middle graph respectively.
In this paper, we solve the graph equations $L(G)=S(H), M(G)=$ $S(H), L(G)=L_{s}(H), M(G)=L_{s}(H), J(G)=S(H), \overline{M(G)}=S(H), J(G)$ $=L_{s}(H)$ and $M(G)=L_{s}(G)$. The equality symbol ${ }^{\prime}={ }^{\prime}$ stands for an isomorphism between two graphs.

Keywords: Line graph, Jump graph, Middle graph, Splitting graph, Line splitting graph.

[^0]
1. Introduction

By a graph, we mean a finite, undirected graph without loops or multiple edges. Definitions not given here may be found in [5]. For a graph $G, V(G)$ and $E(G)$ denote its vertex set and edge set respectively.

The open-neighborhood $N(u)$ of a vertex u in $V(G)$ is the set of vertices adjacent to u viz. $N(u)=\{v / u v \in E(G)\}$.

For each vertex u_{i} of G, a new vertex u_{i}^{\prime} is taken and the resulting set of vertices is denoted by $V_{1}(G)$.

The splitting graph $S(G)$ of a graph G is defined as the graph having vertex set $V(G) \cup V_{1}(G)$ and two vertices are adjacent if they correspond to adjacent vertices of G or one corresponds to a vertex u_{i}^{\prime} of $V_{1}(G)$ and the other to a vertex w_{i} of G and w_{i} is in $N\left(u_{i}\right)$. This concept was introduced by Sampathkumar and Walikar in [7].

The open-neighborhood $N\left(e_{i}\right)$ of an edge e_{i} in $E(G)$ is the set of edges adjacent to e_{i} viz. $N\left(e_{i}\right)=\left\{e_{i} / e_{i}\right.$ and e_{i} are adjacent in $\left.G\right\}$.

For each edge e_{i} of G, a new vertex $e_{i} \ddagger$ is taken and the resulting set of vertices is denoted by $E_{1}(G)$.

The line splitting graph $L_{s}(G)$ of a graph G is defined as the graph having vertex set $E(G) \cup E_{1}(G)$ with two vertices adjacent if they correspond to adjacent edges of G or one corresponds to an element e_{i}^{\prime} of $E_{1}(G)$ and the other to an element e_{i} of $E(G)$ where e_{i} is in $N\left(e_{i}\right)$. This concept was introduced by Kulli and Biradar in [6].

The jump graph $J(G)$ of G is the graph whose vertices are edges of G and two vertices of $J(G)$ are adjacent if and only if they are not adjacent in G. Equivalently, the jump graph $J(G)$ of G is the complement of the line graph $L(G)$ of G. This concept was introduced by Chartrand in [3].

The middle graph $M(G)$ of a graph G is the graph whose vertex set is $V(G) \cup E(G)$ and two vertices are adjacent if they are adjacent edges of G or one is a vertex and other is an edge incident with it. This concept was introduced by Akiyama, Hamada and Yoshimura in [1].

In this paper, we solve the following graph equations:
l. $L(G)=S(H)$
V. $J(G)=S(H)$
II. $M(G)=S(H)$
VI. $\overline{M(G)}=S(H)$
III. $\quad L(G)=L_{s}(H)$
Vil. $J(G)=L_{s}(H)$
IV. $M(G)=L_{s}(H)$
VIII. $\overline{M(G)}=L_{s}(H)$

Beineke has shown in [2] that a graph G is a line graph if and only if G has none of the nine specified graphs $F_{i}, i=1,2, \ldots, 9$ as an induced subgraph. We depict here three of the nine graphs which we use. They are $F_{1}=K_{1,3^{\prime}} F_{3}$ (see Figure 1(a)], and F_{5} [see Figure $1(b)$]

Figure 1

A graph G^{+}is the endedge graph of a graph G if G^{+}is obtained from G by adjoining an endedge $u_{i} u_{i} \$$ at each vertex u_{i} of G. Hamada and Yoshimura have proved in [4] that $M(G)=L\left(G^{+}\right)$.

