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Basis Functions to Solve the Schrodinger 
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Abstract 

B-Splines as piecewise adaptation of Bernstein 
polynomials (aka, B-polys) are widely used as Ritz 
variational basis functions in solving many problems in the 
fields of quantum mechanics and atomic physics. In this 
paper, these are used for solving the 1-D Time Independent 
Schrodinger Equation (TISE) for a free quantum particle 
subject to a fixed domain length by using the Python 
software SPLIPY with different sets of computation 
parameters. In every case, it was found that over 60 percent 
of energy levels had excellent accuracy, thereby proving 
that the use of B-spline collocation is a reliable  method. 

Keywords: B-Splines, Variational basis, TISE, free particle, Gauss 
Legendre quadrature, Collocation, Eigen solution.  

1. Introduction 

B-splines are versatile and convenient for use as basis functions of 
choice for solving many problems in atomic, molecular, and nuclear 
physics by applying the Ritz variational method. A good  review of 
this subject as of 2001 is given in [1] with many references. Since then 
many advances have occurred in the last two decades helped by the 
availability of faster PCs and scientific computing software such as 
Python 3.7 used here. A shorter description of Bernstein polynomials 
(B-polys) and B-splines is also provided in [2] along with details of 
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solving a 4th order ordinary differential equation (ODE) specified as 
a boundary value problem (BVP).  

In brief, the Bernstein basis polynomials (also known as B-polys) of 
any degree arise in the binomial expansion of unity which is the sum 
of two complementary parts (say, 𝒙  and  𝟏 − 𝒙) raised to that degree. 
In the entire domain, the sum of all these Bernstein basis 
polynomials (also known as B-polys) is always unity at any ordinate 
within the domain. The solution curve can be drawn as a Bezier 
curve with undivided domains where each basis function is 
modified by a weighting factor determined by the nature of the 
problem and then added together at each point along the curve.  B-
splines are more versatile as they use the Carl deBoor (aka, Cox-
deBoor) method to calculate and shift the Bernstein basis 
polynomials of specified degree and order for domains divided into 
many sub-intervals but can also give just one set of Bernstein basis 
functions of a chosen degree for use with undivided domains. Well 
formulated and freely available/usable Python based software such 
as SPLIPY[6] or Bspline [7] packages based on deBoor algorithm can 
be used to calculate and process all the spline basis function sets 
needed for the problem to be solved in the next section. Short 
introductory descriptions to the variational method as applied to 
TISE is given next, showing the expansion of a general eigenfunction 
in terms of basis spline functions and from it obtain expressions for 
needed expectation values as matrix elements. 

2.1 Consider the stationary Schrödinger equation (TISE) given by 

𝑯𝝍(𝒙) = −
ℏ𝟐

𝟐𝒎

𝒅𝟐𝝍

𝒅𝒙𝟐 + 𝑽(𝒙)𝝍(𝒙) =  𝑬𝝍(𝒙),                                        (2.1) 

The eigenfunction 𝝍(𝒙) can be expanded in terms of an infinite 
number of eigen states  𝝓𝒋, by a summation over all states  𝒋 where 

𝑪𝒋 is the weight coefficient and is given by 

𝝍 ≡ ∑ 𝑪𝒋𝝓𝒋                                                                                                                                            𝒋 (2.2) 

The Ritz variational method, which is also an approximation 

method, asserts that the expectation value of the Hamiltonian, �̂� 
computed with any normalized trial function, is always higher than 
or equal to the energy of the ground state. It can be formally stated 
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as  ⟨𝝍|�̂�|𝝍⟩ ≥ 𝑬𝟎 , where   �̂�𝝓𝒋 =  𝑬𝒋𝝓𝒋.  A short proof is provided 

below. If {𝝓𝒋} is a basic set of orthonormal eigenfunctions of the 

Hamiltonian �̂� then from the expansion 𝝍 =  ∑ 𝑪𝒋𝝓𝒋𝒋 , where 𝑪𝒋 is the 

coefficient of the state j, the expectation value is obtainable as, 

⟨𝝍|�̂�|𝝍⟩ =  ∑ ∑ 𝑪𝒌
∗ 𝑪𝒋

𝒌𝒋
⟨𝝓𝒌|�̂�|𝝓𝒋⟩ = ∑ ∑ 𝑪𝒌

∗ 𝑪𝒋
𝒌

𝑬𝒋𝜹𝒌𝒋
𝒋

 

=  ∑ ∑ 𝑪𝒌
∗ 𝑪𝒋𝒌 𝐄𝐣  ≥  𝐄𝟎 ∑ 𝑪𝒋

∗𝑪𝒋𝒋 = 𝒋 𝑬𝟎                                                        (2.3) 

Since ∑ 𝑪𝒋
∗𝑪𝒋𝒋 = 𝟏. In the variational approach, one starts with an 

initial trial function 𝜓 defined by a set of expansion coefficients 

{𝑪𝒋
(𝟎)

}, aAnd finds the optimum solution of an arbitrary problem 

defined by the Hamiltonian �̂� by minimizing the expected value 

given by ⟨𝝍|�̂�|𝝍⟩ with respect to the expansion coefficients. Once 

the ground state |𝝍𝟎〉 is found, one can obtain the first excited state 
similarly by adding to the expectation value of energy, a penalty 
term proportional to the norm of the overlap between the ground 

and variational states, ⟨𝝍|�̂�|𝝍⟩ + 𝜸|⟨𝝍𝟎|𝝍⟩|𝟐. Higher energy states 

|𝜓𝑛〉 are similarly found by a minimization of the cost function 

⟨𝝍|�̂�|𝝍⟩ + 𝜸 ∑ |⟨𝝍𝟎|𝝍𝒋⟩|
𝟐𝒏−𝟏

𝒋=𝟎 .  

