
ISSN 0975-3303 
Mapana J Sci, 11, 3(2012), 193-214 

Received: July 2012, Reviewed: Aug. 2012                                      193 

 

Effect of Non-Uniform Temperature 
Gradient on the Onset of Rayleigh–Bénard–
Magnetoconvection in Micropolar Fluid with 
Maxwell–Cattaneo Law 
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Abstract 

The effect of non-uniform temperature gradient on the 
onset of Rayleigh-Bénard magnetoconvection in a 
Micropolar fluid with Maxwell-Cattaneo law is studied 
using the Galerkin technique. The eigenvalue is obtained 
for free-free, rigid-free and rigid-rigid velocity boundary 
combinations with isothermal condition on the spin-
vanishing boundaries. A linear stability analysis is 
performed. The influence of various parameters on the 
onset of convection has been analyzed. One linear and 
five non-linear temperature profiles are considered and 
their comparative influence on onset of convection is 
discussed. The classical approach predicts an infinite 
speed for the propagation of heat.  The present non-
classical theory involves a wave type heat transport 
(Second Sound) and does not suffer from the physically 
unacceptable drawback of infinite heat propagation 
speed.   
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1. Introduction 

The instability of Rayleigh-Bénard convection is due to the effect of 
thermal buoyancy. Theoretical studies of the onset of convection in 
classical viscous fluids with non-uniform heating have been made 
by Currie [1] with isothermal boundaries and by Nield [2] with 
adiabatic boundaries and showed that in the case of piecewise 
linear temperature profile the onset of convection could occur at a 
smaller Rayleigh number than of uniform heating or cooling. The 
non-uniform temperature gradient finds its origin in the transient 
heating or cooling at the boundaries and as a result the basic 
temperature profile depends explicitly on position and time. This 
has to be determined by solving the coupled momentum and 
energy equations. This coupling makes the problem very 
complicated. In the present study, therefore, we adopt a series of 
temperature profiles based on a simplification in the form of a 
quasi – static approximation (Currie [1], Lebon and Cloot [3]) that 
consists of freezing the temperature distribution at a given instant 
of time. In this method, we assume that the perturbation grows 
much faster than the initial state and hence freeze the initial state 
into some spatial distribution. This hypothesis is sufficient for our 
purpose because we are interested only in finding the conditions 
for the onset of convection. Even with these simplifications, the 
solutions to the variable-coefficients stability equation pose a 
problem because the temperature gradient varies with depth.  

Convection in Micropolar fluid has been the subject of intensive 
study because of the remarkable physical properties of the fluid as 
well as its practical applications (see Power [4], Lukaszewicz [5] 
and Eringen [6]). Rayleigh-Bénard/Marangoni convection in 
Micropolar fluid with and without non-uniform temperature 
gradient has been investigated by many authors (Datta and Sastry 
[7], Bhattacharya and Jena [8], Siddheshwar and Pranesh [9, 10, 11, 
12, 13, and 14] and Pranesh and Riya Baby [15]). The main results 
from all these studies are that for heating from below stationary 
convection is the preferred mode. All the above reported works are 
with classical Fourier heat flux law. 

A well known consequence of Classical Fourier heat conduction 
law is that heat perturbations propagate with an infinite velocity.  
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This drawback of the classical law motivated Maxwell [16], 
Cattaneo [17], Lindsay and Stranghan [18], Straughan and Franchi 
[19], Pranesh and Kiran [20] and Pranesh and Smita [21] to adopt a 
non-classical heat flux Maxwell-Cattaneo law in studying  
Rayleigh-Bénard / Marangoni convection to get rid of this 
unphysical results. This Maxwell-Cattaneo equation contains an 
extra inertial term with respect to the Fourier law 

TQ
dt
Qd






 

where, Q


  is the heat flux,  is a relaxation time and  is the heat 
conductivity.  This heat conductivity equation and the conservation 
of energy equation introduce the hyperbolic equation, which 
describes heat propagation with finite speed.  Puri and Jordan [22, 
23], Puri and Kythe [24, 25] and Straughan [26] have studied other 
fluid mechanics problems by employing the Maxwell-Cattaneo 
heat flux law.   