2. The Solution of $L(G)=S(H)$

Any graph H which is a solution of the above equation, satisfies the following properties:
i) H must be a line graph, since H is an induced subgraph of $S(H)$.
ii) H does not contain a cut-vertex, since otherwise, F_{1} is an induced subgraph of $S(H)$.
iii) H does not contain a vertex which is adjacent to two nonadjacent vertices, since otherwise, F_{1} is an induced subgraph of $S(H)$.
iv) H does not contain $C_{n^{\prime}} n \geq 4$ as a subgraph since otherwise, F_{1} is an induced subgraph of $S(H)$.

It follows from above observations that H has no cut-vertices. We consider the following cases:

Case 1. Suppose H is disconnected. Then components of H are K_{1} or K_{2} or K_{3}. Therefore, $\left(2 n K_{2}, n K_{1}\right), n \geq 2 ;\left(n P_{5^{\prime}} n K_{2}\right), n \geq 2 ;\left(n K_{3}^{+}, n K_{3}\right), n \geq 2 ;\left(2 m K_{2} \cup n P_{5^{\prime}}\right.$, $\left.m K_{1} \cup n K_{2}\right), m, n \geq 1 ;\left(2 m K_{2} \cup n K_{3}^{+}, m K_{1} \cup n K_{3}\right), m, n \geq 1 ;\left(m P_{5} \cup n K_{3}^{+}, m K_{2} \cup\right.$ $\left.n K_{3}\right), m, n \geq 1$; and $\left(2 m K_{2} \cup n P_{5} \cup \mathbb{K}_{3}^{+}, m K_{1} \cup n K_{2} \cup \mid K_{3}\right), m, n, \mid \geq 1$ are the solutions.

Case 2. Suppose H is connected. Then H is K_{1} or K_{2} or K_{3}. The corresponding G is $2 K_{2}$ or P_{5} or K_{3}^{+}respectively.

From the above discussion, we conclude the following :
Theorem 1. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $L(G)=S(H)$:
$\left(n P_{5^{\prime}}, n K_{2}\right), n \geq 1 ;\left(2 n K_{2^{\prime}}, n K_{1}\right), n \geq 1 ;\left(n K_{3}^{+}, n K_{3}\right), n \geq 1 ;\left(2 m K_{2} \cup n P_{5^{\prime}} m K_{1} \cup\right.$ $\left.n K_{2}\right), m, n \geq 1 ;\left(2 m K_{2} \cup n K_{3}^{+}, m K_{1} \cup n K_{3}\right), m, n \geq 1 ;\left(m P_{5} \cup m K_{2} \cup n K_{3}\right), m, n$ ≥ 1; and $\left(2 m K_{2} \cup n P_{5} \cup, K_{3}^{+}, m K_{1} n K_{2} \cup \mid K_{3}\right), m, n, I \geq 1$.

3. The solution of $M(G)=S(H)$

We have investigated the solutions (G, H) of equation 2 in Theorem 1. Among these solutions $\left(2 n K_{2}, n K_{1}\right), n \geq 1 ;\left(n K_{3}^{+}, n K_{3}\right), n \geq 1$; and $\left(2 m K_{2} \cup n K_{3}^{+}, m K_{1} \cup\right.$ $\left.n K_{3}\right), m, n \geq 1$ are as $\left(G^{+}, H\right)$. Therefore, the solutions of the equation 3 are $\left(2 n K_{1}\right.$, $\left.n K_{1}\right) n \geq 1,\left(n K_{3}, n K_{3}\right), n \geq 1$ and $\left(2 m K_{1} \cup n K_{3}, m K_{1} \cup n K_{3}\right), m, n \geq 1$. Thus we have the following.

