
Mapana Journal of Sciences
2021, Vol. 20, No. 1, 19-37

ISSN 0975-3303|https://doi.org/10.12723/mjs.56.2

19

On the Use of B-Splines as Ritz Variational

Basis Functions to Solve the Schrodinger

Equation (TISE) for a Free Quantum Particle

Mandyam N Anandaram*

Abstract

B-Splines as piecewise adaptation of Bernstein
polynomials (aka, B-polys) are widely used as Ritz
variational basis functions in solving many problems in the
fields of quantum mechanics and atomic physics. In this
paper, these are used for solving the 1-D Time Independent
Schrodinger Equation (TISE) for a free quantum particle
subject to a fixed domain length by using the Python
software SPLIPY with different sets of computation
parameters. In every case, it was found that over 60 percent
of energy levels had excellent accuracy, thereby proving
that the use of B-spline collocation is a reliable method.

Keywords: B-Splines, Variational basis, TISE, free particle, Gauss
Legendre quadrature, Collocation, Eigen solution.

1. Introduction

B-splines are versatile and convenient for use as basis functions of
choice for solving many problems in atomic, molecular, and nuclear
physics by applying the Ritz variational method. A good review of
this subject as of 2001 is given in [1] with many references. Since then
many advances have occurred in the last two decades helped by the
availability of faster PCs and scientific computing software such as
Python 3.7 used here. A shorter description of Bernstein polynomials
(B-polys) and B-splines is also provided in [2] along with details of

* Professor of Physics (Retired), BangaloreUniversity, Bangalore, India;
mnanandaram@gmail.com

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

20

solving a 4th order ordinary differential equation (ODE) specified as
a boundary value problem (BVP).

In brief, the Bernstein basis polynomials (also known as B-polys) of
any degree arise in the binomial expansion of unity which is the sum
of two complementary parts (say, 𝒙 and 𝟏 − 𝒙) raised to that degree.
In the entire domain, the sum of all these Bernstein basis
polynomials (also known as B-polys) is always unity at any ordinate
within the domain. The solution curve can be drawn as a Bezier
curve with undivided domains where each basis function is
modified by a weighting factor determined by the nature of the
problem and then added together at each point along the curve. B-
splines are more versatile as they use the Carl deBoor (aka, Cox-
deBoor) method to calculate and shift the Bernstein basis
polynomials of specified degree and order for domains divided into
many sub-intervals but can also give just one set of Bernstein basis
functions of a chosen degree for use with undivided domains. Well
formulated and freely available/usable Python based software such
as SPLIPY[6] or Bspline [7] packages based on deBoor algorithm can
be used to calculate and process all the spline basis function sets
needed for the problem to be solved in the next section. Short
introductory descriptions to the variational method as applied to
TISE is given next, showing the expansion of a general eigenfunction
in terms of basis spline functions and from it obtain expressions for
needed expectation values as matrix elements.

2.1 Consider the stationary Schrödinger equation (TISE) given by

𝑯𝝍(𝒙) = −
ℏ𝟐

𝟐𝒎

𝒅𝟐𝝍

𝒅𝒙𝟐 + 𝑽(𝒙)𝝍(𝒙) = 𝑬𝝍(𝒙), (2.1)

The eigenfunction 𝝍(𝒙) can be expanded in terms of an infinite
number of eigen states 𝝓𝒋, by a summation over all states 𝒋 where

𝑪𝒋 is the weight coefficient and is given by

𝝍 ≡ ∑ 𝑪𝒋𝝓𝒋 𝒋 (2.2)

The Ritz variational method, which is also an approximation

method, asserts that the expectation value of the Hamiltonian, �̂�
computed with any normalized trial function, is always higher than
or equal to the energy of the ground state. It can be formally stated

Anandaram On the Use of B-Splines as Ritz Variational Basis

21

as ⟨𝝍|�̂�|𝝍⟩ ≥ 𝑬𝟎 , where �̂�𝝓𝒋 = 𝑬𝒋𝝓𝒋. A short proof is provided

below. If {𝝓𝒋} is a basic set of orthonormal eigenfunctions of the

Hamiltonian �̂� then from the expansion 𝝍 = ∑ 𝑪𝒋𝝓𝒋𝒋 , where 𝑪𝒋 is the

coefficient of the state j, the expectation value is obtainable as,

⟨𝝍|�̂�|𝝍⟩ = ∑ ∑ 𝑪𝒌
∗ 𝑪𝒋

𝒌𝒋
⟨𝝓𝒌|�̂�|𝝓𝒋⟩ = ∑ ∑ 𝑪𝒌

∗ 𝑪𝒋
𝒌

𝑬𝒋𝜹𝒌𝒋
𝒋

= ∑ ∑ 𝑪𝒌
∗ 𝑪𝒋𝒌 𝐄𝐣 ≥ 𝐄𝟎 ∑ 𝑪𝒋

∗𝑪𝒋𝒋 = 𝒋 𝑬𝟎 (2.3)

Since ∑ 𝑪𝒋
∗𝑪𝒋𝒋 = 𝟏. In the variational approach, one starts with an

initial trial function 𝜓 defined by a set of expansion coefficients

{𝑪𝒋
(𝟎)

}, aAnd finds the optimum solution of an arbitrary problem

defined by the Hamiltonian �̂� by minimizing the expected value

given by ⟨𝝍|�̂�|𝝍⟩ with respect to the expansion coefficients. Once

the ground state |𝝍𝟎〉 is found, one can obtain the first excited state
similarly by adding to the expectation value of energy, a penalty
term proportional to the norm of the overlap between the ground

and variational states, ⟨𝝍|�̂�|𝝍⟩ + 𝜸|⟨𝝍𝟎|𝝍⟩|𝟐. Higher energy states

|𝜓𝑛〉 are similarly found by a minimization of the cost function

⟨𝝍|�̂�|𝝍⟩ + 𝜸 ∑ |⟨𝝍𝟎|𝝍𝒋⟩|
𝟐𝒏−𝟏

𝒋=𝟎 .