Here this method will make use of B-spline basis functions as the 
trial function set. 

2.2  Using B-spline Basis Sets in TISE 

A few important advantages of using basis spline function sets are 
stated here. Atomic eigenfunctions are smooth functions and so can 
be represented by piecewise basic polynomials. A finite number of 
B-spline sets can represent the effects of an infinite series of 
eigenfunctions. This statement means that a smaller number of basis 
splines suffice to calculate eigenenergies to the same or better 
accuracy than possible with a much larger number of eigenfunctions.   

The energies and eigenfunctions of a quantum mechanical state |𝝍〉 
can be found by solving the Schrodinger equation. (see Eqn. (2.1)) 

𝐻|𝝍〉 = 𝑬|𝝍〉                                                                                                     (2.4) 
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We postulate that the eigenfunction can be expanded similar to (2.2) 
in terms of spline basis functions of order 𝒌 (degree, 𝒑 = 𝒌 − 𝟏) and 
denote 𝑩𝒋 ≡ 𝑩(𝒌, 𝒋, 𝒙). Then we can write, 

|𝝍〉 ≡  ∑ 𝑪𝒋 |𝑩𝒋〉                                                                                               𝒋 (2.5) 

Substituting (2.5) into (2.4) in order to determine the coefficient 

vector 𝑪 = {𝑪𝒋}  we get 

𝑯 ∑ 𝑪𝒋 |𝑩𝒋〉𝒋 ≡  𝑬 ∑ 𝑪𝒋 |𝑩𝒋〉                                                                           𝒋 (2.6) 

Now we multiply (2.6) from the left by ∑ |𝑩𝒊〉〈𝑩𝒊|𝒊  and here, we note 
that as the B-spline functions are normalized but not mutually 
orthogonal, there will exist a non-zero overlap integral which can be 
calculated later. This implies that  

∑ |𝑩𝒊〉〈𝑩𝒊|𝒊 =  ∫ 𝑩(𝒌, 𝒊, 𝒙)𝑩(𝒌, 𝒋, 𝒙)𝒅𝒙 > 0                                               (2.7) 

This is known as the overlap integral, which now has a non-zero 
positive value. Hence (2.6) may be rewritten as 

∑ ∑ 𝑪𝒋𝒋 |𝑩𝒊〉〈𝑩𝒊|𝒊 𝑯|𝑩𝒋〉 =  𝑬 ∑ ∑ 𝑪𝒋 |𝑩𝒊〉〈𝑩𝒊|𝑩𝒋〉𝒋𝒊                                    (2.8) 

Since the |𝑩𝒊〉 are linearly independent, equation (2.8) can  be 
satisfied only if 

∑ 〈𝑩𝒊|𝑯|𝑩𝒋〉𝑪𝒋 = 𝑬 ∑ 〈𝑩𝒊|𝑩𝒋〉𝑪𝒋𝒋𝑗  for each i                                           (2.9) 

This expression can be written in matrix form as the Eigen equation, 

𝑯𝑪 = (𝑻 + 𝑽)𝑪 = 𝑬𝑺𝑪                                                                                (2.10) 

According to (2.10), the solution of TISE is required as input in the 
Hamiltonian matrix elements between the spline basis functions 
(aka, B-splines) and the overlap matrix elements, 𝑺,  between the B-
splines themselves as they are not orthogonal but only linearly 
independent. Both the kinetic energy matrix 𝑻 and the potential 
energy matrix 𝑽can be separately evaluated between the B-splines 
and then be added together, as shown below. 

〈𝑯〉 = ∑〈𝑩𝒊|𝑯|𝑩𝒋〉 = ∑〈𝑩𝒊|𝑻 + 𝑽|𝑩𝒋〉

𝒋𝒋

= ∑〈𝑩𝒊|𝑻|𝑩𝒋〉

𝒋

+ ∑〈𝑩𝒊|𝑽|𝑩𝒋〉

𝒋

 

            (2.11) 

And, 𝑺 = ∑ 〈𝑩𝒊|𝑩𝒋〉𝒋 (2.12)           
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The process of solving(2.10) involves the following sequential steps. 

Step 1. Define the problem to be solved. 

Step 2. Define the Domain length and choose a suitable Open 
Uniform knot Vector. 

Step 3. Determine the B-splines and their first derivatives using the 
chosen knot vector. 

Step 4. Determine the matrix elements of the kinetic and potential 
energies. 

Step 5. Determine the eigenvalues and eigenvectors of (2.10) by 
using a suitable Eigen equation solver. (This is followed by Step 6 to 
plot results and analyze Values and their Errors). 

3. Implementation of the Programming Steps 

3.1 Step 1: Define the problem to be solved. 

Consider a one-dimensional quantum particle of mass 𝒎 which has 
only kinetic energy as it can move freely within a 1-D box of 
dimension [−𝒂, 𝒂]. All eigenfunctions must vanish at the edges of 
the box and have their maximum amplitudes at the center of the box. 
Since the potential energy term 𝑽(𝒙) = 𝟎, the particle has only non-
zero kinetic energy, and its operator form from (2.1) is 

�̂� = �̂� = �̂�𝟐 𝟐𝒎 =⁄ −(ℏ𝟐 𝟐𝒎⁄ )𝛁𝟐 = −𝒅𝟐 𝒅𝒙𝟐                                      ⁄ (3.1) 

Here we set (ℏ𝟐 𝟐𝒎) ≡ 𝟏⁄  so that all energies are in atomic units (au). 
Then (3.1) becomes, 

