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Effect of Boussinesq-Stokes Suspension over 
an Exponentially Stretching Sheet in a 
Hydromagnetic Flow 

S Manjunath* and L Venkata Reddy†  

Abstract  

The paper presents the study of velocity profiles in a 
hydromagnetic flow of Boussinesq-Stokes suspension 
over an exponentially stretching impermeable sheet.   The 
basic equations governing the flow are in the form of 
partial differential equations. The equations have been 
transformed to nonlinear ordinary differential equation 
by applying a suitable local similarity transformation. The 
solution of the transformed equation is obtained by using 
differential transform method (DTM) with assistance 
from the Newton-Raphson method in obtaining the 
unknown initial values. The solution is obtained as a 
power series with assured convergence.  The effects of 
local Chandrasekhar number and couple stress parameter 
on velocity profiles are studied. The findings of the study 
are represented graphically.  
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1. Introduction 

Boundary layer flow over a continuously stretching sheet has 
several applications such as hot rolling, wire drawing, glass fiber 
production and paper production. After the pioneering theoretical 
work of Crane [1], innumerable works have appeared on various 
aspects of flow characteristics in Newtonian fluids' boundary layer 
flow over a stretching boundary. Most of these works deal with the 
study of boundary layer flows over a stretching surface where the 
velocity of the surface is assumed to stretch in linear proportion to 
the distance from the fixed origin (slit) as pioneered by Crane [1] or 
in quadratic proportion as pioneered by Kumaran and Ramanaiah 
[2]. 

The liquids surrounding the stretching sheet are known to serve 
the purpose of cooling of the sheet at a desired rate and it is 
common knowledge now that this has a great influence on the 
characteristics of the final product. A good discussion on this is 
given in the work of Siddheshwar and Mahabaleshwar [3]. 
Magnetic field is known to regulate the flows of electrically 
conducting liquids and this can be used to good effect in the 
applications involving the stretching sheet. Abel and Begum [4] 
carried out an analysis to study the magneto hydrodynamic 
boundary layer flow behavior and heat transfer characteristics of a 
viscoelastic fluid flow over a stretching sheet with radiation and for 
the case of large Prandtl numbers. Khaleque and Samad [5] 
analyzed the radiation and viscous dissipation effects on a steady 
two-dimensional magneto-hydrodynamics free convection flow 
along a stretching sheet with heat generation. From the practical 
point of view, stretching cannot be a linear function or even a 
quadratic function of the axial coordinate unless the process is 
precisely done.  

In view of this, there is a need to make investigation of flow due to 
stretching that is exponential in the axial coordinate.  Magyar and 
Keller [6] for first time studied the heat and mass transfer in a 
boundary layer flow due to an exponentially stretching continuous 
surface.  Elbashbeshy [7] studied the exponential stretching sheet 
problem with suction. Partha et al. [8] examined the effect of 
viscous dissipation on the mixed convective heat transfer of a 
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Newtonian liquid over an exponentially stretching surface. Khan 
and Sanjayanand [9] extended this study to viscoelastic liquids. 
Sanjayanand and Khan [10] studied heat and mass transfer in a 
viscoelastic boundary layer flow over exponentially stretching 
sheet. Chen et al. [11] used the Adomian method for studying the 
momentum and heat transfer equation in a Newtonian liquid with 
exponential surface conditions. Sajid and Hayat investigated [12] 
the influence of thermal radiation on the boundary layer flow due 
to exponentially stretching sheet. Haas and Oliveski [13] studied 
the exponential class of similarity solutions for the hydromagnetic 
Falkner-Skan equation.  

Most of the above works use either a first order solution or a 
difficult- to - use homotopy analysis method. We have chosen to 
study the magnetohydrodynamic stretching sheet problem 
involving a Boussinesq-Stokes suspension on the reason explained 
earlier. Motivated by the above investigations and possible 
applications, authors contemplate to study momentum in a flow of 
Boussinesq - Stokes suspension over an exponentially stretching 
sheet. The differential transform method (DTM) is used to obtain a 
series solution. 

Nomenclature 
C        Couple stress parameter 

f        Dimensionless stream function 

l          Reference length 

Q         Chandrasekhar number 

Re       Local Reynolds number 

u         Horizontal velocity component  

v         Vertical velocity component 

x          Horizontal Cartesian coordinate 

y          Vertical Cartesian coordinate  
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Symbols 
 

       Similarity variable 

        Kinematics coefficient of viscosity 

        Couple stress viscosity 

       Stream function 

       Electrical conductivity 

       Density 

2. Mathematical formulation 

The governing boundary layer equations for momentum in the 
present problem are 

0
u v

  
x y

 
 

 
                                          (1) 

 
2 2 2 4

0

2 4

mu v u H u
u  v  υ  u   υ  

x y y y

      
          

         (2) 

where u and v are the velocity components of the fluid in x and y 
directions respectively,    is the kinematics coefficient of viscosity, 
   is couple stress viscosity, m  is the magnetic permeability.   is 
the electrical conductivity, 0H  is the applied magnetic field and    
is the density of the fluid. 