Here this method will make use of B-spline basis functions as the
trial function set.

2.2 Using B-spline Basis Sets in TISE

A few important advantages of using basis spline function sets are
stated here. Atomic eigenfunctions are smooth functions and so can
be represented by piecewise basic polynomials. A finite number of
B-spline sets can represent the effects of an infinite series of
eigenfunctions. This statement means that a smaller number of basis
splines suffice to calculate eigenenergies to the same or better
accuracy than possible with a much larger number of eigenfunctions.

The energies and eigenfunctions of a quantum mechanical state |𝝍〉
can be found by solving the Schrodinger equation. (see Eqn. (2.1))

𝐻|𝝍〉 = 𝑬|𝝍〉 (2.4)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

22

We postulate that the eigenfunction can be expanded similar to (2.2)
in terms of spline basis functions of order 𝒌 (degree, 𝒑 = 𝒌 − 𝟏) and
denote 𝑩𝒋 ≡ 𝑩(𝒌, 𝒋, 𝒙). Then we can write,

|𝝍〉 ≡ ∑ 𝑪𝒋 |𝑩𝒋〉 𝒋 (2.5)

Substituting (2.5) into (2.4) in order to determine the coefficient

vector 𝑪 = {𝑪𝒋} we get

𝑯 ∑ 𝑪𝒋 |𝑩𝒋〉𝒋 ≡ 𝑬 ∑ 𝑪𝒋 |𝑩𝒋〉 𝒋 (2.6)

Now we multiply (2.6) from the left by ∑ |𝑩𝒊〉〈𝑩𝒊|𝒊 and here, we note
that as the B-spline functions are normalized but not mutually
orthogonal, there will exist a non-zero overlap integral which can be
calculated later. This implies that

∑ |𝑩𝒊〉〈𝑩𝒊|𝒊 = ∫ 𝑩(𝒌, 𝒊, 𝒙)𝑩(𝒌, 𝒋, 𝒙)𝒅𝒙 > 0 (2.7)

This is known as the overlap integral, which now has a non-zero
positive value. Hence (2.6) may be rewritten as

∑ ∑ 𝑪𝒋𝒋 |𝑩𝒊〉〈𝑩𝒊|𝒊 𝑯|𝑩𝒋〉 = 𝑬 ∑ ∑ 𝑪𝒋 |𝑩𝒊〉〈𝑩𝒊|𝑩𝒋〉𝒋𝒊 (2.8)

Since the |𝑩𝒊〉 are linearly independent, equation (2.8) can be
satisfied only if

∑ 〈𝑩𝒊|𝑯|𝑩𝒋〉𝑪𝒋 = 𝑬 ∑ 〈𝑩𝒊|𝑩𝒋〉𝑪𝒋𝒋𝑗 for each i (2.9)

This expression can be written in matrix form as the Eigen equation,

𝑯𝑪 = (𝑻 + 𝑽)𝑪 = 𝑬𝑺𝑪 (2.10)

According to (2.10), the solution of TISE is required as input in the
Hamiltonian matrix elements between the spline basis functions
(aka, B-splines) and the overlap matrix elements, 𝑺, between the B-
splines themselves as they are not orthogonal but only linearly
independent. Both the kinetic energy matrix 𝑻 and the potential
energy matrix 𝑽can be separately evaluated between the B-splines
and then be added together, as shown below.

〈𝑯〉 = ∑〈𝑩𝒊|𝑯|𝑩𝒋〉 = ∑〈𝑩𝒊|𝑻 + 𝑽|𝑩𝒋〉

𝒋𝒋

= ∑〈𝑩𝒊|𝑻|𝑩𝒋〉

𝒋

+ ∑〈𝑩𝒊|𝑽|𝑩𝒋〉

𝒋

 (2.11)

And, 𝑺 = ∑ 〈𝑩𝒊|𝑩𝒋〉𝒋 (2.12)

Anandaram On the Use of B-Splines as Ritz Variational Basis

23

The process of solving(2.10) involves the following sequential steps.

Step 1. Define the problem to be solved.

Step 2. Define the Domain length and choose a suitable Open
Uniform knot Vector.

Step 3. Determine the B-splines and their first derivatives using the
chosen knot vector.

Step 4. Determine the matrix elements of the kinetic and potential
energies.

Step 5. Determine the eigenvalues and eigenvectors of (2.10) by
using a suitable Eigen equation solver. (This is followed by Step 6 to
plot results and analyze Values and their Errors).