𝑬𝝍 = 𝑯𝝍 = 𝑻𝝍 = −𝒅𝟐𝝍 𝒅𝒙𝟐 ≡⁄ − 𝝍′′                                                   (3.2) 

The TISE to be solved is now: 𝝍′′ + 𝑬𝝍 = 𝟎                                        (3.3) 

If 𝑽(𝒙) > 𝟎then (3.3) would be replaced by𝝍′′ + (𝑬 − 𝑽)𝝍 = 𝟎 

(3.4) 
The theoretical solution of (3.3) specifies that the energy of the level 
𝒏 = 𝟏, 𝟐, 𝟑, … is given by, 

𝑬𝒏 = 𝒏𝟐 𝝅𝟐 𝑳𝟐⁄   ,  𝒏 = 𝟏, 𝟐, 𝟑, …                                                                   (3.5) 
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The theoretical ground state energy is given for level 𝒏 = 𝟏 by 𝑬𝟏 =

𝝅𝟐 𝑳𝟐⁄ and the energies of all excited states 𝒏 ≥ 𝟐can be found from 
(3.5)  in the same atomic units. 

(Note that if we take (ℏ𝟐 𝒎) ≡ 𝟏⁄ , then(3.3) changes to𝝍′′ + 𝟐𝑬𝝍 =

𝟎. This changes the ground state energy to 𝑬𝟏 = 𝟎. 𝟓( 𝝅𝟐 𝑳𝟐)⁄ and  

𝑬𝒏 = 𝒏𝟐𝑬𝟏for 𝒏 ≥ 𝟐. If  𝑽(𝒙) > 𝟎also then instead of (3.4), we would 
have   𝝍′′ + 𝟐(𝑬 − 𝑽)𝝍 = 𝟎 to solve.) 

We now proceed to carry out all the steps from Eqn. (2.4) to Eqn. 
(2.10) and begin with a selection of a suitable knot vector in Step 1 in 
order to calculate all the required number of spline basis functions 
(see Eqn.2.5). As Python software is available to solve this problem, 
all the required steps are replaced by the corresponding code 
statements with relevant comments also. 

3.2 Step 2:Define the Domain Length and Choose a Suitable Open 
Uniform Knot Vector. 

Let the 1-D domain box limits (end-knots) be defined as [−𝒂, 𝒂] so 
that its length is 𝟐𝒂 units. To begin with, set 𝒂 = 𝟏 so that it is 
confined to a box of length  𝑳 = 𝟐𝒂 = 𝟐 units (−1 ≤ x ≤ 1) so that at 
both ends, all eigenvectors vanish, and the free particle moves within 
those limits. The domain end-knots will now be converted into the 
open uniform (augmented) knot vector able to use B-splines of 
selectable degree 𝒑 and order 𝒌 = 𝒑 + 𝟏 by repeating both end-knots 
𝒑 times each and also introduce a number 𝒎 > 1 of internal knots so 
that the domain length 𝟐𝒂 is divided into a large number 𝑵 = 𝒎 + 𝟏 

of small intervals. This helps to use basis splines of a much lower 

degree or order than would be needed for an undivided domain 
length. The SPLIPY software follows this specification and computes 
the required number of basis spline functions to fit each sub-interval 
(piece) of the domain. The values set in the program are shown in 
Table 3.2.2, which also calls the snippet listed in Table 3.2.1 to create 
the appropriate augmented knot vector. A brief explanation is given 
below, but more details are to be found in [1] and [2]. 

The computation of B-splines (Step 2) requires a specified sequence 
of fixed coordinates spanning the length of the domain between its 
two limiting end-points, which are also fixed for a given domain. 
The length of the domain for this problem should be relatively large 
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enough so that all eigenfunctions do vanish at the end-points. Now, 
these fixed coordinates of end-points are referred to as endknots, 
and all points between end-knots are called internal knots. The 
simplest knot sequence is a uniform sequence in which all knots are 
equally spaced out in the domain and also monotonically increase 
from the starting knot-point to the ending knot-point. The minimum 
possible number of knots that a domain can have is just the two end-
knots with only one interval between them. However, it is more 
usual to subdivide a domain length into many sub-intervals in order 
to increase the accuracy of the solution. Thus the number of intervals 
chosen for the domain also fixes the number of knots to be just one 
more than the number of intervals. This step will enable the use of 
basis functions of a much lower degree (or order). To help fix the 
order 𝒌 and the degree (𝒌 − 𝟏) of the B-splines desired to be used for 
the solution, the uniform knot sequence is augmented by the 
addition of the so-called ghost knots at both end-knots of the 
domain. These ghosts simply repeat both the domain end knots (𝒌 −
𝟏) times. Thus if a domain end knots are [𝒂, 𝒃] then B-splines of 
order 𝒌 = 𝟓 will be used if the end-knots are augmented by 4 ghost 
knots as in [𝒂, 𝒂, 𝒂, 𝒂, 𝒂, 𝒃, 𝒃, 𝒃, 𝒃, 𝒃]. This is known as an open 

uniform or augmented knot sequence.  In a short form, the above-
augmented sequence may be denoted by  [𝒂(𝒌 − 𝟏 𝒕𝒊𝒎𝒆𝒔), 𝒂,
𝒏_ 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔, 𝒃, 𝒃(𝒌 − 𝟏 𝒕𝒊𝒎𝒆𝒔)]. Alternatively, this may also be 
denoted as  [𝒂(𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚, 𝒌 ), 𝒏_ 𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔,   𝒃(𝒎𝒖𝒍𝒕𝒊𝒑𝒍𝒊𝒄𝒊𝒕𝒚,
𝒌 )]. The thing to note about the  𝒌 repeated end-knots at either side 
is that there exists a zero interval only between any two repeated 
knots, and so they all coincide with the domain end-knots. This 
augmentation procedure is a necessary step in the computation of 
B-splines according to the method devised and prescribed by Carl 
de Boor. The python code snippet to calculate the augmented knots 
sequence is given below. 

