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MHD Mixed Convection Flow over a 
Permeable Vertical Plate with Buoyancy and 
Soret Effects 
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Abstract 

This study examines the problem of steady, MHD, mixed 
convection flow of an incompressible viscous fluid past a 
semi-infinite vertical permeable plate with slip condition 
at the boundary layer. The flow field is exposed to the 
influence of buoyancy, Ohmic heating and Soret effects. 
The governing equations include the continuity, linear 
momentum, energy and mass transfer equations which 
are solved analytically by using perturbation method. The 
results of this parametric study on the velocity, 
temperature and concentration distributions are shown 
graphically and the physical aspects of the problem are 
highlighted and discussed. The effect of shear stress, rate 
of heat and mass transfer coefficients at the channel walls 
are displayed in tables. 
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1.   Introduction 

MHD heat transfer has gained significance owing to recent 
advancement of space technology. In recent years, progress has 
been considerably made in the study of heat and mass transfer in 
magnetohydrodynamic flows due to its application in many 
devices, like the MHD power generator and Hall accelerator. We 
realize the influence of magnetic field from the work of Barletta et 
al. [1] and Afify [2]. The problem of mixed convection resulting 
from flow over a heated vertical plate is of considerable theoretical 
and practical interest. Plenty of different problems involving mixed 
convection had investigated by Yih [3], Barletle [4], Chin et al. [5], 
Motsa [6], and Pal and Talukdar [7]. 

 

The Soret effect has gained considerable interest in Newtonian 
convective heat and mass transfer. Such effect is significant when 
density differences exist in the flow regime. Soret effect is 
important for intermediate molecular weight gases in coupled heat 
and mass transfer in binary systems, geophysical systems, often 
encountered in chemical process engineering and also in high-
speed aerodynamics. Kafoussias and Williams [8], Angel et al. [9], 
Alam and Rahman [10], Abreu et al. [11], and Gaikwad et al. [12] 
showed the significant of Soret effect in various studies. 

 

Transport phenomena involving the combined influence of thermal 
and concentration buoyancy are often encountered in many 
engineering systems and natural environments. There are many 
applications of such transport processes in the industry, notably in 
chemical distilleries, heat exchangers, solar energy collectors and 
thermal protection systems. The interaction of buoyancy has 
increased greatly during the last decade due to its importance in 
many practical applications. The effect of buoyancy was analyzed 
for different problems by El-Alimi et al. [13], Shateyi [14], and 
Elzubier et al. [15]. Ohmic heating is a developing technology with 
considerable potential for the food industry. The main advantages 
of Ohmic processing are the rapid and relatively uniform heating 
achieved, together with the lower capital cost compared to other 
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electro heating methods such as microwave and radio frequency 
heating. The potential applications of Ohmic heating technique in 
food industry are very wide, for example blanching, evaporation, 
dehydration and pasteurization. In view of these applications Abo-
Eldahab and El-Aziz [16], Osalusi and Harris [17], and Pal and 
Talukdar [18] investigated problems involving the Ohmic 
dissipation effect. It is more realistic to include Ohmic effect in 
order to explore the impact of the magnetic field on the thermal 
transport in the boundary layer.  

 

Motivated by the above referenced works and the numerous 
possible industrial applications of engineering fields, it is of 
paramount interest in this study to analyze the steady 
magnetohydrodynamic mixed convective heat and mass transfer 
problem of a viscous incompressible fluid flow with the influence 
of buoyancy, Ohmic heating, viscous dissipation, heat absorption 
parameter and Soret effect. We solve this problem analytically by 
using perturbation method and the effects of all significant 
parameters are studied analytically. We illustrate the influence of 
various flow parameters on the velocity, temperature, 
concentration skin friction coefficient, Nusselt number and 
Sherwood number distributions through graphs. The rest of the 
paper is structured as follows: we present the governing equations 
in Section 2. We proceed in Section 3 to solve the set of equations of 
the viscous incompressible fluid by using perturbation method. 
Section 4 provides a discussion of results and we present 
conclusions in Section 5. 

2.  Formulation of the Problem 

We consider the steady two-dimensional flow of an incompressible, 
viscous, electrically conducting and heat-absorbing fluid past a 
semi-infinite vertical permeable plate subject to slip boundary 
condition at the interface of fluid layers. A uniform transverse 
magnetic field of magnitude 0B  is applied in the presence of 
radiation and concentration buoyancy effects in the direction of 
y  axis. Also, viscous dissipative and Ohmic dissipative effects are 

present with Soret effect.  
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Fig. 1- Flow geometry of the problem

The wall 0y   is maintained at a constant temperature 

concentration wC , higher than the ambient temperature 

ambient concentration C , respectively.   Rest of properties of the 
fluid are assumed to be constant.  