3. Implementation of the Programming Steps

3.1 Step 1: Define the problem to be solved.

Consider a one-dimensional quantum particle of mass 𝒎 which has
only kinetic energy as it can move freely within a 1-D box of
dimension [−𝒂, 𝒂]. All eigenfunctions must vanish at the edges of
the box and have their maximum amplitudes at the center of the box.
Since the potential energy term 𝑽(𝒙) = 𝟎, the particle has only non-
zero kinetic energy, and its operator form from (2.1) is

�̂� = �̂� = �̂�𝟐 𝟐𝒎 =⁄ −(ℏ𝟐 𝟐𝒎⁄)𝛁𝟐 = −𝒅𝟐 𝒅𝒙𝟐 ⁄ (3.1)

Here we set (ℏ𝟐 𝟐𝒎) ≡ 𝟏⁄ so that all energies are in atomic units (au).
Then (3.1) becomes,

𝑬𝝍 = 𝑯𝝍 = 𝑻𝝍 = −𝒅𝟐𝝍 𝒅𝒙𝟐 ≡⁄ − 𝝍′′ (3.2)

The TISE to be solved is now: 𝝍′′ + 𝑬𝝍 = 𝟎 (3.3)

If 𝑽(𝒙) > 𝟎then (3.3) would be replaced by𝝍′′ + (𝑬 − 𝑽)𝝍 = 𝟎

(3.4)
The theoretical solution of (3.3) specifies that the energy of the level
𝒏 = 𝟏, 𝟐, 𝟑, … is given by,

𝑬𝒏 = 𝒏𝟐 𝝅𝟐 𝑳𝟐⁄ , 𝒏 = 𝟏, 𝟐, 𝟑, … (3.5)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

24

The theoretical ground state energy is given for level 𝒏 = 𝟏 by 𝑬𝟏 =

𝝅𝟐 𝑳𝟐⁄ and the energies of all excited states 𝒏 ≥ 𝟐can be found from
(3.5) in the same atomic units.

(Note that if we take (ℏ𝟐 𝒎) ≡ 𝟏⁄ , then(3.3) changes to𝝍′′ + 𝟐𝑬𝝍 =

𝟎. This changes the ground state energy to 𝑬𝟏 = 𝟎. 𝟓(𝝅𝟐 𝑳𝟐)⁄ and

𝑬𝒏 = 𝒏𝟐𝑬𝟏for 𝒏 ≥ 𝟐. If 𝑽(𝒙) > 𝟎also then instead of (3.4), we would
have 𝝍′′ + 𝟐(𝑬 − 𝑽)𝝍 = 𝟎 to solve.)

We now proceed to carry out all the steps from Eqn. (2.4) to Eqn.
(2.10) and begin with a selection of a suitable knot vector in Step 1 in
order to calculate all the required number of spline basis functions
(see Eqn.2.5). As Python software is available to solve this problem,
all the required steps are replaced by the corresponding code
statements with relevant comments also.

3.2 Step 2:Define the Domain Length and Choose a Suitable Open
Uniform Knot Vector.

Let the 1-D domain box limits (end-knots) be defined as [−𝒂, 𝒂] so
that its length is 𝟐𝒂 units. To begin with, set 𝒂 = 𝟏 so that it is
confined to a box of length 𝑳 = 𝟐𝒂 = 𝟐 units (−1 ≤ x ≤ 1) so that at
both ends, all eigenvectors vanish, and the free particle moves within
those limits. The domain end-knots will now be converted into the
open uniform (augmented) knot vector able to use B-splines of
selectable degree 𝒑 and order 𝒌 = 𝒑 + 𝟏 by repeating both end-knots
𝒑 times each and also introduce a number 𝒎 > 1 of internal knots so
that the domain length 𝟐𝒂 is divided into a large number 𝑵 = 𝒎 + 𝟏

of small intervals. This helps to use basis splines of a much lower

degree or order than would be needed for an undivided domain
length. The SPLIPY software follows this specification and computes
the required number of basis spline functions to fit each sub-interval
(piece) of the domain. The values set in the program are shown in
Table 3.2.2, which also calls the snippet listed in Table 3.2.1 to create
the appropriate augmented knot vector. A brief explanation is given
below, but more details are to be found in [1] and [2].

The computation of B-splines (Step 2) requires a specified sequence
of fixed coordinates spanning the length of the domain between its
two limiting end-points, which are also fixed for a given domain.
The length of the domain for this problem should be relatively large

Anandaram On the Use of B-Splines as Ritz Variational Basis

25

enough so that all eigenfunctions do vanish at the end-points. Now,
these fixed coordinates of end-points are referred to as endknots,
and all points between end-knots are called internal knots. The
simplest knot sequence is a uniform sequence in which all knots are
equally spaced out in the domain and also monotonically increase
from the starting knot-point to the ending knot-point. The minimum
possible number of knots that a domain can have is just the two end-
knots with only one interval between them. However, it is more
usual to subdivide a domain length into many sub-intervals in order
to increase the accuracy of the solution. Thus the number of intervals
chosen for the domain also fixes the number of knots to be just one
more than the number of intervals. This step will enable the use of
basis functions of a much lower degree (or order). To help fix the
order 𝒌 and the degree (𝒌 − 𝟏) of the B-splines desired to be used for
the solution, the uniform knot sequence is augmented by the
addition of the so-called ghost knots at both end-knots of the
domain. These ghosts simply repeat both the domain end knots (𝒌 −
𝟏) times. Thus if a domain end knots are [𝒂, 𝒃] then B-splines of
order 𝒌 = 𝟓 will be used if the end-knots are augmented by 4 ghost
knots as in [𝒂, 𝒂, 𝒂, 𝒂, 𝒂, 𝒃, 𝒃, 𝒃, 𝒃, 𝒃]. This is known as an open

uniform or augmented knot sequence. In a short form, the above-
augmented sequence may be denoted by [𝒂(𝒌 − 𝟏 𝒕𝒊𝒎𝒆𝒔), 𝒂,
𝒏_ 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔, 𝒃, 𝒃(𝒌 − 𝟏 𝒕𝒊𝒎𝒆𝒔)]. Alternatively, this may also be
denoted as [𝒂(𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚, 𝒌), 𝒏_ 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔, 𝒃(𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚,
𝒌)]. The thing to note about the 𝒌 repeated end-knots at either side
is that there exists a zero interval only between any two repeated
knots, and so they all coincide with the domain end-knots. This
augmentation procedure is a necessary step in the computation of
B-splines according to the method devised and prescribed by Carl
de Boor. The python code snippet to calculate the augmented knots
sequence is given below.