Table 3.2.1. Define a function to calculate an augmented knots sequence. 
Code starts with importing needed modules shown below : 

# -*- coding: utf-8 -*- 
import   numpy   as   np 
from  scipy   import  linalg  as   spLA 
import   matplotlib.pyplot   as   plt 
#import splipy as Splnp  #--> done in Table 3.3.1 
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defget_augmented_knots ( degree,   a,  b,  N_intervals, type=’uniform’): 
N_points  =  N_intervals + 1 
      if  type ==  'uniform' :        # then do the following 
          #tile([a],  nrep) will repeat all elements [a]  nrep times (see below) 
aug_knots  =  np.hstack( (np.hstack ( (np.tile (a, degree),  
np.linspace (a,   b,   N_points) ) ), 
np.tile (b, degree)) ); 
      return  aug_knots 
# Set  values  of  all  the  argument  parameters below 
degree_x = 14 ;   Xa,   Xb,   N_intervals  =  -1.0,   1.0,    201 
# Now call the above function  by the  statement below 
agknots = get_ augmented_knots ( degree_x,  Xa,  Xb,  N_intervals) 
# N_augknots  =  [Xa (14 times) + (N_intervals + 1 = 202) +  
Xb (14 times)]  =  230 knots 

Then all problem-related parameters are defined and confirmed as 
follows.  

Table 3.2.2.  Initial programming steps assigning parameter values 

###############------------ MAIN ----------------################ 
## Set all physical parameters assumed for the TISE problem : 
#me = 1.0; ## mass of the particle 
## size of Box or x-domain range: Try different box sizes 
#Xa, Xb = -0.5, 0.5 
Xa,  Xb = -1.0,  1.0;  # Domain Box  limits used 
#Xa,  Xb = -2.0,  2.0; 
X_ab = Xb - Xa;  E1 = np.pi**2/X_ab**2   # L = box length;  E1 = GS Energy 
# Set the number of intervals, quadrature points, degree/order, etc. below 
N_intervals_x = 201   ## Try different values like  50, 100, 150 etc 
N_quad = 181 #200;  number of quadrature points 
degree_x = 14;  #degree of Bsplines 
k_ordr_x = degree_x + 1; 
N_splines_x = N_intervals_x + degree_x;   #   Number of  bsplines 
N_base_x = N_splines_x - 2; # number of basis functions 
N_dim = N_base_x; # N_base_x sets the dimensional size of the matrix 
 
print("# All energies are in atomic units (hbar/(2m) == 1).") 
print("# Order of the B-splines functions, k = {0}".format(k_ordr_x)) 
print("# Degree of the B-splines functions, k-1 = {0}".format(degree_x)) 
print("# Num of intervals {0} ans size of the basis set {1} in x". 
                                          format(N_intervals_x, N_base_x) ) 
print("# Total size of the matrices, N_dim = N_base_r = 
{0}".format(N_dim)) 
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print("# Order of GL quadrature: N_quad = {0}".format(N_quad)) 
print("# Total number of basis sets = {0}".format(N_base_x* N_quad)) 
print("# Integration (= box) interval [{0}, {1}]".format(Xa, Xb)) 
print("# Domain (= box size) Length, X_ab = Xb-Xa = [{0}]".format(X_ab) ) 
print("# Ground State Energy (Theory), E1 = pi^2 / L^2 = %3.14f"%E1) 
print("# Eigen-energies and eigen-functions are computed and 
plotted.\n") 

Table 3.2.3. This is the printout of Table 3.2.2  to confirm all the defined 
parameters used in the solution code.  
# All energies are in atomic units (hbar/(2m) == 1). 
# Order of the B-splines functions, k = 15 
# Degree of the B-splines functions, k-1 = 14 
# Number of intervals 201 and size of the basis set 213 in x 
# Total size of the matrices, N_dim = N_base_x = 213 
# Order of GaussLegendre  quadrature:   N_quad = 181 
# Total number of basis sets = N_base_x * N_quad =  38553 
# Integration (= box) interval [-1.0, 1.0] 
# Domain (= box size) Length, X_ab = Xb-Xa =  [2.0] 
# Ground State Energy (Theory) =  𝜋2 𝐿2⁄   = 2.46740110027234 
# Eigen-energies and functions are computed and plotted. 

3.3 Step 3: Determine the B-splines and their First Derivatives 

Definition of Basis Splines 

B-Splines are piecewise polynomial functions defined on a given 
interval that contains a certain number of points, 𝒕𝒊 referred to as a 
knot sequence, where𝒕𝒊 ≤ 𝒕𝒊+𝟏. The B-Splines of order k (degree k - 

1) are denoted by 𝑩(𝒌, 𝒊, 𝒙). This is the  𝒊𝒕𝒉 basis function out of a 
possible set of k basis functions of order k.   They are given by the 
deBoor recurrence equations on this knot sequence as follows. 