The objective of this paper is to replace the classical parabolic heat 
equation by non-classical Maxwell-Cattaneo Law and study the 
effect of non-uniform basic temperature gradients on the onset of 
Rayleigh-Bénard magnetoconvection in Micropolar fluids. 

 

2.  Mathematical Formulation 

  

Consider an infinite horizontal layer of a Boussinesquian, 
electrically conducting fluid, with non-magnetic suspended particle 
of depth ‘d’ permeated by an externally applied uniform magnetic 
field normal to the fluid layer. Cartesian co-ordinate system is 
taken with origin in the lower boundary and z-axis vertically 
upwards. Let T be the temperature difference between the upper 
and lower boundaries. (See Figure (1)). 
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Figure 1. Schematic diagram of the Rayleigh-Bénard situation for a Micropolar 
fluid. 

 
The governing equations for the Rayleigh-Bénard situation in a 
Boussinesquian fluid with suspended particles are  

Continuity equation     
,0q. 

                                    (1) 
 

Conservation of linear momentum 
 

,H).H(q)2(k̂gpq).q(
t
q

m
2

o








 



        

(2) 
Conservation of angular momentum 
 

),2q()().()().q(
t

I 2
o 



 







  (3)                   

Conservation of energy 
 

,Q.T.
C

q
t
T

vo


















          (4) 

 

Maxwell – Cattaneo heat flux law 
 

,TQQQ 1

.












                          (5) 

X 
Z = 0 T0+T O 

Y Micropolar Fluid 

T0       Z = d 

Z 



Effect of Non-Uniform Temperature Gradient        Mapana J Sci, 11, 3(2012) 

 

197 

 

Magnetic Induction equation 
 

,Hq).H(H).q(
t
H 2

m






                    (6) 

 
Equation of state 
 

)].TT(1[ oo                                  (7) 
 
where, q is the velocity, 


is the spin, T is the temperature, P is the 

hydromagnetic pressure,  is the density, o is the density of the 

fluid at reference temperature oTT  , 



m

m
1 , m is magnetic 

permeability, g is the acceleration due to gravity,  is the coupling 
viscosity coefficient or vortex viscosity,  is the shear kinematic 
viscosity coefficient,  I is the moment of inertia, and are the 
bulk and shear spin viscosity coefficient,   is the Micropolar heat 
conduction coefficient, vC  is the specific heat,   is the thermal 
conductivity,   is the co – efficient of thermal expansion, 

,q
2
1

1


 Q


is the heat flux vector and  is the constant 

relaxation time.  

3. Basic State  

 

The basic state of the fluid being quiescent is described by 
 

  










f(z).
d

T
dz

dT,)z(Q,0,0Q,k̂HH

),z(),z(),z(PP,0,0q

b
b0

bbbbb





           

(8) 

The monotonic, non-dimensional basic temperature gradient 

f(z)which is non-negative satisfies the condition 1dzf(z)
1

0
 . We 
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have considered various steady state temperature gradients in this 
paper and these are defined below. 

Table (1): Basic-State Temperature Gradients 
 

Model Basic temperature 
gradients 

f(z) 

1.  Linear 1 

2.  Heating from below 








1z0
z01

 

3.  Cooling from above 








 1z1
1z00

1  

4.  Step function )z(   

5.  Inverted Parabolic )z1(2   

6.  Parabolic z2  
 

Equations (2), (4), (5) and (7) in the basic state specified by equation 
(8) respectively become 

2

2

ˆ, 0, ,

[1 ( )], 0.

b b b
o b

b
b o b o

dP dQ dTgk Q
dz dz dz

d TT T
dz

 

  


     



    




           (9) 

4. Linear Stability Analysis 
 

Let the basic state be disturbed by an infinitesimal thermal 
perturbation. We now have 

 











.HHH,TTT,

,QQQ,PPP,,qqq

0bb

bbbb




          

(10) 
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The primes indicate that the quantities are infinitesimal 
perturbations and subscript ‘b’ indicates basic state value. 

Substituting equation (10) into equations (1) – (7) and using the 
basic state (9), we get linearised equation governing the 
infinitesimal perturbations in the form: 
 

,0q. 