Table 3.2.1. Define a function to calculate an augmented knots sequence.
Code starts with importing needed modules shown below :

-*- coding: utf-8 -*-
import numpy as np
from scipy import linalg as spLA
import matplotlib.pyplot as plt
#import splipy as Splnp #--> done in Table 3.3.1

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

26

defget_augmented_knots (degree, a, b, N_intervals, type=’uniform’):
N_points = N_intervals + 1
 if type == 'uniform' : # then do the following
 #tile([a], nrep) will repeat all elements [a] nrep times (see below)
aug_knots = np.hstack((np.hstack ((np.tile (a, degree),
np.linspace (a, b, N_points))),
np.tile (b, degree)));
 return aug_knots
Set values of all the argument parameters below
degree_x = 14 ; Xa, Xb, N_intervals = -1.0, 1.0, 201
Now call the above function by the statement below
agknots = get_ augmented_knots (degree_x, Xa, Xb, N_intervals)
N_augknots = [Xa (14 times) + (N_intervals + 1 = 202) +
Xb (14 times)] = 230 knots

Then all problem-related parameters are defined and confirmed as
follows.

Table 3.2.2. Initial programming steps assigning parameter values

###############------------ MAIN ----------------################
Set all physical parameters assumed for the TISE problem :
#me = 1.0; ## mass of the particle
size of Box or x-domain range: Try different box sizes
#Xa, Xb = -0.5, 0.5
Xa, Xb = -1.0, 1.0; # Domain Box limits used
#Xa, Xb = -2.0, 2.0;
X_ab = Xb - Xa; E1 = np.pi**2/X_ab**2 # L = box length; E1 = GS Energy
Set the number of intervals, quadrature points, degree/order, etc. below
N_intervals_x = 201 ## Try different values like 50, 100, 150 etc
N_quad = 181 #200; number of quadrature points
degree_x = 14; #degree of Bsplines
k_ordr_x = degree_x + 1;
N_splines_x = N_intervals_x + degree_x; # Number of bsplines
N_base_x = N_splines_x - 2; # number of basis functions
N_dim = N_base_x; # N_base_x sets the dimensional size of the matrix

print("# All energies are in atomic units (hbar/(2m) == 1).")
print("# Order of the B-splines functions, k = {0}".format(k_ordr_x))
print("# Degree of the B-splines functions, k-1 = {0}".format(degree_x))
print("# Num of intervals {0} ans size of the basis set {1} in x".
 format(N_intervals_x, N_base_x))
print("# Total size of the matrices, N_dim = N_base_r =
{0}".format(N_dim))

Anandaram On the Use of B-Splines as Ritz Variational Basis

27

print("# Order of GL quadrature: N_quad = {0}".format(N_quad))
print("# Total number of basis sets = {0}".format(N_base_x* N_quad))
print("# Integration (= box) interval [{0}, {1}]".format(Xa, Xb))
print("# Domain (= box size) Length, X_ab = Xb-Xa = [{0}]".format(X_ab))
print("# Ground State Energy (Theory), E1 = pi^2 / L^2 = %3.14f"%E1)
print("# Eigen-energies and eigen-functions are computed and
plotted.\n")

Table 3.2.3. This is the printout of Table 3.2.2 to confirm all the defined
parameters used in the solution code.
All energies are in atomic units (hbar/(2m) == 1).
Order of the B-splines functions, k = 15
Degree of the B-splines functions, k-1 = 14
Number of intervals 201 and size of the basis set 213 in x
Total size of the matrices, N_dim = N_base_x = 213
Order of GaussLegendre quadrature: N_quad = 181
Total number of basis sets = N_base_x * N_quad = 38553
Integration (= box) interval [-1.0, 1.0]
Domain (= box size) Length, X_ab = Xb-Xa = [2.0]
Ground State Energy (Theory) = 𝜋2 𝐿2⁄ = 2.46740110027234
Eigen-energies and functions are computed and plotted.

3.3 Step 3: Determine the B-splines and their First Derivatives

Definition of Basis Splines

B-Splines are piecewise polynomial functions defined on a given
interval that contains a certain number of points, 𝒕𝒊 referred to as a
knot sequence, where𝒕𝒊 ≤ 𝒕𝒊+𝟏. The B-Splines of order k (degree k -

1) are denoted by 𝑩(𝒌, 𝒊, 𝒙). This is the 𝒊𝒕𝒉 basis function out of a
possible set of k basis functions of order k. They are given by the
deBoor recurrence equations on this knot sequence as follows.

For first order B-spline,𝑘 = 1(or, degree, p = 0):

𝐵(1, 𝑖, 𝑥) = 1 𝑖𝑓 𝑡𝑖 ≤ 𝑥 ≤ 𝑡𝑖+1(3.3.1a)

𝐵(1, 𝑖, 𝑥) = 0 𝑖𝑓 𝑥 ≤ 𝑡𝑖 𝑜𝑟 𝑥 ≥ 𝑡𝑖+1(3.3.1b)

For higher orders,𝑘 > 1(or, degrees, 𝑝 > 0) :

𝐵(𝑘, 𝑖, 𝑥) = [(𝑥 − 𝑡𝑖) (𝑡𝑖+𝑘−1 − 𝑡𝑖)⁄] 𝐵(𝑘 − 1, 𝑖, 𝑥) +

+[(𝑡𝑖+𝑘 − 𝑥) (𝑡𝑖+𝑘 − 𝑡𝑖+1)⁄]𝐵(𝑘 − 1, 𝑖 + 1, 𝑥)(3.3.2)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

28

The calculation of B-splines of any higher-order always starts with
the calculation of the first-order function 𝑩(𝟏, 𝒊, 𝒙) using Eqn. (3.3.1).
This should be substituted in Eqn. (3.3.2) to obtain the 2nd order basis
set 𝑩(𝟐, 𝒊, 𝒙) which is again substituted in Eqn. (3.3.2) to get the 3rd
order basis set 𝑩(𝟑, 𝒊, 𝒙). By repeating such substitutions into Eqn.
(3.3.2), the basis spline functions of any desired order can finally be
obtained. Efficient and fast Python software to evaluate B-splines
and their derivatives have been obtained from [6] and used in this
work (Alternatively, John Foster's bspline.py obtainable from [7] can
be used). The code for computing basis splines and their derivatives
is given below.