Theorem 2. The solutions (G, H) of the graph equation $M(G)=S(H)$ are $\left(2 n K_{1}\right.$, $\left.n K_{1}\right) n \geq 1 ;\left(n K_{3}, n K_{3}\right), n \geq 1$; and $\left(2 m K_{1} \cup n K_{3^{\prime}}, m K_{1} \cup n K_{3}\right), m, n \geq 1$.

4. The Solution of $L(G)=L_{s}(H)$

We observe that in this case H satisfies the following properties:
i) H does not contain a component having more than one cut-vertex since otherwise, F_{1} is an induced subgraph of $L_{s}(H)$.
ii) His not a complete graph $K_{n^{\prime}} n \geq 4$, since otherwise, F_{1} is an induced subgraph of $L_{s}(H)$.
iii) H does not contain P_{4} as a subgraph since otherwise, F_{1} is an induced subgraph of $L_{s}(H)$.
iv) H does not contain $K_{1,4}$ as an induced subgraph since othenwise, F_{1} is an induced subgraph of $L_{5}(H)$.
v) H is not a cycle $C_{n^{\prime}} n \geq 4$ since otherwise, F_{1} is an induced subgraph of $L_{s}(H)$.
vi) H does not contain a cut-vertex which lies on blocks other than K_{2}.

From observation (i) it follows that every component of H has at most one cutvertex. We consider the following cases.

Case 1. Suppose H has no cut-vertices. Then H is $n K_{2^{\prime}} n \geq 1$ or $n K_{3^{\prime}} n \geq 1$, or $m K_{2} \cup n K_{3}, m, n \geq 1$.
$\begin{array}{ll}\text { For } H=n K_{2}, n \geq 1, & G=2 n K_{2} \\ \text { For } H=n K_{3}, n \geq 1, & G=n K_{3}^{+}\end{array}$
For $H=m K_{2} \cup n K_{3^{\prime}} m, n \geq 1, G=2 m K_{2} \cup n K_{3}^{+}$
Case 2. Suppose H has cut-vertices. We consider the following subcases:
Subcase 2.1. Assume H is connected. Then H is $K_{1,2}$ or $K_{1,3}$. The corresponding G is P_{5} or $n K_{3}^{+}$respectively.

Subcase 2.2. Assume H is disconnected. Then each component of H has atmost one cut-vertex. Then H is $m K_{1,2} \cup n K_{1,3} \cup \mathbb{K}_{2} \cup r K_{3^{\prime}} m \geq 1$ and $n, l, r \geq 0$ or $m K_{1,2}$ $\cup n K_{1,3} \cup \mathbb{K}_{2} \cup r K_{3^{\prime}} n \geq 1$ and $m, l, r \geq 0$. In this case $\left(m P_{5} \cup(n+r) K_{3}^{+} \cup 2 m K_{2^{\prime}}\right.$ $\left.m K_{1,2} \cup n K_{1,3} \cup \mathbb{K}_{2} \cup r K_{3}\right)$ is the solution.

From above discussions, we conclude the following:
Theorem 3. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $L(G)=L_{s}(H)$:
$\left(2 n K_{2}, n K_{2}\right), n \geq 1 ;\left(n K_{3}^{+}, n K_{3}\right), n \geq 1 ;\left(2 m K_{2} \cup n K_{3}^{+}, m K_{2} \cup n K_{3}\right), m, n \geq 1 ;\left(m P_{5}\right.$ $\left.\cup(n+r) K_{3}^{+} \cup 2 \not \mathbb{K}_{2}, m K_{1,2} \cup n K_{1,3} \cup \mathbb{K}_{2} \cup r K_{3}\right), m \geq 1, n, l, r \geq 0$; and $\left(m P_{5} \cup\right.$ $\left.(n+r) K_{3}^{+} \cup 2 \mathbb{K}_{2}, m K_{1,2} \cup n K_{1,3} \cup \mathbb{K}_{2} \cup r K_{3}\right), n \geq 1, m, l, r \geq 0$.