                                                 (11) 
 

2

0

ˆ (2 )

ˆ( ) ( . ) ,

o

m

q P gk q
t

H k H

   

  

           
     




                 
(12) 

 

),2q()()()(
t

I 2
o 











       (13) 

 

 

,Q.
C

qf(z)
d
T

t
T

vo



















 

                      (14) 

 

,TW
z
q

d
T

2
1Q

t
1 1 






 















      (15) 
 

,
z
qHH

t
H

0
2

m 









                          
          (16) 

.To                     (17) 
 

where 1 . 
 

Operating divergence on the equation (15) and substituting in 
equation (14), on using equation (11), we get  
 

 
0

2 2
1

1 1 ( )

1 ( ) ,
2

z
v

T T f z W
t t t d C

TT f z W
d

   


 

                     

    

           (18) 

 

where  


.                
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The perturbation equation (12), (13), (16) and (18) are non – 
dimensionalised using the following definition: 
 

     
  




































.
H
HH,

d
,

T
TT

,
d

tt,
d

,
d

WW,
d

)z,y,x(*)z*,y*,x(

0

*

3

z**

2
*

2

** 

 

  (19) 

Using equation (17) in (12), operating curl twice on the resulting 
equation, operating curl once on equation (13) and non-
dimensionalising the two resulting equation and also equations 
(16) and (18), we get 
 

,
z

H
Pm
PrQNW)N1(TR)W(

tPr
1 z2

z
2

1
4

1
2
1

2 













 

                                                                                              (20) 
 

,N2WNN)(
tPr

N
z1

2
1z

2
3z

2 

               (21) 

,H
Pm
Pr

z
W

t
H

z
2z 








                  
             (22) 

 

5

2 2

1 2 1 2 f(z) 1 2 f(z)

f(z) ,

z
TC C W C N

t t t t

T C W


                         

  

    (23) 

where the asterisks have been dropped for simplicity and the non-
dimensional parameters PmPr,,Q,R,N,N,N 531  and C are as 
defined as 




1N  (coupling parameter), 

23 d)(
N





       

(couple stress parameter), 

2
vo

5 dC
N




    (micropolar heat conduction parameter), 
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                       )(
TdgR

3
o





    

(Rayleigh number), 

        )(
dHQ

m

2
om







      (Chandrasekhar Number), 





o

Pr   (Prandtl Number), 

              m

Pm



          (Magnetic Prandtl Number), 

    
2d2

C 
       (Cattaneo number). 

 
The infinitesimal perturbation TandH,,W zz   are assumed to be 
periodic waves and hence these permit a normal mode solution in 
the form 


















































)mylx(i

)mylx(i
z

)mylx(i

)mylx(i

z

z

e)z(T

e)z(H
e)z(G
e)z(W

T
H

W

                                (24) 

where, l and m are horizontal components of the wave number a . 

Substituting equation (24) into equations (20)-(23), we get 
 

2 2 2 2 2 2
1 1

2 2

(1 )( ) ( )
Pr ( )( ) 0,z

N D a W N D a G Ra T

Q D a DH
Pm

    

  
              (25) 

 

,0W)aD(NG)aD(NGN2 22
1

22
31                  (26) 

 

,0H)aD(
Pm
PrDW z

22                                 (27) 
 

.0W)aD(f(z)CT)aD()GNW(f(z) 2222
5            (28) 

where 
dz
dD  . 
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Eliminating zH between equations (25) and (27), we get 
 
 

,0WQDTRaG)aD(NW)aD)(N1( 2222
1

222
1        (29) 

 
We now apply the single-term Galerkin method to equations (26), 
(28) and (29) that gives general results on the eigen value of the 
problem for various basic temperature gradients using simple, 
polynomial, trial functions for the lowest eigen value. Now we 
multiplying equation (29) by W, equation (26) by G and equation 
(28) by T, integrating the resulting equation by parts with respect to 
z from 0 to 1 and taking       W = AW1 , G = BG1 and T = ET1 in 
which A, B and E are constants with W1, G1 and T1 are trial 
functions. This procedure yields the following equation for the 
Rayleigh number R. 