Table 3.3.1 Code to compute Basis Functions and call usage

#========== SPLIPY v.> 1.3.1 ==================**
deffSplipy(ordr, t_knots, t_nodes): # <-- use ordr = degree+1
 import splipy as Splnp # from Splipy v.1.3.1
 Basis = Splnp.BSplineBasis(order, t_knots)
Bs_t = Basis.evaluate(t_nodes, d=0);
 d1Bs_t = Basis.evaluate(t_nodes,d=1); # 1st derivative
returnnp.array(Bs_t),np.array(d1Bs_t)
call usage:
#bsr,dbsr= fSplipy(order, r_knots, r_nodes)
#bsz, dbsz= fSplipy(order, z_knots, z_nodes)

3.4 Step 4:Determine the Matrix Elements of T, V, and S (overlap)
Integrals

Now the augmented knot vector is formed, and the nodes and
weights of the Gauss-Legendre polynomials are obtained for the
selected order N_quad at which the B-splines must be evaluated.
This is similar to the use of Greville abscissas collocation done in the
example of Sec.4 of [2]) to evaluate B-splines, but the use of GL
quadrature ensures high accuracy. Now the basis spline piecewise
functions are applied to each sub-interval of the knot vector. This
results in a large number of basis spline functions to be handled, and
this is why computer calculation is required. The Python code
snippets, taken from [8] and suitably modified for use here, are is
given in Table 3.4.1 below.

Anandaram On the Use of B-Splines as Ritz Variational Basis

29

In Table 3.4.2, given next, the evaluation of the required matrices can
be obtained for Vx() the potential energy matrix. This is zero for a

free quantum particle and will not be called.

In Table 3.4.3, given later, the evaluation of the required matrices are
obtained for the overlap integral S, kinetic energy T, and non-zero
potential energy V, according to Eqn. (2.11) and (2.12).

Table 3.4.1: code for B-spline calculation, GL quad Collocation, and
application to all Knot Vector sub-intervals

#get knots sequence to define Bspline under the uniform distribution
x_agknots = augment_knots_vector(degree_x, 'uniform', Xa, Xb,
N_intervals_x)
print("augknots.shape = ",x_agknots.shape)
#get nodes and weights for Gauss-Legendre quadrature
x, w = np.polynomial.legendre.leggauss(N_quad);
now use the nodes and weights for the integrals in x
x_nodes, wx_weights = np.array([]), np.array([])
for i in range(N_intervals_x+1):
aux_x = (0.5*(x_agknots[i+degree_x+1] - x_agknots[i+degree_x])*x
 +0.5*(x_agknots[i+degree_x+1] + x_agknots[i+degree_x]));
aux_w = 0.5*(x_agknots[i+degree_x+1] - x_agknots[i+degree_x])*w;
x_nodes = np.hstack((x_nodes, aux_x));
wx_weights = np.hstack((wx_weights, aux_w));
wx_weights = np.tile(wx_weights, (N_splines_x, 1));
#---------------------Using SPLIPY ver 1.3.1--------------------------
Bsx, dBsx = fSplipy (k_ordr_x, x_agknots, x_nodes)
Splines = np.array([[Bsx[i, j] for j in range(1, N_splines_x-1)]
 for i in range(N_quad * (N_intervals_x+1))])
#plt.figure(); plt.plot(x_nodes, splines); plt.grid(); plt.show()

Table 3.4.2: Code to compute PE Matrix Vx

defV_aho_sho(x , gb = .1): # gb is a strength factor
 #Standard form of SHO: U = 0.5*me*omega**2*x**2;
 # Energies are in atomic units (au): m = hbar = omega = 1
Vx = 0.5*x*x ; Vstr = "$0.5 x^2$" % gb;
 #Vx = x*x*(0.5 + gb*x**4) ; Vstr="$0.5x^2+%.3f x^6$" % gb;
 #Vx = x*x*(0.5 + gb*x**6) ; Vstr="$0.5x^2+%f x^8$" % gb;
 return Vx, Vstr
Potential Energy matrix Vx due to SHO or AnHO
Vx, Vstr = V_aho_sho(x_nodes) # Vstr is a label string for Fig

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

30

Vx = np.tile(Vx, (N_splines_x, 1)); #repeat Vx once here
Vx = np.dot (Bsx.T, (Vx.T * wx_weights.T * Bsx));
Vx = np.array([[Vx[i , j] for i in range(1 , N_splines_x - 1)]
 for j in range (1 , N_splines_x – 1)]);

Table 3.4.3: Code to Compute Matrices for S and T using B-splines
The coefficient array C (Eqn 2.10) has also been folded in here

