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Modelling the Spread of Corona Virus 
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Abstract 

The Corona virus has in a very short span wreaked havoc 
on a global scale. While efforts are on to develop a vaccine 
against the virus, the best course of action till then is to 
practice good hygiene and social distancing. In this work, 
we discuss some quantitative models for the spread of such 
viruses. These models imply that ‘social distancing’, i.e. a 
spatial separation of one to two metres between 
individuals could curtail the rate of spread by increasing 
the time scale for propagation. We also model the growth, 
flattening and decay of the curve and these models match 
with those observed in various regions (countries).  

Keywords:  

1. Introduction 

In a few weeks, one deadly Corona virus has devastated and 
shackled all aspects of human activity (all over our planet). This 
includes trillion and billion dollar businesses, the vast global 
commercial air and ground transport systems, tourism and 
hospitality industries, cancellation of major sporting events like the 
Tokyo Olympics, Wimbledon and other tennis tournaments, various 
football competitions, etc. Also students and younger people are 
adversely affected by closure of educational institutions. More than 
a million have been infected worldwide and tens of thousands of 
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deaths mostly in industrialised countries affecting global trade and 
manufacturing.  

The SARS and Bird flu virus epidemics were nowhere on this scale. 
The vulnerability of mankind was also evident during the December 
26, 2004 tsunami, when over two hundred thousand people died in 
the coastal areas from Indonesia, Sri Lanka and the East African 
shores. All again in a few days. We also have annually, cyclones, 
tornadoes, and hurricanes devastating various localised areas all 
over the globe. But the devastation has globally been nowhere near 
that now due to the Corona virus.  

Several times in human history pestilences, pandemics, and plagues 
have taken heavy tolls, many times almost wiping out civilizations. 
The Black Dearth wiped out perhaps half of Europe’s population in 
the 14th century. The plague of Athens in the third century BCE, 
killed hundred thousand or more when the many years of wars 
between Athens and Sparta were going on. The Roman civilization 
after 185 CE, became destabilised with several recorded plagues and 
diseases. A more recent example, a century ago, was the Spanish flu 
which killed reportedly more than 30 million worldwide (more 
casualties than WW I), over a period of a few years (Rosenwald, 
2020). On smaller scales, we have had earlier in this millennium, the 
SARS, MERS, etc. Several plagues occurred in Indian townships in 
the late 19th and early 20th centuries and more recently in 1994, in 
Surat. The great plague and Great Fire of London of 1666, are well 
documented. So mankind has survived over millennia, attacks of 
vicious viruses disrupting thriving civilisations and cultures.  

2. Modelling the virus spread 

Micron size droplets, containing viruses from cough, sneeze, etc. 
from individuals presumably cause spread of the virus. Consider the 
random root mean square (rms) displacement of the drop, due to 
Brownian motion, as it passes through air (molecules). The Langevin 
equation, or also the Einstein-Smoluchowski formula (after removal 
of transients) gives (Dill and Bromberg, 2003) the displacement as:  

〈𝑟 〉 = 𝑡                  (1) 
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where 〈𝑟 〉  is averaged rms displacement in x, y, z directions, t is 
the time, T is the ambient temperature, a is the radius of droplet, 𝜂 is 
the dynamic viscosity of air. 

In general Einstein-Smoluchowski formula gives: 

𝑟 = (2𝐷𝑡) , where 𝐷 =                 (2) 

Typically, 𝑇 = 300𝐾, 𝜂 = 10  poise. So for 𝑡 = 10 𝑠,  

 〈𝑟 〉 = 0.1𝑐𝑚 − 1𝑐𝑚. So time taken to travel a distance 𝐷 is: 

𝑡 =
〈 〉

                  (3) 

The velocity of the droplet can be estimated from Stokes law:  

6𝜋𝜂𝑎𝑣 = 𝜋𝑎 𝜌𝑔                 (4) 

This gives 𝑣 ≈ 10𝑐𝑚/𝑠. Thus, for 1m distance we have, 𝑡 ≈
.

≈

10 𝑠 . For 𝐷 = 10𝑐𝑚;  𝑡 ≈ 1𝑠 . So virus could spread in seconds if 
people are in proximity. Two meter distance requires several 
minutes, hence safer. 

3. Critical social distancing 

We can estimate the rate of increase in virus density, n. Suppose it is 
captured after 𝑁 = 𝐷 /𝜆  encounters, where D is the separation 
distance, the average velocity of virus droplets = 𝑣, mean free path 
given as 𝜆 ≈ 0.1 − 1𝑐𝑚 similar to 〈𝑟 〉  estimated above. For 𝐷 ≈

10𝑐𝑚 , this gives 𝑁 ≈ 10 − 10 . Each infected cell say releases 𝛽 
viruses, 𝛽 > 1 can be 1 – 10, or more. In a volume 𝑊 for time 𝑑𝑡 we 
have ( ) as net increase per unit time due to encounters.  