 

 
411

2

3
2
1211

22
1

YTWa

YNYYT)aD(T
R


              (30) 

where,  

  2 2 2 2
1 1 1 1 1 1

2 2 2
2 3 1 1 1 1

2 2 2 2
3 1 1 1 1

2 2
4 1 5 1 1 1 1

2 2
2 1 1 1 1

1 ( ) ,

( ) 2 ,

( ) ( ) ,

( ) f(z)

f(z)( ) f(z) .

Y N W D a W Q W D W

Y N G D a G N G

Y G D a W W D a G

Y N N G D a W T G

Y C T D a W T W

   

  

  

 

     

 

In the equation (30),  denotes integration with respect to z 
between 0z  and 1z  . We note here that R in equation (30) is a 
functional and the Euler – Lagrange equations for the extremisation 
of R are equations (26), (28) and (29). 

The value of critical Rayleigh number depends on the boundaries. 
In this paper we consider the following boundary combinations: 
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1. Free-free isothermal, no-spin 
.1,0zat,0GTWDW 2   

2. Rigid-rigid isothermal, no-spin 
.1,0zat,0GTDWW   

3. Rigid-free isothermal, no-spin 

.1zat0GTWDW
,0zat0GTDWW

2 


 

Trial functions satisfying the boundary conditions are given below. 
Free-free condition ,zz2zW 34

1   

Rigid-rigid condition ,zz2zW 234
1   

Rigid-free condition ,z3z5z2W 234
1   

Isothermal condition ),z1(zT1   
no-spin condition ).z1(zG1   
 

5. Results and Discussion 

In this paper, we study the classical Rayleigh-Bénard 
magnetoconvection in Micropolar fluids in presence of non-
uniform temperature gradients by replacing the classical Fourier 
heat flux law by a non-classical Maxwell-Cattaneo heat flux law. 
Keeping in mind the laboratory and geophysical problem, the 
following types of boundaries have been investigated: 

 
(i) Free-free isothermal, no-spin condition,   

(ii) Rigid-rigid isothermal, no-spin condition  and 

(iii) Rigid-free isothermal, no-spin condition. 

 
One uniform and five non-uniform basic temperature gradients are 
chosen for study. We find that RC1 = RC5 = RC6 ≠ RC4 and RC2 = RC3 ≠ 
RC4 for the symmetric boundary combination. On the basis of this 
following grouping of non-uniform temperature profile can be 
made. 
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Group 1 Group 2 Group 3 

Linear (RC1) 

Inverted 
parabolic (RC5) 

Parabolic (RC6) 

Piecewise linear heating from 
below (RC2) 

Piecewise linear cooling from 
above (RC3) 

Step function 
(RC4) 

 
RCi (i=1 to 6) in the table are the critical Rayleigh numbers 
corresponding to the six basic temperature gradients. In the case of 
rigid-free boundaries (non-symmetric boundary combinations) no 
two RCi are the same. In the non-symmetric case we find that, 

RC4  <  RC3  <  RC2  <  RC6  <  RC1  <  RC5 

For symmetric/non-symmetric boundaries we find that the step 
function is the most destabilizing basic temperature and inverted 
parabolic is the most stabilizing basic temperature distribution.  

In the case of piecewise linear and step function profiles, the critical 
Rayleigh number RC depends on the thermal depth c , in addition 
to depending on the parameters of the problem.  