For first order B-spline,𝑘 = 1(or, degree, p = 0): 

𝐵(1, 𝑖, 𝑥) =  1 𝑖𝑓 𝑡𝑖 ≤ 𝑥 ≤ 𝑡𝑖+1(3.3.1a) 

𝐵(1, 𝑖, 𝑥) =  0  𝑖𝑓 𝑥 ≤ 𝑡𝑖 𝑜𝑟 𝑥 ≥ 𝑡𝑖+1(3.3.1b) 

For higher orders,𝑘 > 1(or, degrees, 𝑝 > 0) : 

𝐵(𝑘, 𝑖, 𝑥) = [(𝑥 − 𝑡𝑖) (𝑡𝑖+𝑘−1 − 𝑡𝑖)⁄ ] 𝐵(𝑘 − 1, 𝑖, 𝑥) + 

+[(𝑡𝑖+𝑘 − 𝑥) (𝑡𝑖+𝑘 − 𝑡𝑖+1)⁄ ]𝐵(𝑘 − 1, 𝑖 + 1, 𝑥)(3.3.2) 
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The calculation of B-splines of any higher-order always starts with 
the calculation of the first-order function  𝑩(𝟏, 𝒊, 𝒙) using Eqn. (3.3.1). 
This should be substituted in Eqn. (3.3.2) to obtain the 2nd order basis 
set 𝑩(𝟐, 𝒊, 𝒙) which is again substituted in Eqn. (3.3.2) to get the 3rd 
order basis set 𝑩(𝟑, 𝒊, 𝒙). By repeating such substitutions into Eqn. 
(3.3.2), the basis spline functions of any desired order can finally be 
obtained. Efficient and fast Python software to evaluate B-splines 
and their derivatives have been obtained from [6] and used in this 
work (Alternatively, John Foster's bspline.py obtainable from [7] can 
be used). The code for computing basis splines and their derivatives 
is given below. 
 

Table 3.3.1    Code to compute Basis Functions  and call usage 

#========== SPLIPY v.> 1.3.1 ==================** 
deffSplipy(ordr, t_knots, t_nodes):    # <-- use ordr = degree+1 
    import splipy as Splnp  # from Splipy v.1.3.1 
    Basis = Splnp.BSplineBasis(order, t_knots) 
Bs_t = Basis.evaluate(t_nodes,  d=0); 
    d1Bs_t = Basis.evaluate(t_nodes,d=1); # 1st derivative 
returnnp.array(Bs_t),np.array(d1Bs_t)   
# call usage: 
#bsr,dbsr= fSplipy(order, r_knots, r_nodes) 
#bsz, dbsz= fSplipy(order, z_knots, z_nodes) 

 

3.4 Step 4:Determine the Matrix Elements of T, V, and S (overlap) 
Integrals 

Now the augmented knot vector is formed, and the nodes and 
weights of the Gauss-Legendre polynomials are obtained for the 
selected order N_quad at which the B-splines must be evaluated. 
This is similar to the use of Greville abscissas collocation done in the 
example of Sec.4 of [2]) to evaluate B-splines, but the use of GL 
quadrature ensures high accuracy. Now the basis spline piecewise 
functions are applied to each sub-interval of the knot vector. This 
results in a large number of basis spline functions to be handled, and 
this is why computer calculation is required. The Python code 
snippets, taken from [8] and suitably modified for use here, are is 
given in Table 3.4.1 below. 
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In Table 3.4.2, given next, the evaluation of the required matrices can 
be obtained for Vx() the potential energy matrix. This is zero for a 

free quantum particle and will not be called.  

In Table 3.4.3, given later, the evaluation of the required matrices are 
obtained for the overlap integral S, kinetic energy T, and non-zero 
potential energy V, according to Eqn. (2.11) and (2.12). 

Table 3.4.1: code for B-spline calculation, GL quad Collocation, and 
application to all Knot Vector sub-intervals 

#get knots sequence to define Bspline under the uniform distribution 
x_agknots =  augment_knots_vector(degree_x, 'uniform',  Xa,  Xb,  
N_intervals_x) 
print("augknots.shape = ",x_agknots.shape) 
#get nodes and weights for Gauss-Legendre quadrature 
x, w = np.polynomial.legendre.leggauss(N_quad); 
## now use the nodes and weights for the integrals in x 
x_nodes, wx_weights = np.array([]), np.array([]) 
for i in range(N_intervals_x+1): 
aux_x = (0.5*(x_agknots[i+degree_x+1] - x_agknots[i+degree_x])*x 
            +0.5*(x_agknots[i+degree_x+1] + x_agknots[i+degree_x])); 
aux_w =  0.5*(x_agknots[i+degree_x+1] - x_agknots[i+degree_x])*w; 
x_nodes = np.hstack((x_nodes, aux_x)); 
wx_weights = np.hstack((wx_weights, aux_w)); 
wx_weights = np.tile(wx_weights, (N_splines_x, 1)); 
#---------------------Using SPLIPY ver 1.3.1-------------------------- 
Bsx,  dBsx  =   fSplipy ( k_ordr_x,   x_agknots,   x_nodes ) 
Splines = np.array( [ [ Bsx[i, j]  for  j  in  range( 1,  N_splines_x-1 ) ]  
                                   for i  in  range( N_quad * ( N_intervals_x+1 ) ) ] )  
#plt.figure();   plt.plot( x_nodes, splines );   plt.grid();   plt.show() 

 

Table 3.4.2: Code to compute PE Matrix Vx 

defV_aho_sho( x ,  gb = .1): # gb is a strength factor 
      #Standard form of SHO: U = 0.5*me*omega**2*x**2;  
      # Energies are in atomic units (au): m = hbar = omega = 1 
Vx = 0.5*x*x ;   Vstr = "$0.5 x^2$"  % gb;  
      #Vx = x*x*(0.5 + gb*x**4) ;  Vstr="$0.5x^2+%.3f x^6$" % gb; 
      #Vx = x*x*(0.5 + gb*x**6) ;  Vstr="$0.5x^2+%f x^8$" % gb; 
      return  Vx,  Vstr 
# Potential Energy matrix  Vx  due to SHO or AnHO 
Vx, Vstr = V_aho_sho(x_nodes)  # Vstr is a label string for Fig 
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Vx = np.tile( Vx, ( N_splines_x,  1 ) ); #repeat Vx once here 
Vx = np.dot ( Bsx.T,  (Vx.T * wx_weights.T * Bsx)); 
Vx = np.array( [ [Vx[ i , j ] for i in range( 1 , N_splines_x - 1)] 
                            for j in range ( 1 ,  N_splines_x – 1 )  ]  ); 