Calculate the overlap matrix Sx in x
Sx = np.dot(Bsx.T, wx_weights.T * Bsx); # X.T == X Transposed
Sx = np.array([[Sx[i,j] for i in range (1, N_splines_x-1)]
 for j in range (1, N_splines_x-1)]);
Calculate the Kinetic Energy matrix Tx in x
Use this identity: <(- B''(k,i,x), B(k,j,x) > = (B'(k,i,x), B'(k,j,x))
that is, (-np.dot(d2Bsx, dBsx)) <==> (dot(dBsx, dBsx)) <-- below
Tx = np.dot(dBsx.T, wx_weights.T * dBsx);# −<ψ.ψ"> = <ψ'.ψ'>
Tx = np.array([[Tx[i,j] for i in range (1, N_splines_x - 1)]
 for j in range (1, N_splines_x - 1)]);
Form the Hamiltonian H(x) = T(x) since V(x) = 0
Hx = Tx # Vx() = 0 for a free particle
Hx = Tx + Vx # only for non-zero potential Vx
#plt.matshow(Hx[:7,:8],cmap=plt.cm.jet);plt.grid(); #Matrix image

3.5 Step 5: Determine the Eigenvalues and Eigenvectors

Here we implement the code for Eqn. (2.10) by using the well-known
Eigen-equation solver module eigh(Hx, Sx) from Scipyas shown in
Table 3.5.1 below.

Table 3.5.1 Code to Compute Eigenvalues and Eigenvectors

Evals, Evecs = spLA.eigh(Hx, Sx); # Evals[Ndim]; Evecs[Ndim,Ndim]
print("len(Evals)=",len(Evals),"; Evecs.shape =",Evecs.shape)
print("Evals[] in atomic units (m = hbar =1; hbar^2 /(2 m) = 1):-")
print("# Ground State energy (B-Splines) = %3.14f\n"%Evals[0])
#Compute theoretical E[n] and print Error = Evals[] - Eth[] alongside
#E1 = (np.pi/X_ab)**2 # Theoretical Ground State Energy (n=1)
En = [n*n*E1 for n in range(1,N_dim+1)] # theoretical levels (n >= 1)
print(" Eigen Energies (Bsplines) Error = E(bspl) - E(n^2.(pi/L)^2)")
print("-"*65)
for ii in range (N_dim) :
 #get abs(rel err in EvalswrtEn(theory)); this is either +ve or -ve
 # depending on if Evals[n] <= En(theory) or if Evals[n] >En(theory)
 print("Evals[{:3d}] : {:3.12e} ; Err[{:3d}] : { :3.4e } ".format

Anandaram On the Use of B-Splines as Ritz Variational Basis

31

 (ii, Evals[ii], ii , abs(1.0 – Evals [ii] / En [ii])))
collect a few lowest Evecs, set by nplot below, to plot
nplot = 5 # form the matrix wfnplt[nplot,N_dim]
wfnplt = np.array([[Evecs[i,j] for i in range(N_dim)]
 for j in range(nplot)]) # wfnplt[nplot,N_dim]
print("wfnplt:",wfnplt.shape)
nEvecs = [] # np.zeros((nplot , N_dim), float)
for ipl in range (nplot) :
nEvecs.append(np.dot(wfnplt[ipl,:], Splines.T))
nEvecs = np.array(nEvecs)
print(" nEvecs.shape = ", nEvecs.shape)

3.6 Step 6: Code to Plot Results Obtained and Print the Values with
Errors

Table 3.6.1 Code to Plot Energy levels and Probability Densities

plt.figure(1, figsize=(6,4),dpi=180)
#plt.plot(x_nodes, V[-1,:],"k") #,label ="$V(x,ℏ=m=\omega=1)$")
for ipl in range(nplot): # draw lowest nplot energy levels, Evals
plt.plot([x_nodes[0],x_nodes[-1]],[Evals[ipl],Evals[ipl]],'k-',
label=r"$E[%d]=%2.3f(au)$"%(ipl,Evals[ipl]))
plt.plot(x_nodes,Evals[ipl]+5*nEvecs[ipl]**2,'b--',
ms=4,label=r"$\psi^2_{%d}(x)$"%ipl)
plt.grid(which="both");
plt.xlim(Xa-.1,Xb+.1); #plt.xlim(-4.1,4.1);plt.ylim(-0.1,Evals[6]) #8.1)
plt.xlabel("x (atomic units)")
plt.ylabel("Energy levels (au)") #Radial Wavefunction")
plt.legend(loc="best",ncol = 2,frameon=False, fontsize=8)
plt.title("Lowest Eigen Energies(au) and Prob Densities for $V(x)=0$")
plt.show()

#Plot Eigen energies and their errors from theoretical values
#nvals = N_dim; #pi2 = np.pi**2; E1 = pi2/(X_ab**2) # GS Energy (n=1)
#En = [n*n*E1 for n in range(1,nvals+1)] # theoretical levels
n201 = np.linspace(1,201,201)
plt.figure(2, figsize=(6, 6),dpi=120)
plt.plot(n201,En[:201],"r",lw=2,label="$En(theory)$")
plt.plot(n201,Evals[:201],"k",lw=1,label="$En(Bsplines)$")
#plt.plot(n201,En[:201],"r",lw=1,label="$En(theory)$")
plt.plot(n201, Evals[:201]-En[:201],"g",lw=2,label="$Err=Evals-Etheo$")
plt.grid(which="both"); plt.minorticks_on()
plt.legend(loc="best",frameon=False)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

32

plt.title("Evals, En(theory) and Err = Evals-En(theo) for $V(x)=0$")
plt.show()

3.7 Computation and Results

A complete computer program file to be named
“FreeParticle_TISE_Bsplin.py” may be assembled (using copy and
paste method) by combining only the listing in each of the above
tables starting with Table 3.2.1, then Table 3.3.1, followed
successively by Table 3.2.2, Table 3.4.1, Table 3.4.2, Table 3.4.3, Table
3.5.1 and end with Table 3.6.1 in a Python-3 set up with Spyder IDE
where editing and executing the program can be done.