 
Table (2): Isothermal: .10Q,01.0C,5.1N,0.2N,1.0N 531   
 

Boundary Free-Free Rigid-Rigid Rigid-Free 

Profile 
c  Ratio of RCi 

c  
Ratio of RCi 

c  
Ratio of RCi 

Heating from 
below 

0.72 RC2=RC1/1.1364 0.70 RC2=RC1/1.3498 0.76 RC2=RC1/1.1606 

Cooling from 
above 

0.72 RC3=RC1/1.1364 0.70 RC3=RC1/1.3498 0.65 RC3=RC1/1.3416 

Step function 0.52 RC4=RC1/1.9221 0.50 RC4=RC1/2.3350 0.54 RC4=RC1/2.1317 

Inverted 
Parabolic 

-- RC5=RC1 -- RC5=RC1 -- RC5=RC1/0.8957 

Parabolic -- RC6=RC1 -- RC6=RC1 -- RC6=RC1/1.1042 
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Tables (2) provide information on the critical thermal depth c that 
yields the critical eigenvalues for different boundary combinations 
in respect of all relevant basic temperature gradients.  Figures (2)-
(4) are the plot of critical Rayleigh number RC versus Cattaneo 
number C, for different values of (a) coupling parameter N1, (b) 
couples stress parameter N3, (c) Micropolar heat condition 
parameter N5 and for different Chandrasekhar number Q and 
different basic temperature gradient for free-free, rigid-rigid and 
rigid-free boundaries respectively.  

 
From these figures following observation are made: 

 

1. As C increases RC decreases, C is the scaled relaxation time 
and it accelerates the onset of convection. Increase in C 
leads to narrowing of the convection cells and thus 
lowering of the critical Rayleigh number. It is also observed 
from the figures that influence of C is dominant for small 
values because the convection cells have fixed aspect ratio. 

2. The increase in N1 increases RC. Increase in N1 indicates the 
increase in the concentration of microelements. These 
elements consume the greater part of the energy in forming 
the gyrational velocities and as a result the onset of 
convection is delayed. From these we conclude that increase 
N1 stabilize the system. 

3. As N3 increases RC decreases, because when N3 increases the 
couple stress of the fluid increases, which causes the 
microroation to decrease. Therefore, increase in N3 
destabilizes the system. 

4. When N5 increases the heat induced in to the fluid due to 
these microelements also increases, thus reducing the heat 
transfers from bottom to top. The decrease in heat transfer is 
responsible for delaying onset of instability. Therefore, 
increase in N5 increase RC and thereby stabilizes the system.  

5. Increase in Q increases the RC. When the magnetic field 
strength permeating the medium is considerably strong, it 
induces viscosity into the fluid, and the magnetic lines are 
distorted by convection.  Then these magnetic lines hinder 
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the growth of disturbances, leading to the delay in the onset 
of instability.  However, the viscosity produced by the 
magnetic field lessens the rotation of the fluid particles. 
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Figure 2. Plot of critical Rayleigh number RC Vs. Cattaneo number C with 
respect to free-free isothermal no-spin boundary condition for different values of 
Q for (a) N1, (b) N3, (c) N5 and for different non-uniform basic temperature 
gradients. 
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Figure 3. Plot of critical Rayleigh number RC Vs. Cattaneo number C with 
respect to rigid-rigid isothermal no-spin boundary condition for different values 
of Q for (a) N1, (b) N3, (c) N5 and for different non-uniform basic temperature 
gradients. 
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Figure 4. Plot of critical Rayleigh number RC Vs. Cattaneo number C with 
respect to rigid-free isothermal no-spin boundary condition for different values of 
Q for (a) N1, (b) N3, (c) N5 and for different non-uniform basic temperature 
gradients. 
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6. Conclusions 

Following conclusions are drawn from the problem:                                           

The inverted parabolic basic temperature profile is most stabilizing 
temperature profile.  The step function basic temperature profile is 
most destabilizing temperature profile.  

1. By creating conditions for appropriate basic temperature 
gradients we can also make a prior decision on advancing 
or delaying convection.  

2. By adjusting the Chandrasekhar number Q we can control 
the convection. 

3. Rayleigh-Bénard convection in Newtonian fluids may be 
delayed by adding micron sized suspended particles. 

4. FF
C

RF
C

RR
C RRR   where, the superscripts correspond to 

the three different velocity boundary combinations.  

5. PHE
c

HHE
c RR   where, HHE – Hyperbolic heat equation and 

PHE – Parabolic heat equation.  

6. The non-classical Maxwell-Cattaneo heat flux law involves 
a hyperbolic type heat transport equation that predicts finite 
speeds of heat wave propagation. Hence it does not suffer 
from the physically unacceptable drawback of infinite heat 
propagation speed predicted by the parabolic heat equation. 
The classical Fourier flux law overpredicts the critical 
Rayleigh number compared to that predicted by the non-
classical law.  
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