5. The Solution of $M(G)=L_{s}(H)$

Theorem 3 provides solutions of the equation $L(G)=L_{s}(H)$. Among these solutions $\left(2 n K_{2}, n K_{2}\right), n \geq 1 ;\left(n K_{3}^{+}, n K_{3}\right), n \geq 1 ;\left(2 m K_{2} \cup n K_{3}^{+}, m K_{2} \cup n K_{3}\right), m, n \geq 1$; and $\left(m P_{5} \cup(n+r) n K_{3}^{+} \cup 2 \mathbb{K}_{2}, m K_{1,2} \cup n K_{1,3} \cup \mathbb{K}_{2} \cup K_{3}\right), r, I \geq 0, n \geq 1$ and $m=0$ are as $\left(G^{+}, H\right)$. Therefore, solutions of equation 5 are $\left(2 n K_{1}, n K_{2}\right), n \geq 1 ;\left(n K_{3}, n K_{3}\right), n$ $\geq 1 ;\left(2 m K_{1} \cup n K_{3}, m K_{2} \cup n K_{3}\right), m, n \geq 1$; and $\left((n+r) K_{3} \cup 2 / K_{1}, n K_{1,3} \cup\left(K_{2} \cup r K_{3}\right)\right.$, $n \geq 1$ and $r, 1 \geq 0$. Now we state the following result.

Theorem 4. The solutions (G, H) of the graph equation $M(G)=L_{s}(H)$ are $\left(2 n K_{1}\right.$, $\left.n K_{2}\right), n \geq 1 ;\left(n K_{3}, n K_{3}\right), n \geq 1 ;\left(2 m K_{1} \cup n K_{3^{\prime}} m K_{2} \cup n K_{3}\right), m, n \geq 1 ;$ and $\left((n+r) K_{3}\right.$ $\cup 2\left(K_{1}, n K_{1,3} \cup\left(K_{2} \cup r K_{3}\right), n \geq 1\right.$ and $r, 1 \geq 0$.

6. The Solution of $J(G)=S(H)$

First, we observe that in this case H satisfies the following properties:
i) If H has atleast one edge, then it is connected since otherwise, \bar{F}_{3} is an induced subgraph of $S(H)$.
ii) H does not contain a cut-vertex, since otherwise, \bar{F}_{3} is an induced subgraph of $S(H)$.
iii) If H is a block, then it is a complete graph since otherwise, $\overline{F_{5}}$ is an induced subgraph of $S(H)$.

It follows from observations (i), (ii) and (iii), that H is $n K_{1}, n \geq 1$ or $K_{n^{\prime}} n \geq 2$. The corresponding G is $K_{1,2 n}$ or, $K_{l, n}^{+}-v$ where v is a pendant vertex of $K_{1, n}^{+}$which is adjacent to the vertex of maximum degree respectively.

Hence equation 6 is solved and solutions are given in the following theorem.
Theorem 5. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $J(G)=S(H)$:
$\left(K_{1,2 n}, n K_{1}\right) n \geq 1$; and $\left(K_{1, n}^{+}, K_{n}\right) n \geq 2$ where v is a pendant vertex of which is adjacent to the vertex of maximum degree.

7. The Solution of $\overline{M(G)}=S(H)$

Theorem 5 gives solutions for the equation $J(G)=S(H)$. But none of these is as $\left(G^{+}, H\right)$. Hence, there is no solution of the equation $\overline{M(G)}=S(H)$.

Thus we have the following result.
Theorem 6. There is no solution of the graph equation $\overline{M(G)}=S(H)$.

8. The Solution of $J(G)=L_{s}(H)$

In this case H satisfies the following properties:
i) H does not contain more than one cut-vertex, since otherwise, \bar{F}_{5} is an induced subgraph of $L_{s}(H)$.
ii) H does not contain a cut-vertex, which lies on blocks otherthan K_{2}, since otherwise, \bar{F}_{5} is an induced subgraph of $L_{s}(H)$.
iii) H does not contain a cycle $C_{n^{\prime}} n \geq 4$, since otherwise, \bar{F}_{5} is an induced subgraph of $L_{s}(H)$.
iv) If H is disconnected graph then every component of H is K_{2}, since otherwise, $\overline{F_{3}}$ is an induced subgraph of $L_{s}(H)$.