This program can be given fixed values of the parameters shown in
Table 3.2.2, which Table 3.2.3 confirms as output. Generally, the
integration domain length and the degree of B-splines to be used can
be kept fixed during a run. Then we can vary the 𝑵_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔= the
number of intervals between end-knots say from 25 to 250 and
𝑵_𝒒𝒖𝒂𝒅= the order of GaussLegendre quadrature say from 20to
220(𝑵_𝒒𝒖𝒂𝒅 ≈ 𝟎. 𝟗 ∗ 𝑵_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔 , for example, is a good choice) in
each run to view the plots and the computed energy levels along
with their differences from their theoretical values given by 𝑬𝒏 =

𝒏𝟐 𝝅𝟐 𝑳𝟐⁄ (3.5). The level energies are all positive since they concern
the quantum motion of a free particle only bounded by the lengthL=

2 of the domain box and with 𝒏𝟐 they rapidly increase to large
values. Both Table 3.7.1 and Table 3.7.2 show a selected listing of
level energies in the 2nd column, a difference ∆𝑬 with respect to the
theoretical values in the 3rd column, and the fractional error in the
last column for the computation parameter settings shown in the 2nd
row of each table. Some of the differences in the 3rd column are
negative due to the angular nature of the Legendre polynomials
used for collocation.

Table 3.7.1 Energies (au) Difference Frac. Error

E#n E(n) (bsplines) ∆𝐸 = 𝐸𝑛 − (𝑛 𝜋 𝐿)⁄ 2
∆𝐸 (𝑛𝜋/𝐿)2⁄

 1 2.46740110027236e+00 1.6875e-14 -6.8834e-15
 2 9.86960440108968e+00 3.2507e-13 -3.2863e-14
 3 2.22066099024505e+01 -5.4712e-13 2.4647e-14
 4 3.94784176043572e+01 -2.7711e-13 6.9944e-15
 5 6.16850275068088e+01 2.9843e-13 -4.8850e-15

Anandaram On the Use of B-Splines as Ritz Variational Basis

33

 6 8.88264396098041e+01 -8.5265e-14 9.9920e-16
 7 1.20902653913345e+02 4.2633e-14 -4.4409e-16
 8 1.57913670417429e+02 -4.8317e-13 3.1086e-15
 9 1.99859489122059e+02 -3.6948e-13 1.8874e-15
 10 2.46740110027234e+02 -3.6948e-13 1.4433e-15
 11 2.98555533132952e+02 -7.9581e-13 2.6645e-15
 12 3.55305758439216e+02 -9.6634e-13 2.6645e-15
 13 4.16990785946025e+02 -6.8212e-13 1.6653e-15
 15 5.55165247561277e+02 3.4106e-13 -6.6613e-16
 16 6.31654681669719e+02 4.5475e-13 -6.6613e-16
 17 7.13078917978706e+02 -3.4106e-13 4.4409e-16
 18 7.99437956488237e+02 -9.0949e-13 1.1102e-15
 19 8.90731797198314e+02 -6.8212e-13 7.7716e-16
 20 9.86960440108936e+02 -1.1369e-13 1.1102e-16
 25 1.54212568767027e+03 5.7298e-11 -3.7081e-14
 26 1.66796314378435e+03 2.5352e-10 -1.5210e-13
 28 1.93444246261834e+03 4.8301e-09 -2.4969e-12
 30 2.22066099032555e+03 8.0440e-08 -3.6223e-11
 32 2.52661872785510e+03 1.1762e-06 -4.6553e-10
 34 2.85231568721150e+03 1.5297e-05 -5.3629e-09
 36 3.19775200691514e+03 1.8096e-04 -5.6590e-08
 38 3.56292919689410e+03 2.0081e-03 -5.6361e-07
 40 3.94786295230101e+03 2.1192e-02 -5.3680e-06
 41 4.14776803568850e+03 6.6786e-02 -1.6102e-05
 43 4.56281101076271e+03 5.8638e-01 -1.2853e-04
 45 5.00051383856655e+03 4.0266e+00 -8.0589e-04
 46 5.23098902109365e+03 9.9683e+00 -1.9093e-03
 48 5.75019478300871e+03 6.5303e+01 -1.1487e-02
 49 6.03377565809428e+03 1.0955e+02 -1.8491e-02
 50 6.16850275065835e+03 -2.2502e-08 3.6479e-12

Table 3.7.2 Energies (au) Difference Frac. Error

(params: L=2; Degree=14; N_intervals = 100; N_quad = 90)

#n E(n) (bsplines) ∆𝐸 = 𝐸𝑛 − (𝑛 𝜋 𝐿)⁄ 2
∆𝐸 (𝑛𝜋/𝐿)2⁄

 1 2.46740110027229e+00 -5.0626e-14 2.0539e-14
 2 9.86960440109300e+00 3.6469e-12 -3.6948e-13
 3 2.22066099024531e+01 2.0570e-12 -9.2593e-14
 4 3.94784176043612e+01 3.7943e-12 -9.6145e-14
 5 6.16850275068159e+01 7.4394e-12 -1.2057e-13
 6 8.88264396098129e+01 8.6260e-12 -9.7033e-14
 7 1.20902653913355e+02 1.0559e-11 -8.7264e-14

