
Mapana Journal of Sciences
2021, Vol. 20, No. 1, 79-103

ISSN 0975-3303|https://doi.org/10.12723/mjs.56.5

79

Bernstein Polynomials: Properties and

Applications to Bezier Curves, B-Splines,

and Solution of Boundary Value Problems

M N Anandaram*

Abstract

Bernstein polynomials (also known as B-polys) have
excellent properties allowing them to be used as basis
functions in many applications in physics. This paper
provides a brief tutorial description of their properties, and
their use in obtaining B-polys, B-splines or Basis spline
functions, Bezier curves, and ODE solution curves is
computationally demonstrated. Also, an example is
described showing their application for solving the fourth
order BVP relating to the bending at the free end of a
cantilever.

Keywords: Bernstein polynomials (B-polys), B-Splines, Bezier
Curves, BVP solution

1. Introduction to Bernstein Basis Polynomials

Over a century ago, the Russian mathematician Sergei Natanovich
Bernstein (1880-1968) discovered many properties and uses of
Bernstein polynomials. They were originally used for constructing
Bezier curves (see next section) in computer graphics, but their
properties later enabled their use as basis functions for the solution
of many types of differential equations (see [1] to [5], [8], [10] [11]
and many more references therein).

*Professor of Physics (Retired), Bangalore University, Bangalore, India;
mnanandaram@gmail.com

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

80

The binomial theorem describes the algebraic expansion of a
binomial 𝒙 + 𝒚 by

(𝒙 + 𝒚)𝒑 = ∑ (𝒑
𝒊
)𝒙𝒊𝒚𝒑−𝒊 = ∑ (𝒑

𝒑−𝒊
)

𝒑
𝒊=𝟎

𝒑
𝒊=𝟎 𝒙𝒑−𝒊𝒚𝒊 (1.1)

Here (𝒑
𝒊
)is the binomial (“p choose i” or combinational, pCi)

coefficient of each term and is given by

(𝒑
𝒊
) = 𝒑𝑪𝒊 = 𝑪(𝒑, 𝒊) =

𝒑!

𝒊!(𝒑−𝒊)!
 (1.2)

It can be seen after defining 𝒚 ≡ (𝟏 − 𝒙)that,

𝟏 = 𝟏𝒑 = (𝒙 + (𝟏 − 𝒙))
𝒑

= ∑ 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 = ∑ 𝑩(𝒑, 𝒊, 𝒙)
𝒑

𝒊=𝟎

𝒑

𝒊=𝟎

(1.3)

In (1.3), 𝑩(𝒑, 𝒊, 𝒙) is known as the 𝒊𝒕𝒉 Bernstein basis polynomial, or
B-poly of degree p for any x in the domain range [0,1] such that 𝟎 ≤
𝒙 ≤ 𝟏and is defined by,

𝑩(𝒑, 𝒊, 𝒙) ≡ 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 , 𝟎 ≤ 𝒊 ≤ 𝒑, 𝒙 ∈ [𝟎, 𝟏] (1.4)

The above expression is the 𝒊𝒕𝒉 B-polynomial and there exist
polynomials such as 𝒌 = 𝒑 + 𝟏 (where k is the order) for a B-
polynomial of degree p (order k) with 𝒊 = 𝟎, 𝟏, 𝟐, … 𝒑, (𝒊 = 𝟏, 𝟐, … 𝒌).
In (1.3), it is seen that all the B-polys are of unity weight, they are
used in an unmodified manner as such and that the sum of all B-
polys of any given degree equals unity. In many applications, a
given function is to be approximated by B-polynomials in a
generalized domain [𝒂, 𝒃]of which[𝒂 = 𝟎, 𝒃 = 𝟏] is a special case.
In that case, (1.3) takes the form

𝟏 = ((𝒙 − 𝒂) + (𝒃 − 𝒙))𝒏(𝒃 − 𝒂)−𝒑 = ∑ 𝑪(𝒑, 𝒊)(𝒙 − 𝒂)𝒊(𝒃 −
𝒑
𝒊=𝟎

𝒙)𝒑−𝒊(𝒃 − 𝒂)−𝒑 (1.5)

Obviously, the definition (1.4) is now modified as,

𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙) ≡ 𝑪(𝒑, 𝒊)(𝒙 − 𝒂)𝒊(𝒃 − 𝒙)𝒑−𝒊 (𝒃 − 𝒂)𝒑⁄ , 𝒙 ∈ [𝒂, 𝒃]

 (1.6)

Some of the properties ([2]) of the B-polynomials are outlined below.