We consider the following cases.
Case 1. Suppose H is disconnected. Then from observation (iv), H is $n K_{2}, n \geq 2$. The corresponding G is $2 n K_{2}$.

Case 2. Suppose H is connected. Then from observation (i), H has atmost one cut-vertex. We consider the following subcases.

Subcase 2.1. Assume H has a cut-vertex. Then from observation (ii), H is $K_{1, n^{\prime}} n$ ≥ 2. The corresponding G is $K_{l, n}^{+}-v$, where v is a pendant vertex adjacent to the vertex of maximum degree.

Subcase 2.2. Assume H is a block. Then H is K_{2} or K_{3}. The corresponding G is $K_{i, 2}$ or $K_{1,3}^{+}$, where v is a pendant vertex of $K_{1,3}^{+}$adjacent to a vertex of maximum degree.

Thus equation 8 is solved and we have the following.
Theorem 7. The following pairs (G, H) are all pairs of graphs satisfying the graph equation $J(G)=L_{s}(H)$:
$\left(2 n K_{2^{\prime}}, n K_{2}\right), n \geq 2 ;\left(K_{1,2^{\prime}} K_{2}\right) ;\left(K_{1,3}^{+}-v, K_{3}\right)$, where v is a pendant vertex adjacent to the vertex of maximum degree; and $\left(K_{1, n}^{+}-v, K_{1, n}\right), n \geq 2$, where v is a pendant vertex adjacent to the vertex of maximum degree.

9. The Solution of $\overline{M(G)}=L_{s}(H)$

Theorem 7 gives solutions for the equation $J(G)=L_{s}(H)$. Among these $\left(2 n K_{2}, n K_{2}\right)$, $n \geq 2$ is of the form $\left(G^{+}, H\right)$. Therefore, the solution of the equation is $\left(2 n K_{1}, n K_{2}\right)$, $\overline{M(G)}=L_{s}(H)$ is $\left(2 n K_{1}, n K_{2}\right), n \geq 2$.

Now, we state the following result.

Theorem 8. The solutions of the graph equation are $\overline{M(G)}=L_{s}(H) \operatorname{are}\left(2 n K_{1}\right.$, $\left.n K_{2}\right), n \geq 2$.

References

1. J.Akiyama, T.Hamada and I.Yoshimura, (1974), Miscellaneous properties of middle grophs, TRU Mathematics, 10, 41-53.
2. L.W.Beineke, (1967), On derived graphs and digraphs, in : Beitröge zur Graphentheorie (Manebach 1967), 17-24.
3. G.T.Chartrand, H.Hevia, E.B.Jarette, and M.Schulty, (1997), Subgraph distance in graphs defined by edge transfers, Discrete Mathematics, 170, 63-79.
4. T.Hamada and I.Yoshimura, (1976), Traversability and Connectivity of the middle graph of a graph, Discrete Mathematics, 14, 247-256.
5. F.Harary, (1969), Graph Theory, Addison-Wesley, Reading, Mass,.
6. V.R.Kulli and M.S.Biradar, (2002), The line-splitting graph of graph, Acta Ciencia Indica, Vol. XXVIII M.No. 3, 317-322.
7. E.Sampathkumar and H.B.Walikar, (1980-81), On splitting graph of a graph, J. Karnatak Univ. Sci., 25 and 26 (combined), 13-16.

[^0]: * Dept. of Mathematics, Karnatak University, Dhanwad - 580 003. e-mail : bgouderl@yahoo.co.in
 ** Dept. of Mathematics, University of Mysore, Mysore-570006. e-mail : veena_mathad@rediffmail.com