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

34

 8 1.57913670417438e+02 8.4412e-12 -5.3513e-14
 9 1.99859489122070e+02 1.0402e-11 -5.1958e-14
 10 2.46740110027243e+02 9.4929e-12 -3.8414e-14
 15 5.55165247561284e+02 7.9581e-12 -1.4433e-14
 20 9.86960440108938e+02 2.0464e-12 -1.9984e-15
 30 2.22066099024510e+03 -1.8190e-12 7.7716e-16
 40 3.94784176043574e+03 9.0949e-13 -2.2204e-16
 50 6.16850275068108e+03 2.3101e-10 -3.7526e-14
 57 8.01658617482659e+03 4.1761e-08 -5.2094e-12
 58 8.30033730140095e+03 8.4803e-08 -1.0217e-11
 65 1.04247696583489e+04 9.6982e-06 -9.3031e-10
 66 1.07479992113375e+04 1.8551e-05 -1.7260e-09
 72 1.27910081064049e+04 8.0259e-04 -6.2747e-08
 73 1.31487819403591e+04 1.4770e-03 -1.1233e-07
 77 1.46292373653994e+04 1.6242e-02 -1.1102e-06
 81 1.61887853651727e+04 1.6675e-01 -1.0300e-05
 86 1.82515404430037e+04 2.6419e+00 -1.4477e-04
 90 2.00059411216333e+04 1.9992e+01 -1.0003e-03
 96 2.30344381469224e+04 2.9487e+02 -1.2967e-02
 99 2.45318141508106e+04 3.4882e+02 -1.4424e-02
100 2.46740110022089e+04 -5.1448e-07 2.0851e-11

In both tables, about the first 40% of the energies have a fractional

error less than 𝟏𝟎−𝟏𝟓and the next 20% less than 𝟏𝟎−𝟏𝟎 and
thereafter, the fractional error increases to 0.01 levels. The lowest five
energy levels overlaid with eigen-probability densities are shown in
Figure 3.7.1. The 50 rows of values in Table 3.7.1 are shown graphed
in Figure 3.7.2, while the 100 rows of values in Table 3.7.2 are
similarly graphed in Figure 3.7.3.

Anandaram On the Use of B-Splines as Ritz Variational Basis

35

Figure 3.7.1 The five lowest levels are shown overlaid by respective eigen-densities.

Figure 3.7.2: On the left, both computed and theoretical energies obtained
for parameters of Table 3.7.1 increase quadratically with 𝑛 and are seen to
coincide well. On the right, the gap due to the energy difference between
the solid diagonal line of Etheo(n) and the dashed line of Evals(n) is seen to
increase with the quantum number 𝑛as 𝑛2 but the fractional error coincides
with the abscissa indicating good accuracy.

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

36

Figure 3.7.3: On the left, both computed and theoretical energies obtained
for parameters of Table 3.7.2 increase quadratically with 𝑛 and are seen to
coincide well. On the right, the gap due to the energy difference between
the solid diagonal line of Etheo(n) and the dashed line of Evals(n) is seen to
increase with the quantum number 𝑛as 𝑛2 but the fractional error coincides
with the abscissa indicating good accuracy.

Figure 3.7.4: This graph shows all the 200 levels plotted obtained by using
parameter settings of L= 2; Degree=14; N_intervals = 220, and N_quad =
200. The caption under figure 3.7.3 applies here also but only for the last
two parameters given here. However, while no tabulated values are
provided for this computation, the values display similar behaviour
regarding values, differences, and fractional errors apparent in both the
tables given above.

4. Conclusion

The reasonably excellent results obtained and tabulated in the two
Tables accompanied by three sets of graphs shown in Sec. 3.7 were

Anandaram On the Use of B-Splines as Ritz Variational Basis

37

made possible by the use of suitable open uniform (augmented) knot
vectors with enough internal knots, computing B-spline functions of
suitable degree, and carrying out collocation with GL quadrature
generated nodes as well as weights of a chosen order. Thus, the use
of B-spline collocation enabled the achievement of high accuracies
by the application of the Rayleigh Ritz variational method to the
computational work done here. Similarly, B-spline collocation has
enabled accurate calculations in a wide array of applications and
many of these applications are described in [1].

References

[1] H.Bachauet.al.“Applications of B-splines in atomic and molecular
physics”, Rep. Prog. Phys. Vol. 64, pp. 1815-1942, 2001.

[2] M.N. Anandaram, “Bernstein Polynomials: Properties and
Applications to Bezier Curves, B-Splines and Solution of BVPs”,
Submitted to MJOS

[3] https://en.wikipedia.org/wiki/De_Boor's_algorithm
[4] CarldeBoor, “B-Spline Basics”, https:// apps.dtic.mil/ dtic/tr/

fulltext/u2/a172773.pdf
[5] C. deBoor and B. Swartz, “Collocation at Gaussian Points”, SIAM.

Journal of Numerical Analysis, Vol.10, No.4, pp. 582-606, 1973.
Download pdf copy from https:// www.researchgate.net/
publication/ 238747998_Collocation_at_Gaussian_Points

[6] Access “SPLIPY 1.3.1” from https://github.com/sintefmath/Splipy/
[7] Access“Bspline.py” from https://github.com/johntfoster/bspline
[8] M.Garagiola, “Quantum Harmonic Oscillator in 1-D”, GitHub.com,

2016. https:// github.com/ marianogaragiola/ Schrodinger_
Equation_python

Conflict of Interest statement

No funding or any help has been received from any funding Agency
or persons respectively. Hence there is no conflict of interest with
any entity.

Author contribution statement

 The work reported in this single-authored paper has been fully
(100%) carried out by M.N. Anandaram.

https://en.wikipedia.org/wiki/De_Boor's_algorithm
https://github.com/sintefmath/Splipy/
https://github.com/johntfoster/bspline