 

Table 3.4.3:  Code to Compute Matrices for  S and T using B-splines 
The coefficient array C (Eqn 2.10) has also been folded in  here 

# Calculate the overlap matrix Sx in x 
Sx = np.dot(Bsx.T, wx_weights.T * Bsx);  # X.T ==  X  Transposed 
Sx = np.array( [ [Sx[i,j] for i in range ( 1, N_splines_x-1) ] 
                                         for j in range ( 1, N_splines_x-1)  ] ); 
# Calculate the Kinetic Energy matrix Tx  in  x 
# Use this  identity: <(- B''(k,i,x), B(k,j,x) > = ( B'(k,i,x),  B'(k,j,x) ) 
# that is, (-np.dot(d2Bsx, dBsx) ) <==> ( dot(dBsx, dBsx) ) <--  below 
Tx = np.dot(dBsx.T, wx_weights.T * dBsx);# −<ψ.ψ"> = <ψ'.ψ'> 
Tx = np.array( [ [Tx[i,j]  for  i  in  range ( 1, N_splines_x - 1 ) ] 
                                            for  j  in  range (1, N_splines_x - 1) ] ); 
## Form the Hamiltonian H(x) = T(x) since V(x) = 0 
Hx  =  Tx                # Vx() = 0 for a free particle  
# Hx = Tx  +  Vx   # only for non-zero  potential  Vx  
#plt.matshow(Hx[:7,:8],cmap=plt.cm.jet);plt.grid(); #Matrix image 

3.5 Step 5: Determine the Eigenvalues and Eigenvectors 

Here we implement the code for Eqn. (2.10) by using the well-known 
Eigen-equation solver module eigh(Hx, Sx) from Scipyas shown in 
Table 3.5.1 below. 

Table 3.5.1 Code to Compute Eigenvalues and Eigenvectors 

Evals, Evecs = spLA.eigh(Hx, Sx);   # Evals[Ndim]; Evecs[Ndim,Ndim] 
print("len(Evals)=",len(Evals),"; Evecs.shape =",Evecs.shape)   
print("Evals[] in atomic units (m = hbar =1; hbar^2 /(2 m) = 1):-") 
print("# Ground State energy (B-Splines) = %3.14f\n"%Evals[0]) 
#Compute theoretical E[n] and print Error = Evals[] - Eth[] alongside 
#E1 = (np.pi/X_ab)**2 # Theoretical Ground State Energy (n=1)  
En = [n*n*E1 for n in range(1,N_dim+1)]  # theoretical levels (n >= 1) 
print(" Eigen Energies (Bsplines)       Error = E(bspl) - E(n^2.(pi/L)^2)" ) 
print("-"*65) 
for  ii  in   range ( N_dim )  : 
      #get abs(rel err in EvalswrtEn(theory) ); this is either +ve or -ve 
      # depending on if Evals[n] <= En(theory) or if Evals[n] >En(theory) 
      print( "Evals[{:3d}] :  {:3.12e} ;    Err[ {:3d} ] : { :3.4e } ".format 
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                                  ( ii, Evals[ii], ii , abs( 1.0 – Evals [ii] / En [ii] ) ) ) 
# collect a few lowest Evecs, set by nplot below, to plot 
nplot = 5  # form the matrix wfnplt[nplot,N_dim] 
wfnplt = np.array([[Evecs[i,j] for i in range(N_dim)]  
                           for j in range(nplot)]) # wfnplt[nplot,N_dim] 
print("wfnplt:",wfnplt.shape) 
nEvecs = []    #  np.zeros( ( nplot  ,  N_dim),  float) 
for   ipl   in   range  (nplot)  :  
nEvecs.append( np.dot(wfnplt[ipl,:], Splines.T)) 
nEvecs  =  np.array(nEvecs) 
print( " nEvecs.shape  =  ",  nEvecs.shape) 

3.6 Step 6: Code to Plot Results Obtained and Print the Values with 
Errors 

Table 3.6.1  Code to  Plot  Energy levels and Probability Densities 

plt.figure( 1,  figsize=(6,4),dpi=180) 
#plt.plot(x_nodes, V[-1,:],"k") #,label ="$V(x,ℏ=m=\omega=1)$") 
for ipl in range(nplot): # draw lowest nplot energy levels, Evals 
plt.plot([x_nodes[0],x_nodes[-1]],[Evals[ipl],Evals[ipl]],'k-', 
label=r"$E[%d]=%2.3f(au)$"%(ipl,Evals[ipl])) 
plt.plot(x_nodes,Evals[ipl]+5*nEvecs[ipl]**2,'b--', 
ms=4,label=r"$\psi^2_{%d}(x)$"%ipl) 
plt.grid(which="both"); 
plt.xlim(Xa-.1,Xb+.1); #plt.xlim(-4.1,4.1);plt.ylim(-0.1,Evals[6]) #8.1) 
plt.xlabel("x (atomic units)") 
plt.ylabel("Energy levels (au)") #Radial Wavefunction") 
plt.legend(loc="best",ncol = 2,frameon=False, fontsize=8) 
plt.title("Lowest Eigen Energies(au) and Prob Densities for $V(x)=0$") 
plt.show() 
 