 The flow, as mentioned earlier, is considered to be generated solely 
by stretching the boundary surface in the x - direction with the 
stretching assumed to be in exponential proportion to the axial 
coordinate. Following Elbashbeshy [7], we employ the following 
boundary conditions on velocity. 
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2
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y

w
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l y

u y

 
      

  


     

                  (3)  

where Uw stands for stretching velocity of the boundary, U0 is a 
constant and l  is the reference length. In the next section, we 
present a local similarity solution of the boundary value problem 
given by the equations (1) - (3). 

3. Solution of the momentum equation 

Introducing the stream function  y,xψ  defined by 

ψ ψu , v
y x

 
  
 

,                                       (4) 

into equation (2) we get   
 

   

5 3 2

5 3

2 2 2
0

2

ψ ψ ψ ψυ υ
y y y x y

ψ ψ ψ 0
x y y

m H

     
    

     
       

                      (5) 

The boundary conditions for solving equation (5) can be obtained 
from equations (3) as 
 

3

0 3

3

3

ψ ψ ψ
U e x p , 0  , 0 a t y 0

y x y
ψ ψ

0 , 0 a s
y y

x

l

y

   
     

    


        

                   (6)
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We now use the following non-dimensionalization and 
transformation: 

X x
l

  , yY
l

 , 
ψ ( x , y)( , ) 2 Re (η) exp

υ 2
XX Y f      

 
,                            

                                                                                                                               (7) 

where 







2
Xexp

2
ReYη  is similarity variable. Substituting the 

above transformation into equations (5) and (6), we obtain the 
nonlinear boundary value problem given below: 

  022 2  fQfffffC ηηηηηηηηηηη ,     (8) 

0, 1, 0 at 0

0, 0 as

f f f

f f

 

 

     


    
,                                 (9) 

and also we have assumed the following conditions to solve the 
fifth order differential equation (8) 

   ff ,  at  0 ,                         (10) 

where 















w

m
U

Hl
Q



 2
0

2
 is the dimensionless local Chandrasekhar 

number,  












 


wUl

XC
32

)2(exp
 is local couple stress parameter and   

 XUUw exp0 . In order to use the differential transform 
method for solving the equations (8), we use a new independent 

variable by defining  eZ 1 .  Equation (8) now becomes 
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The boundary conditions (9) and (10) in terms of   Z are  
 

0, 1, 1, 3 2, 11 6 at 0

0, 0 at 1

f f f f f Z

f f Z
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The differential transform of , [ ( )]kf D f Z  is defined as follows: 

0
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!
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






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k
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Applying differential transform method to equation (11), we get 
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where ...,3,2,1,0k                                                                       (14) 

Using Mathematica, we can obtain ],7[],6[],5[ FFF ... from 
equation (14) with  
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Taking the inverse differential transform, we get 
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where   and   are determined using the unused conditions 
0)1( f  and 0)1( f  by Newton-Raphson method as shown in 

the table 1. 

 

Table 1: 
 

Q 0.00 2.00 

C 0. 10 0. 20 0.30 0. 10 0. 20 0.30 

  -0.9953 -0.9254 -0.8866 -1.4877 -1.3093 -1.2035 

  4.2800 2.7827 2.1696 11.6072 7.3352 5.5649 

 

4. Results and discussion 

In the paper we have investigated the hydromagnetic boundary 
layer flow of a Boussinesq-Stokes suspension over an exponentially 
stretching impermeable sheet. Highly nonlinear partial differential 
equations characterize the flow phenomena. The equations have 
been transformed into non-linear ordinary differential equations by 
applying a suitable local similarity transformation. The solution of 
transformed momentum equation is obtained by using differential 
transform method (DTM) with assistance from the Newton 
Raphson in obtaining the unknown initial values. The findings of 
the study are depicted in the form of graphs. In figure 1, the graphs 
of )(f  and )(f   versus  are drawn for different values of the 
couple stress parameter C with local Chandrasekhar numbers  Q = 
0.00 and Q = 2.00. The reason for obtaining the above results is that 
the suspended particle in the Boussinesq - Stokes suspension 
increase the velocity of the carrier liquid and hence to decrease the 
flow. The effect of magnetic field is to oppose any motion in the 
liquid. On the above reason we find from figure 1 that the effect of 
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increasing the Chandrasekhar number Q is to decrease the velocity 
profiles )(f and )(f   through the boundary layer. Also we find 
from the graph that the effect of increasing the values of couple 
stress parameter C is to increase the velocity profile )(f and 

)(f  through the boundary layer. 
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Figure 1: Plots of )(f and )(f   verses  for different values of C with                
Q = 0.00 and Q = 2.00. 
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