Number striking (or escaping) from region is, 𝑛𝑣 𝑑𝑡, i.e. striking 
surface surrounding volume. So the rate of increase of virus density 
can be written as (assuming a spherical volume): 

= 𝑛𝑊 −                (5) 
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So the critical distance, to avoid increase of density of propagating virus is 
𝑑𝑛

𝑑𝑡 = 0 . 

𝑅 >  > 1.5𝑚         

   (6) 

(for typical values assumed) 

So social distancing should be at least 2 metres, to avoid rate of 
increase. Just in terms of 𝛽 and 𝜆, we have a relation: 

𝐷 > 𝜆(𝛼 − 1)                 (7) 

𝛼 ≈ 10 , 𝜆 ≈ 0.1𝑐𝑚. This gives 𝐷 ≈ 1.5𝑚. 

Formulae can be averaged over different sizes, path lengths, and 
number of viruses released. In any case, general result is, the larger 
the social distancing the less probable the spreads. So it makes sense 
that the estimated critical distancing for typical parameters is ≈ 2𝑚. 

Here we had assumed that the rate of increase in virus density is 
uniform. But there could be areas (regions) where the increase is 
more. Thus in volumes 𝑊 , 𝑊 , etc. we have the rate of increase as, 
𝑛 , 𝑛 , etc. for 𝐻 regions, ∑ ( ), the velocity of propagation, 

𝑣 , remains constant. For hotspots, 𝛽 ≫ 1. These would propagate 
away from the region over a combined surface area, 𝐴 = 4𝜋𝑅 . So 
the modified equation is: 

= ∑
( )

− ∑ 𝑛 𝜋𝑅 𝑑𝑡               (8) 

= 0 would now give the critical distance. To simplify, we can take 
average values of 𝜆, 𝑁, 𝛽,  etc. It is evident that ‘hotspots’ would 
necessitate larger social distancing as well as larger distances 
between containment zones. 

4. Possible model for the curve 

For a single species growth, rate of increase of the virus population 
is proportional to the number 𝑝, present at any time, 

i.e. = 𝛼𝑝                 (9) 
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𝛼 is a constant. This gives 𝑝 = 𝑝 𝑒             (10) 

Here 𝑝 = 𝑝  is the initial number, i.e. at 𝑡 = 𝑡 . 

I.e. the exponential growth, holds in the initial phases of the virus 
propagation. The model for the exponential growth can be written 
as: 𝑝 = 𝑝 𝑒 . If the number of infected cases doubles, say, every 3 
days, 𝑝 𝑝⁄ = 3, 𝑡 = 3 ⇒ 3 = 𝑒 , and hence we have: 𝛼 = 𝑙𝑜𝑔 3. If 
there is a steady decline in the number of infected cases, 𝛼 can be 
estimated. Right now there are not many countries showing a steady 
decline. For a doubling time of 3 days, the growth constant, 𝜆 =

. . 
Then the time taken to increase the infection by 100 times is: 

𝑡 =
.

𝑙𝑜𝑔 100 ≈ 10 days              (11) 

This is for example observed in the Indian city of Mumbai, with over 
2500 cases reported in ten days.  

The inhibiting phase, caused by constraining factors (like social 
distancing, growth of antibodies within cells, environmental effect, 
etc.) can be considered proportional to 𝛽𝑝 (𝛽 is a constant) which in 
turn is already proportional to 𝛼𝑝. So we have a factor, 𝛾𝑝  (where 
𝛾 = 𝛼𝛽) and this is negative inhibiting growth. We now have: 

= 𝛼𝑝 − 𝛾𝑝                 (12) 

This can be written as:  

= 𝑘𝑝 1 −                (13) 

𝑘 = 𝛼
𝛾 , 𝑘

𝑘′
= 𝛼

𝑝  

This has form of Riccati equation, with solution (Zelikin, 2000): 

𝑝 =                 (14) 

where 𝐴 is a constant of integration. This gives rise to a S – shaped 
curve with inflection point I at 𝑘 , and upper asymptote at 𝑝 = 𝑘′ 
(figure 1). 
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Figure 1: Growth and flattening of the curve 

𝑡 = 𝐼 = 𝑘′ , 𝐼 = Point of inflection, 𝑝 = [𝑡 , 𝑝 ] , where, 𝑡 = 𝑙𝑜𝑔𝐴  , 

𝑝 = 𝑘′ at the inflection point.   