#Plot Eigen energies and their errors from theoretical values 
#nvals = N_dim; #pi2 = np.pi**2; E1 = pi2/(X_ab**2) # GS Energy (n=1) 
#En = [n*n*E1 for n in range(1,nvals+1)]  # theoretical levels 
n201 = np.linspace(1,201,201) 
plt.figure( 2,  figsize=(6, 6),dpi=120) 
plt.plot(n201,En[:201],"r",lw=2,label="$En(theory)$") 
plt.plot(n201,Evals[:201],"k",lw=1,label="$En(Bsplines)$") 
#plt.plot(n201,En[:201],"r",lw=1,label="$En(theory)$") 
plt.plot(n201, Evals[:201]-En[:201],"g",lw=2,label="$Err=Evals-Etheo$") 
plt.grid(which="both"); plt.minorticks_on() 
plt.legend(loc="best",frameon=False) 
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plt.title("Evals, En(theory) and Err = Evals-En(theo) for $V(x)=0$") 
plt.show() 

3.7 Computation and Results 

A complete computer program file to be named 
“FreeParticle_TISE_Bsplin.py” may be assembled (using copy and 
paste method) by combining only the listing in each of the above 
tables starting with Table 3.2.1, then Table 3.3.1, followed 
successively by Table 3.2.2, Table 3.4.1, Table 3.4.2, Table 3.4.3, Table 
3.5.1 and end with Table 3.6.1 in a Python-3 set up with Spyder IDE 
where editing and executing the program can be done. 

This program can be given fixed values of the parameters shown in 
Table 3.2.2, which Table 3.2.3 confirms as output.  Generally, the 
integration domain length and the degree of B-splines to be used can 
be kept fixed during a run. Then we can vary the 𝑵_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔= the 
number of intervals between end-knots say from 25 to 250 and 
𝑵_𝒒𝒖𝒂𝒅= the order of GaussLegendre quadrature say from 20to 
220(𝑵_𝒒𝒖𝒂𝒅 ≈ 𝟎. 𝟗 ∗ 𝑵_𝒊𝒏𝒕𝒆𝒓𝒗𝒂𝒍𝒔 , for example, is a good choice) in 
each run to view the plots and the computed energy levels along 
with their differences from their theoretical values given by 𝑬𝒏 =

𝒏𝟐 𝝅𝟐 𝑳𝟐⁄ (3.5). The level energies are all positive since they concern 
the quantum motion of a free particle only bounded by the lengthL= 

2 of the domain box and with 𝒏𝟐 they rapidly increase to large 
values. Both Table 3.7.1 and Table 3.7.2 show a selected listing of 
level energies in the 2nd column, a difference ∆𝑬 with respect to the 
theoretical values in the 3rd column, and the fractional error in the 
last column for the computation parameter settings shown in the 2nd 
row of each table.  Some of the differences in the 3rd column are 
negative due to the angular nature of the Legendre polynomials 
used for collocation.  

Table 3.7.1   Energies (au)         Difference      Frac. Error 
 

E#n         E(n)  (bsplines)           ∆𝐸 = 𝐸𝑛 − (𝑛 𝜋 𝐿)⁄ 2
∆𝐸 (𝑛𝜋/𝐿)2⁄  

   1   2.46740110027236e+00   1.6875e-14   -6.8834e-15 
   2   9.86960440108968e+00   3.2507e-13   -3.2863e-14 
   3   2.22066099024505e+01   -5.4712e-13   2.4647e-14 
   4   3.94784176043572e+01   -2.7711e-13   6.9944e-15 
   5   6.16850275068088e+01   2.9843e-13   -4.8850e-15 
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   6   8.88264396098041e+01   -8.5265e-14   9.9920e-16 
   7   1.20902653913345e+02   4.2633e-14   -4.4409e-16 
   8   1.57913670417429e+02   -4.8317e-13   3.1086e-15 
   9   1.99859489122059e+02   -3.6948e-13   1.8874e-15 
 10   2.46740110027234e+02   -3.6948e-13   1.4433e-15 
 11   2.98555533132952e+02   -7.9581e-13   2.6645e-15 
 12   3.55305758439216e+02   -9.6634e-13   2.6645e-15 
 13   4.16990785946025e+02   -6.8212e-13   1.6653e-15 
 15   5.55165247561277e+02   3.4106e-13   -6.6613e-16 
 16   6.31654681669719e+02   4.5475e-13   -6.6613e-16 
 17   7.13078917978706e+02  -3.4106e-13  4.4409e-16 
 18   7.99437956488237e+02   -9.0949e-13   1.1102e-15 
 19   8.90731797198314e+02   -6.8212e-13   7.7716e-16 
 20   9.86960440108936e+02   -1.1369e-13   1.1102e-16 
 25   1.54212568767027e+03   5.7298e-11   -3.7081e-14 
 26   1.66796314378435e+03   2.5352e-10   -1.5210e-13 
 28   1.93444246261834e+03   4.8301e-09   -2.4969e-12 
 30   2.22066099032555e+03   8.0440e-08   -3.6223e-11 
 32   2.52661872785510e+03   1.1762e-06   -4.6553e-10 
 34   2.85231568721150e+03   1.5297e-05   -5.3629e-09 
 36   3.19775200691514e+03   1.8096e-04   -5.6590e-08 
 38   3.56292919689410e+03   2.0081e-03   -5.6361e-07 
 40   3.94786295230101e+03   2.1192e-02   -5.3680e-06 
 41   4.14776803568850e+03   6.6786e-02   -1.6102e-05 
 43   4.56281101076271e+03   5.8638e-01   -1.2853e-04 
 45   5.00051383856655e+03   4.0266e+00   -8.0589e-04 
 46   5.23098902109365e+03   9.9683e+00   -1.9093e-03 
 48   5.75019478300871e+03   6.5303e+01   -1.1487e-02 
 49   6.03377565809428e+03   1.0955e+02   -1.8491e-02 
 50   6.16850275065835e+03   -2.2502e-08   3.6479e-12 