The governing equations for this investigation are based on the 
balances of mass, linear momentum, energy and concentration 
species. Taking into consideration these assumptions, the equations 
that describe the physical situation can be represented as follows:
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Flow geometry of the problem 
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(5) 

The boundary conditions of the problem are 

           
1

, , 0slip w w
k uu u T T C C at y

y


    


          (6) 

          
0, ,w wu u T T C C as y                 (7) 

where x  and y  are the dimensional distances along and 
perpendicular to the plate, respectively. u  and v  are the 
components of dimensional velocity u  along x  and y  directions, 
respectively. g  is the gravitational acceleration, p  is the pressure, 

0B  is the magnetic field coefficient,   is the magnetic permeability 
of the fluid,   is the density,   is viscosity of the fluid,   is the 
kinematic viscosity, T  and C  are the thermal and concentration 
expansion coefficients, respectively.  T  is the dimensional 
temperature of the fluid, pC  is the specific heat of constant 

pressure, K  is the thermal conductivity, Q  is the dimensional heat 
absorption coefficient, C  is the dimensional concentration, D  is the 
molecular diffusivity, TK  is the thermal diffusion ratio, T  is the 

mean temperature of wT  and  T , k  is the permeability of the 
porous medium and 1  is the dimensional porous parameter. The 
fourth and fifth terms on RHS of the momentum equation (2) 
denote the thermal and solutal buoyancy effects, respectively. The 
third and fourth term on the RHS of equation (4) denote the 
inclusion of viscous dissipation and Ohmic dissipation effects, 
respectively.  
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Since the motion is two dimensional and length of the plate is large 
enough so all the physical variables are independent of x axis. 
Therefore, 

0u
x





                                              (8) 

We consider that the suction velocity at the plate surface is a 
constant and the suction velocity takes the following form 

                                                  0v V                                                (9) 

where 0V  is a scale of suction velocity which has non-zero positive 
constant. 

Outside the boundary layer, Eq. (2) gives  

                                              

1 dp A
dx

                                          (10) 

where  1A   is the pressure gradient and Eq. (3) reduces to 

                                                
0dp

dy
                                               (11) 

so that the pressure p  is independent of y . 

Introducing the following non-dimensional quantities 

     

0

0 0

, , , ,
w w

u v V y T CU V Y T C
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 

 

 
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 
 


       (12) 

In view of the above non-dimensional variables, the basic field of 
Eqs. (2), (4) and (5) can be expressed in non-dimensional form as 

                        

2
2

2 0d U dU M U Gr Gc A
dY dY

                           (13) 
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2 2
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 
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2 2
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dY dY dY
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 
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Together with boundary conditions 
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dUU U at Y
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                   (16) 

                               0, 0, 0U as Y                            (17) 

where Gr  is the Grashof number, Gc  is the solutal Grashof 
number, 2M  is the magnetic field parameter, Pr  is the Prandtl 
number,   is the heat absorption parameter, Sc  is the Schmidt 
number, E  is the Eckert number, Sr  Soret number and 1  
dimensional porous permeability parameter which are defined as 
follows:  
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  and  .                                                (18) 

The Eckert number is always less than unity since the flow due to 
the Joules dissipation is supper imposed on the main flow so that 
we consider as 

                                                           1E  .                                                  (19) 

3. Method of Solution 

The set of partial differential Eqs. (13) – (15) cannot be solved in 
closed-form. However, it can be solved analytically after these 
equations are reduced to a set of ordinary differential equations in 
dimensionless form which can be done by representing the velocity 
U , temperature   and concentration   in terms of power of Eckert 
number E as follows: 
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       2

0 1U Y f Y Ef Y E                           (20) 

                                       
       2

0 1Y Y E Y E                            (21) 

                                       
       2

0 1Y Y E Y E                             (22) 

Substituting (20)–(22) into Eqs. (13)–(15) and equating the 
corresponding terms of the equations, neglecting the higher order 
of  2E  and simplifying to get the following pairs of equations 

for 0f , 0 , 0  and 1f , 1 , 1  

                            2
0 0 0 0 0f f M f A Gr Gc                               (23) 

                                    2
1 1 1 1 1f f M f Gr Gc                               (24) 

                                               0 0 0 0Pr Pr                                      (25) 

                      

 2
2

1 1 1 0 0Pr Pr Pr U PrMU          
 

                (26) 

                                                  0 0 0Sc Sr                                      (27)
 

                                                   1 1 1Sc Sr                                           (28) 

where the prime denotes ordinary differentiation with respect to Y
. The corresponding boundary conditions are 

       
0 1 0 1 1 1 0 1 0 1, , 1, 0, 1, 0 0f f f f at Y                 (29) 

0 1 0 1 0 10, 0, 0, 0, 0, 0f f as Y           

                                                                                                                            (30) 

The solutions of Eqs. (23) – (28) with the help of boundary 
conditions (29) and (30), are 

                             
31 2

0 3 4 6 5
YY Yf A e A e A e A                                  (31) 
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where ’s  and ’s are given in Appendix. 

