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Study of Thermal Convection in Micropolar 
Fluids Occupying a Rectangular Box 

S  Manjunath * and N P Chandrashekara†  

Abstract  

 

This paper is a Fourier–series assisted numerical study of 
two–dimensional steady thermal convection in 
micropolar fluid occupying a rectangular box. The 
horizontal walls of the cavity are uniformly heated to 
establish a linear temperature in the vertical direction.  
The vertical walls are insulated.  The critical Rayleigh 
number is obtained numerically as a function of coupling 
parameter, couple stress parameter and aspect ratio, and 
the same is plotted graphically.  The results of slender 
vertical, rectangular and square box of finite aspect ratio 
are obtained as limiting cases of the study.  

 

Keywords:  Benard convection, critical Rayleigh number, Fourier 
series, micropolar fluid, aspect ratio.  

1. Introduction 

 

Convective flow in a thin layer of fluid, free at the upper surface 
and heated from below, is of fundamental importance and a 
prototype to a more complex configuration in experiments and 
industrial processes.  The convective flows in a liquid layer can be 
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driven by buoyancy forces due to temperature gradients and / or 
thermo capillary forces caused by surface tension gradients.  
Thermal convective problems have long been studied extensively 
since the pioneering experimental and theoretical works of Benard 
[1], Rayleigh [2] and Pearson [3].  Most of the previous studies were 
concerned with convection in Newtonian fluids.  However, much 
less work has been done on convection in non-Newtonian fluids 
such as the micropolar fluids. The theory of micropolar fluids, as 
developed by Eringen [4], has been a field of sprightly research for 
the last few decades especially in many industrially important 
fluids like paints, polymeric suspensions, colloidal fluids, and also 
in physiological fluids such as normal human blood and snivel 
fluids.  Rama Rao [5] studied the effect of a magnetic field on 
convection in a micropolar fluid.  Sharma and Gupta [6] studied 
convection in micropolar fluids in a porous medium.  Siddheshwar 
and Sri Krishna [7] presented both linear and nonlinear analyses of 
convection in a micropolar fluid occupying porous medium.  
Rudraiah and Siddheshwar [8] analysed the effects of non-uniform 
temperature gradients of parabolic and stepwise types on the onset 
of Marangoni convection in a micropolar fluid.  This study was 
later extended by Siddheshwar and Pranesh [9] to include the effect 
of a magnetic field and buoyancy forces. The effect of non uniform 
temperature gradient on Benard convection in micropolar fluids, 
using single tem Galerkin expansion technique has been 
investigated by Siddheshwar and Pranesh [10].  In this paper, we 
have investigated the effect of couple stress parameter, coupling 
parameter and aspect ratio on critical Rayleigh number in a 
rectangular, square and slender vertical box numerically. 

Nomenclature 

A Aspect ratio 

b Breadth of rectangular cavity 

g
  Acceleration due to gravity 

h Height of rectangular cavity 

I Momentum of Inertia 
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
  Spin 

N1 Coupling parameter 

N2 Inertia parameter 

N3  Couple stress parameter 

p pressure 

Pr Prandtl number 

q  Velocity 

Ra Rayleigh number 

Rac Critical Rayleigh number 

u Horizontal velocity component 

w Vertical velocity component 

x  Horizontal Cartesian coordinate 

z Vertical Cartesian coordinate  

Greek symbols 
  Co-efficient of thermal expansion 

T  Temperature difference between the two horizontal plates 

  Thermal diffusivity 

  Co-efficient of shear kinematic viscosity 

  Co-efficient of spin viscosity 

  Co-efficient of bulk viscosity 

  Stream function 

  Actual density 

0  Reference density 

  Deviation from static temperature 

  Co-efficient of coupling viscosity or vortex viscosity 
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  Differential operator  

2
A  Modified Laplacian operator 

Subscripts 
c Critical quantity 

Superscripts 
* Dimensionless quantity 

2.  Mathematical Formulation  

We consider two–dimensional thermal convection in micropolar 
fluids occupying a rectangular box with height h and width b. We 
choose a cartesian coordinate system with the x–axis in the 
horizontal direction and z–axis in the vertical direction. The 
horizontal walls are at z = 0 and z = h and the vertical walls are at      

x = 
2
b

  and x = 
2
b   as shown in Fig. 1. The fluid is heated from 

below and cooled from above as in a typical Rayleigh-Benard 
problem, the temperature difference between the bounding walls 
being ∆T.      