 

Table 3.7.2   Energies (au)         Difference       Frac. Error 

(params: L=2;  Degree=14;   N_intervals = 100;   N_quad = 90) 

#n          E(n)  (bsplines)            ∆𝐸 = 𝐸𝑛 − (𝑛 𝜋 𝐿)⁄ 2
∆𝐸 (𝑛𝜋/𝐿)2⁄  

    1     2.46740110027229e+00       -5.0626e-14            2.0539e-14 
    2     9.86960440109300e+00        3.6469e-12           -3.6948e-13 
    3     2.22066099024531e+01        2.0570e-12           -9.2593e-14 
    4     3.94784176043612e+01        3.7943e-12           -9.6145e-14 
    5     6.16850275068159e+01        7.4394e-12           -1.2057e-13 
    6     8.88264396098129e+01        8.6260e-12           -9.7033e-14 
    7     1.20902653913355e+02        1.0559e-11           -8.7264e-14 
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    8     1.57913670417438e+02        8.4412e-12           -5.3513e-14 
    9     1.99859489122070e+02        1.0402e-11           -5.1958e-14 
  10     2.46740110027243e+02        9.4929e-12           -3.8414e-14 
  15     5.55165247561284e+02        7.9581e-12           -1.4433e-14 
  20     9.86960440108938e+02        2.0464e-12           -1.9984e-15 
  30     2.22066099024510e+03       -1.8190e-12            7.7716e-16 
  40     3.94784176043574e+03        9.0949e-13           -2.2204e-16 
  50     6.16850275068108e+03        2.3101e-10           -3.7526e-14 
  57     8.01658617482659e+03        4.1761e-08           -5.2094e-12 
  58     8.30033730140095e+03        8.4803e-08           -1.0217e-11 
  65     1.04247696583489e+04        9.6982e-06           -9.3031e-10 
  66     1.07479992113375e+04        1.8551e-05           -1.7260e-09 
  72     1.27910081064049e+04        8.0259e-04           -6.2747e-08 
  73     1.31487819403591e+04        1.4770e-03           -1.1233e-07 
  77     1.46292373653994e+04        1.6242e-02           -1.1102e-06 
  81     1.61887853651727e+04        1.6675e-01           -1.0300e-05 
  86     1.82515404430037e+04        2.6419e+00          -1.4477e-04 
  90     2.00059411216333e+04        1.9992e+01          -1.0003e-03 
  96     2.30344381469224e+04        2.9487e+02          -1.2967e-02 
  99     2.45318141508106e+04        3.4882e+02          -1.4424e-02 
100     2.46740110022089e+04       -5.1448e-07            2.0851e-11 

 

In both tables, about the first 40% of the energies have a fractional 

error less than 𝟏𝟎−𝟏𝟓and the next 20% less than  𝟏𝟎−𝟏𝟎 and 
thereafter, the fractional error increases to 0.01 levels. The lowest five 
energy levels overlaid with eigen-probability densities are shown in 
Figure 3.7.1. The 50 rows of values in Table 3.7.1 are shown graphed 
in Figure 3.7.2, while the 100 rows of values in Table 3.7.2 are 
similarly graphed in Figure 3.7.3. 
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Figure 3.7.1 The five lowest levels are shown overlaid by respective eigen-densities. 

 

Figure 3.7.2: On the left, both computed and theoretical energies obtained 
for parameters of Table 3.7.1 increase quadratically with 𝑛 and are seen to 
coincide well. On the right, the gap due to the energy difference between 
the solid diagonal line of Etheo(n) and the dashed line of Evals(n) is seen to 
increase with the quantum number 𝑛as 𝑛2 but the fractional error coincides 
with the abscissa indicating good accuracy. 
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Figure 3.7.3: On the left, both computed and theoretical energies obtained 
for parameters of Table 3.7.2 increase quadratically with 𝑛 and are seen to 
coincide well. On the right, the gap due to the energy difference between 
the solid diagonal line of Etheo(n) and the dashed line of Evals(n) is seen to 
increase with the quantum number 𝑛as 𝑛2 but the fractional error coincides 
with the abscissa indicating good accuracy. 

 

Figure 3.7.4: This graph shows all the 200 levels plotted obtained by using 
parameter settings of L= 2;  Degree=14;  N_intervals = 220, and N_quad = 
200. The caption under figure 3.7.3 applies here also but only for the last 
two parameters given here. However, while no tabulated values are 
provided for this computation, the values display similar behaviour 
regarding values, differences, and fractional errors apparent in both the 
tables given above. 

4. Conclusion 

The reasonably excellent results obtained and tabulated in the two 
Tables accompanied by three sets of graphs shown in Sec. 3.7 were 
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made possible by the use of suitable open uniform (augmented) knot 
vectors with enough internal knots, computing B-spline functions of 
suitable degree, and carrying out collocation with GL quadrature 
generated nodes as well as weights of a chosen order. Thus, the use 
of B-spline collocation enabled the achievement of high accuracies 
by the application of the Rayleigh Ritz variational method to the 
computational work done here. Similarly, B-spline collocation has 
enabled accurate calculations in a wide array of applications and 
many of these  applications are described  in [1]. 
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