Substituting the above solutions (31) – (36) in (20) – (22), we get the 
final form of velocity, temperature and concentration distributions 
in the boundary layer as follows: 
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The physical quantities of interest are the wall shear stress  is 
given by 

 

Therefore, the local skin friction factor  is given by  

                                               
                                          (40) 
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The local surface heat flux is given by 

  0

00

w
w

Yy

K T T VTq K
y Y








  
  

 
 

where  is the effective thermal conductivity.  

The local Nusselt number  /x w wNu q T T    can be written as 
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The local surface mass flux is given by  
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      (45)

 

where is the local Reynolds number. 

4.  Result and Discussion 

Graphical representation of results is very useful to discuss the 
physical features presented by the solutions. In order to get a 
physical insight of this problem, factors such as velocity, 
temperature, concentration, Skin friction, Nusselt number and 
Sherwood number have been discussed by assigning numerical 
values to various parameters obtained in the mathematical 
formulation of the problem and the results are graphically shown 
in Figures 2-19.  

The impressions of a transverse magnetic field to an electrically 
conducting fluid gives rise to a resistive type force called the 
Lorentz force. This force has the tendency to slow down the motion 
of the fluid. Application of a magnetic field moving with the free 
stream has the tendency to induce a motive force which decreases 
the motion of the fluid and which is displayed in Fig. 2. The 
increments of porous permeability parameter are used to support 
the velocity profile and it is shown in Fig. 3. Usually the Grashof 
number and solutal Grashof number boost the fluid velocity. The 
effect of increasing Grashof number and solutal Grashof number is 
used to increase the velocity field as expected and it is shown in 
Fig. 4 and Fig. 5, respectively. Figure 6 indicates that increasing 
heat absorption parameter suppresses the velocity significantly. 
The velocity field shrinks for the rise of Prandtl number which is 
shown in Fig. 7. 

 

 

0 /xRe V K 
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Fig. 2- Effect of magneic field invelocity distribution 

 

 
Fig. 3- Effect of porous permiability in velocity distribution 

 

 
Fig. 4- Effect of thermal Grashof number in velocity distribution 
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Fig. 5- Effect of solutal Grashof number in velocity distribution 

 

 
Fig. 6- Effect of heat absorbtion parameter in velocity distribution 

 
Fig. 7- Effect of Prandtl number invelocity distribution 
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Fig. 8- Effect of heat absorbtion parameter in temperature distribution 

 

Fig. 9- Effect of Prandtl number in temperature distribution 

 
Fig. 10- Effect of Schmidt number in temperature distribution 
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Fig. 11- Effect of Soret number in temperature distribution 

It is well known that the heat absorption (i.e. ) causes the 
fluid temperature to decrease because which has the tendency to 
decrease the thermal buoyancy effects. Therefore the increments of 
heat source parameter diminish the heat transfer and we illustrate 
this in Fig. 8. The increase of Prandtl numbers is equivalent to 
increasing the thermal conductivities, and therefore heat is able to 
diffuse away from the heated plate more rapidly. So increase in the 
Prandtl number results a decrease of fluid temperature which is 
presented in Fig. 9. Figure 10 illustrates that the heat transfer falls 
off for the rise of Schmidt number. An increase in the Soret number 
is used to increase the boundary layer thickness. Therefore the heat 
dispersal will be reduced and heat transfer increases for increasing 
the Soret number which is plotted in Fig. 11. 

An increase in Schmidt number decreases molecular diffusion D. 
Hence, the mass transfer of the species is higher for small values of 
Schmidt number and lower for larger values of Schmidt number 
and we plot this in Fig. 12. The concentration increases for 
increasing Soret number and it is observed from Fig. 13. 