Turning point 𝑡  depends on 𝑘 and 𝐴, and 𝑝 asymptotically reaches 
𝑘′. Number of curves can be drawn for different values of 𝑘 = 𝛼

𝛾, 
𝑘

𝑘′
= 𝛼

𝑝. As there are no ways of theoretically estimating 𝛼, 𝛾, 𝐴, 
etc. empirical data of different regions (countries) with data on rate 
of growth of 𝑝 with 𝑡, can be used to deduce the constants by fitting 
the curve.  

At present it is not clear if the inflection point has been reached in 
many of the regions. A more generalized equation with 𝛾 (and 𝛼) as 
functions of time is: 

= 𝛾(𝑡)𝑝(𝑝 − 𝜖)               (15) 

With solution 𝑝 =
∈

( ) 

𝜙(𝑡) = 𝜖 ∫ 𝜙 (𝑡)𝑑𝑡 ;  𝜙 =
𝑑𝜙

𝑑𝑡             (16) 

The 𝜙(𝑡) function varying continuously between ∞, −∞ as 𝑡 varies 
between 𝑡  and 𝑡 . Points of inflection found from, 

𝜙 (𝑡) + 𝜙 (𝑡)(2𝑝 − 𝜖) = 0             (17) 

(i.e. = 0) 

The equation (12) gives rise to an S-shaped curve that flattened 
asymptotically with time scales for turning (inflection) points, as 
seen from figure 1. The first term in equation (12) gives rise to an 
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initial exponential growth. This is still continuing in many places, 
including cities like Delhi. We also have growing number of cases in 
many countries, for instance, right now number of cases in India is 
increasing steadily at about ten thousand per day (as of mid-June 
2020). The second term in equation (12), which is the damping term 
that has yet to dominate in several places.  

However we do want the number of cases to drop and not just have 
a flattened curve. This can happen if the second term in equation (12) 
dominates. So we have: 

= −𝛾𝑝                 (18) 

− = 𝛾𝑑𝑡                                        (19) 

This gives, − = 𝛾(𝑡 − 𝑡 )                          (20) 

Here again 𝑝  is the initial number at 𝑡 . This gives a relation:  

𝑝 ∝                              (21) 

The time taken for 𝑝  to fall to 𝑝  (or for 𝑝 = , 𝑛 > 1 ) can be 
estimates from equation (20).  

So the two limits are, the exponential growth (first term in equation 
(12) dominates) followed by steady decline (second term in equation 
(12) dominates). Thus we have three cases: 

1. Rise (first term dominates) 

2. Flatten (both terms present) 

3. Decline (second term dominates) 

4.  
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Figure 2: Rise, flattening, and decline of the curve 

In fact this plot is similar to the number of daily cases reported by 
certain countries like Australia and New Zealand.  

Thus we now have a more complete picture of the evolution of the 
virus – rise, flattening, and decline (Sivaram, Arun, Kiren, 2020). 
Actual data in each area can be used to predict the declines. 

 

5. Diffusion equation for virus spread  

A suitable diffusion equation for space and time dependence of the 
number of droplets (containing viruses) is (within a hotspot region):  

= (𝑅 − 1)𝑁 + (∇ 𝑁)             (22) 

𝑁 is the number density (number per unit volume), 𝑣 is the average 
droplet velocity (as estimated from equation (4)), the number of 
viruses per droplet can be estimates. 𝑅  is the multiplying factor 
(𝑅 > 1), could be 3 or more, for each virus encounter. 𝜆 is the mean 
free path  

and 𝜆  is the mean free path of the virus at the hotspot, estimated in 
section 3. This implies average time taken between encounters as 
𝜆 𝑣⁄ = 𝜏, time constant.  

The above diffusion equation can be solved by standard separation 
of variables method. The general solution is given as: 
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𝑁 (𝑟, 𝑡) = 𝑁(0) exp[(𝑘 𝜏⁄ )𝑡]
( ⁄ )                         (23) 

𝑘 is a constant, 𝑁(0) is the initial number density, 𝑟  is the extent 
(radius) of the hotspot. Equation (23) gives the number density both 
as a function of time and distance away from an ‘active region’. Note 
the exponential increase and (sin 𝑟 )/𝑟 factor. If 𝜏 becomes large, i.e. 
encounter times become longer and longer, exponential becomes 
small and sin(𝑟 𝑟⁄ ) dominates. 𝑁 can also be taken as population of 
people, each person transmitting or receiving droplets (each with 
viruses). So we can solve for virus density as also density of people 
infected.  

6. Conclusions 

In this work we discuss some quantitative models for the spread of 
viruses such as the Corona virus and look at the science behind the 
‘social distancing’ between individuals that could reduce the rate of 
spread by increasing the time scale for propagation. We have also 
modelled the growth, flattening and decay of the curve and these 
models match with those observed in various countries. With this 
model we have a more complete picture of the evolution of the virus 
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