 

Figure 1:  Schematic diagram of the flow configuration. 
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The governing equations are: 

Continuity equation: 

0q


                                                         (1) 

Conservation of linear momentum: 

  220 q p ρ gq q
       

                 
        

              (2) 

Conservation of angular momentum: 

 0
2 2I qq

          
                         

           
           (3) 

Conservation of energy: 

2T Tq
 
   
 
 

                                           (4) 

Equation of State:        

 0 01 ( )ρ ρ T T   .                                       (5) 

In the Micropolar fluid, the particle spin matches with the vorticity 
of the carrier fluid and this result in an additional biharmonic term 
in equation (2). This is a drag term contributed to by the suspended 
particles. The effect of suspended particles in equation (4) on 

temperature T comes through the velocity q


. The upper and 
lower boundaries are at isothermal temperatures 0T  and TT 0  
respectively, where T  is positive temperature difference. All the 
boundaries are assumed to be impermeable and perfectly heat 
conducting. From the governing equations (1) – (5) it follows that a 
motionless conduction state exists only if the static temperature 
distribution is independent of x and depends linearly on z. The 
present study is restricted to this case. 
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It is convenient to express the temperature in the form 

0 1 zT T ΔT θ
h

     
 

                                           (6) 

where θ  is the deviation from the static temperature. 

The component forms of equations (1) - (5) for steady flow are: 

0u w
x z

 
 

 
,                                            (7) 

  2 2

2 20 0

21 0y

o

p u u u uu w
ρ x z x zx z

        
      

        
,            (8) 

  2 2

2 20 0 0

21 0y

o

p w w w wg u w
ρ z x x zx z

         
       

         
     (9) 

2 2

2 2 2 0y y y y
y

u w I u w
z x x zx z

                                 
    (10) 

2 2

2 2 0T T T Tu w
x zx z

    
     
     

                       (11) 

1 1o
zρ ρ ΔT
h

          
.                          (12) 

Since the flow is two-dimensional, we introduce the stream 
function   by   

,ψ ψu w
z x

 
  
 

.                                         (13) 

We also define non-dimensional variables denoted by asterisks 

2
* * * * * *( , ) , , , , ,y y

x z T hx z T
b h T T

                
.        (14)  
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By eliminating the pressure from (8) and (9), introducing the 
expressions (13) and (14) into the resulting equation and equation 
(10) and (11) and dropping the asterisk, we get the governing 
equations in the following form: 

 
2

2 4 2
1 1

( , )1 0
Pr ( , )

A
A A y

θ AN A Ra N
x x z

   
       

 
,             (15) 

2 2 2 2 2
3 1 1

( , )
2 0

Pr ( , )
y

A y A y
ANN A N A N  

x z
  

        


,              (16) 

2 2 2 ( , ) 0
( , )A

ψA A A
x x z

   
   

 
,                            (17) 

where 

   

2 2
2 2

1 22 2 2

3
0 0

3 2

, , , ,

, Pr ,

A
h IA A N N
b x z b

g ΔTbN Ra
b

  
     

   

    
  

        

 

and boundary conditions are    

2

1 1 0 1
2 2

0 at
1 10 1 .
2 2

A y

x , x , z
ψ ψ θ

z , z , x

          
     

         (18) 

3.  Linear Stability  

The onset of thermal convection is described by the linear versions 
of equations (15), (16) and (17).  To make this study we neglect the 
Jacobians in equations (15), (16) and (17) leads to 

  2 4 2
1 11 0A A y

θN A Ra N
x


       


,                      (19) 

 2 2 2 2
1 3 12 0A A yA N N A N       ,                       (20) 
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2 0A
ψA
x


  


.                                        (21) 

By eliminating y  between (19) and (20) leads us to differential 
equation of sixth order as  

   6 2 4 6
1 3 1 1 1

3 3
4 2

3 3 2

1 2 2

0.

A A
θN N A N N N A Ra
x

θ θA N Ra A
x x z


     



  
   

    

              (22) 

The solutions of (21) and (22) can be expanded in the half range 
Fourier sine series: 

1
sinn

n
ψ C (x) nπ z




                                    (23) 

1
( )sinn

n
F x n z




                                    (24) 

Equations (21) and (22) are solved for stress free, isothermal 
boundaries, hence we have the boundary conditions in terms of 
Cn(x) and Fn(x) are: 

   
2 4

2 4
1( ) ( ) ( ) ( ) 0 at
2n n n n

d dC x C x C x F x x
dx dx

                  (25) 

Using (23) and (24) with the boundary condition (25) into the 
linearized versions of the  governing equations (21) and (22), and 
equating coefficients of znsin , leads to set of  ordinary differential 
equations 

2
2 2 2

2 0n
n

dCdA n F A
dxdx

 
    

 
 

                          (26) 
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 
6 4

6 4 2 2 2
1 3 1 3 1 16 4

2
2 4 4 2 2 2

1 3 1 1 2

6 6 4 4 2
1 3 1 1

3
4 2 2 2 2

1 3 3 3

(1 ) 3 (1 ) (2 )

3 (1 ) 2 (2 )

(1 ) (2 )

2 0.

n n

n

n

n

d C d CA N N A n N N A N N
dx dx

d CA n N N n A N N
dx

n N N n A N N C

d d dA N A Ra n N Ra N A Ra F
dx dx dx

       
 

     
 

      
 

 
     

  

(27) 

By eliminating Fn between (26) and (27) leads us to an ordinary 
differential equation of eighth order in Cn as  

 
8 6

8 6 2 2 2
1 3 1 3 1 18 6

4
4 2 2 2 4 4 3

1 1 1 3 3 4

6 6 4 4 2 21 3 1 12
25 2 2 3

1 3

8 8 6 6 2
1 3 1

(1 ) 4 (1 ) (2 )