0 
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Fig. 12- Effect of Schmidt number in concentration distribution 

 

Fig. 13- Effect of Soret number in concentration distribution 

 

Fig. 14- Effect of solutal Grashof number in skin friction distribution 
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Fig. 15- Effect of porous permiability parameter in skin friction distribution  

We present the variation of the local skin friction co-efficient  
against the thermal Grashof number for various values of  and 

. Figure 14 shows that the increments of mass Grashof number 
used to support the rate of fluid velocity. It is noticed from Fig. 15 
that value of the shearing stress falls rapidly for the rise of porous 
permeability parameter. The Nusselt number Nu  against the 
magnetic field parameter  for various values of  and Pr  are 
graphically displayed. The Nusselt number decreases 
monotonically for increasing the value of heat absorption 
parameter and Prandtl number which are showed through The Fig. 
16 and Fig. 17, respectively. The Sherwood number Sh  against the 
magnetic field parameter  for various values of and  is 
presented graphically. Figure 18 illustrates that an increase in 
Schmidt number result in fall off rate of mass transfer. The 
Sherwood number profiles increase with an increase in Soret 
number and the curves could be seen in Fig. 19. Throughout the 
computations we employ 0.2E   and 0.02A  . It is observed that 
the agreement with the theoretical solution of all profiles is 
excellent. 




Gc

M 

M Sc Sr
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Fig. 16- Effect of heat absorption parameter in Nusselt number distribution 

 

 
Fig. 17- Effect of Prandtl number in Nusselt number distribution 

 

 

  Fig. 18- Effect of Schmidt number in Sherwood number distribution 
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Fig. 19- Effect of Soret number in Sherwood number distribution 

 

Tables 1 to 4 are presented to show the influence of  , ,Gr Gc   
and Sc in skin friction, Nusselt number and Sherwood number 
distributions. Tables 1 & 2 show that an increase in the thermal and 
mass Grashof numbers increases the skin friction and Nusselt 
number where as it decreases the Sherwood number. Table 3 
displays that the skin friction and Nusselt number distributions 
decrease for increasing the heat absorption. The Sherwood number 
increases with an increase in the heat absorption parameter. Table 4 
displays that an increase in the Soret number increases the skin 
friction, Nusselt number and Sherwood number distributions. 

 

TABLE 1: Effect of Gr  in 0 , 0Nu  & 0Sh  

Gr  0  0Nu  0Sh  

0.0000 0.4746 -1.5901 0.1950 

1.0000 0.8199 -1.5453 0.1722 

2.0000 1.1772 -1.4613 0.1299 

3.0000 1.5578 -1.3381 0.0679 
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TABLE 2: Effect of Gc  in 0 , 0Nu  & 0Sh  

Gc  0  0Nu  0Sh  

0.0000 0.7108 -1.5170 0.1577 

0.5000 0.8277 -1.5048 0.1516 

1.0000 0.9445 -1.4914 0.1450 

1.5000 1.0610 -1.4769 0.1377 

TABLE 3: Effect of   in 0 , 0Nu  & 0Sh  

  0  0Nu  0Sh  

1.0000 1.2105 -1.0796 -0.0617 

2.0000 1.1772 -1.4613 0.1299 

3.0000 1.1568 -1.7460 0.2725 

4.0000 1.1422 -1.9825 0.3908 

TABLE 4: Effect of Sr  in 0 , 0Nu  & 0Sh  

Sr  0  0Nu  0Sh  

0.0000 1.0370 -1.5140 -0.6000 

0.5000 1.1772 -1.4613 0.1299 

1.0000 1.3101 -1.3942 0.7921 

1.5000 1.4321 -1.3130 1.3652 
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5.   Conclusions 

The mathematical modeling for the steady MHD mixed convective 
heat and mass transfer boundary layer slip flow in permeable 
vertical plates with the influence of buoyancy, Ohmic heating and 
Soret effect has been analyzed. An analytical solution is obtained 
for this problem by using perturbation method and numerical 
results are presented in graphs and tables. The numerical 
calculation results satisfy the boundary layer conditions 
mathematically. The effects of various significant parameters on 
this study are analyzed. The key observations of the present study 
are listed below. 

i. An increase in the magnetic field diminishes the fluid 
velocity 

ii. The rise of thermal and mass buoyancy effects and porous 
permeability parameter are used to support the fluid 
velocity 

iii. An increase in heat absorption parameter and Prandtl 
number is to diminish the velocity and temperature profiles 

iv. The heat and mass transfer and Sherwood number 
distributions are increasing significantly for the rise of Soret 
number 

v. The rise of Schmidt number results in decrease of the heat 
and mass transfer and Sherwood number 

vi. The shear stress decreases for increasing porous 
permeability parameter but an increase in the mass Grashof 
number is to increase the shear stress 
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