3 (2 ) 6 (1 )

4 (1 ) 3 (2 )

2

(1 ) (2 )

n n

n

n

d C d CA N N A n N N A N N
dx dx

d CA n A N N n N N N A Ra
dx

n N N n A N N d CA
dxN A Ra n N A Ra

n N N n A N N

       
 

       
 

     
  
 
    

     1 0,nC  
 

(28) 

with boundary  conditions   

2 4

2 4
1 1 1 1 0
2 2 2 2

n n n
n

dC d C d CC
dx dx dx

                     
       

.             (29) 

The general solution of differential equation (28) for n = 1 is  

3 51 2 4

6 7 8

1 1 2 3 4 5

6 7 8

( ) m x m xm x m x m x

m x m x m x

C x a e a e a e a e a e

a e a e a e

    

  
                (30) 

where  ai’s are arbitrary constants and mi’s are roots of the auxiliary 
equation of (28) with m2 = - m1, m4 = - m3, m6 = - m5, m8 = - m7. 
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Equations (29) and (30) give us eight homogenous equations in the 
eight unknowns a1, a2, a3, a4, a5, a6, a7, a8 .  For a non–trivial solution 
for the system we require 
 

3 3 5 5 7 71 1

3 3 5 5 7 71 1

3 3 5 5 7 71 1

1 1

0.5 0.5 0.5 0.5 0.5 0.50.5 0.5

0.5 0.5 0.5 0.5 0.5 0.50.5 0.5

0.5 0.5 0.5 0.5 0.5 0.50.5 0.5
1 1 3 3 5 5 7 7

0.0.5 0.5
1 1 3

m m m m m mm m

m m m m m mm m

m m m m m mm m

m m

e e e e e e e e

e e e e e e e e

m e m e m e m e m e m e m e m e

m e m e m e

  

  

  



   

 3 3 5 5 7 7

3 3 5 5 7 71 1

3 3 5 5 7 71 1

5 0.5 0.5 0.5 0.5 0.5
3 5 5 7 7

0.5 0.5 0.5 0.5 0.5 0.50.5 0.52 2 2 2 2 2 2 2
1 1 3 3 5 5 7 7

0.5 0.5 0.5 0.5 0.5 0.50.5 0.52 2 2 2 2 2 2 2
1 1 3 3 5 5 7 7

m m m m m m

m m m m m mm m

m m m m m mm m

m e m e m e m e m e

m e m e m e m e m e m e m e m e

m e m e m e m e m e m e m e m e

 

  

  

  

3 3 5 5 7 71 1

3 3 5 5 7 71 1

0.5 0.5 0.5 0.5 0.5 0.50.5 0.54 4 4 4 4 4 4 4
1 1 3 3 5 5 7 7

0.5 0.5 0.5 0.5 0.5 0.50.5 0.54 4 4 4 4 4 4 4
1 1 3 3 5 5 7 7

0

m m m m m mm m

m m m m m mm m
m e m e m e m e m e m e m e m e

m e m e m e m e m e m e m e m e

  

  



                                                                                                           (31) 
 

The left hand side of (31) may be viewed as a function Rac , say 
f(Rac), with Rac depending on A, N1 and N3,  hence equation (31) can 
be written as f(Rac) = 0. Using Newton–Raphson method for 
various values of A, N1 and N3, Rac can be calculated numerically, 
using the iterative formula  

   1
(( ) )
(( ) )

c k
c ck k c k

f RaRa Ra
f Ra  


                          (32) 

where prime denotes differential of f(Rac) with respect to Rac and 
the paper calculation based on Newton–Raphson method were 
done using Matlab.  

4. Results and Discussion 

The thermal convection in micropolar fluids occupying a 
rectangular box is investigated numerically using linear stability 
theory assisted by Fourier series. Different aspect ratios are 
considered to cover the results of slender, square and rectangular 
cavity.  In the present paper, the behavior of the system as a 
function of the critical Rayleigh number, Rac, depends upon the 
aspect ratio A, coupling parameter N1 and couple stress parameter 
N3.  For fixed N3, the variation of Rac for steady thermal convection 
with N1  for different values of A is shown in figure 2.  From this we 
observe that the Rac increases with increases with N1 and decreases 
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with increase in the value of A. From the plot of                               
Rac* [Rac* = Rac – Rac (at N3 = 1)] versus N3 for different N1 in a 
rectangular, square and vertical slender box, we observe that Rac* 

increases with increase in N1 and N3  and  decreases with increase 
in A as shown in figure 3. In the absence of coupling parameter, i.e., 
for N1 = 0, the value of Rac = 657.51 (classical Rayleigh-Benard 
result) is obtained for a square box (A = 1) and for 3 0N  . 
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Figure 2:  Plot of critical Rac versus A, for different values of N1 and for N3 = 
1.0, for A < 1(shallow box), A = 1 (square box) and A > 1 (slender vertical box). 
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Figure 3: Plot of Rac
* versus N3, for a various values of N1 and A. 
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