Anandaram Bernstein Polynomials: Properties and Applications

81

They are symmetric for any x: 𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙) = 𝑩(𝒑, 𝒑 − 𝒊, 𝒂, 𝒃, 𝟏 −
𝒙).

Both (1.3) and (1.5) show that they form a partition of unity:

∑ 𝑩(𝒏, 𝒊, 𝒂, 𝒃, 𝒙)𝒏
𝒊=𝟎 = 𝟏, that is, the sum of all (k=p+1) 𝒑𝒕𝒉degree B-

polynomials at any point x is unity over the entire domain. Eqn. (1.6)

shows that the first (𝟎𝒕𝒉)basis polynomial of 𝒑𝒕𝒉degree has a value

of unity at the left domain limit and the last (𝒌𝒕𝒉 = (𝒑 + 𝟏)𝒕𝒉) basis
polynomial has a value of unity at the right domain limit, that is,
𝑩(𝒑, 𝒊 = 𝟎, 𝒂, 𝒃, 𝒙 = 𝒂) = 𝟏, and, 𝑩(𝒑, 𝒊 = 𝒑, 𝒂, 𝒃, 𝒙 = 𝒃) = 𝟏,

respectively. In the domain interior 𝒂 < 𝑥 < 𝑏 each of the B-
polynomials has a unique local maximum at 𝒙 = 𝒊/𝒑 with a value
given by,

𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙 = 𝒊/𝒑) = 𝑪(𝒑, 𝒊)𝒊𝒊(𝒑 − 𝒊)𝒑−𝒊𝒑−𝒑 (1.7)

All B-polynomials are conveniently defined to vanish outside their

domain boundary limits. Thus, the set of (p+1) 𝒑𝒕𝒉degree B-
polynomials defined on a domain interval forms a complete basis of
continuous polynomials in terms of which any arbitrary function can
be expanded by using an appropriate weighting factor for each B-
polynomial (see 2.1). This will be demonstrated in the case of Bezier
curve formation in the next section. Table 1.1 lists the expressions of

all Bernstein basis polynomials up to the 𝟓𝒕𝒉degree for 𝒙 ∈ [𝟎, 𝟏].

Table 1.1. Listing of all k=(p+1) Bernstein polynomials by degree p

𝐵(𝑝, 𝑖, 𝑥) for0 ≤ 𝑝 ≤ 5 and 0 ≤ 𝑖 ≤ 𝑝are provided below
p i C(p,i) = p!/i!(p-i)! B(p, i, a= 0, b= 1, x) Figure Ref.
0 0 1 B(0 ,0, x) = 1 NA
1 0 1 B(1,0,x) = 1 − 𝑥 NA
1 1 1 B(1,1,x) = 𝑥
2 0 1 B(2,0,x) = (1 − 𝑥)2 Figure 2.1

(left panel) 2 1 2 B(2,1,x) = 2 𝑥 (1 − 𝑥)
2 2 1 B(2,2,x) = 𝑥2
3 0 1 B(3,0,x) = (1 − 𝑥)3 Figure 2.2

(left panel)

3 1 3 B(3,1,x) = 3 𝑥 (1 − 𝑥)2
3 2 3 B(3,2,x) = 3 𝑥 2(1 − 𝑥)
3 3 1 B(3,3,x) = 𝑥3
4 0 1 B(4,0,x) = (1 − 𝑥)4 Figure2.3

(left panel)

4 1 4 B(4,1,x) = 4 𝑥 (1 − 𝑥)3
4 2 6 B(4,2,x) = 6 𝑥2 (1 − 𝑥)2
4 3 4 B(4,3,x) = 4 𝑥3(1 − 𝑥)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

82

4 4 1 B(4,4,x) = 𝑥4
5 0 1 B(5,0,x) = (1 − 𝑥)5 NA

 5 1 5 B(5,1,x) = 5𝑥 (1 − 𝑥)4
5 2 10 B(5,2,x) = 10𝑥2 (1 − 𝑥)3
5 3 10 B(5,3,x) = 10𝑥3(1 − 𝑥)2
5 4 5 B(5,4,x) = 5𝑥4(1 − 𝑥)
5 5 1 B(5,5,x) = 𝑥5

The last column of Table 1.1 points to relevant figures which show
all the B-polys on the left-side, whereas their right-sides show how
the Bezier curves of the same degree can be created by the
summation of all the individually and arbitrarily weighted Bernstein
polynomials. This is discussed in the next section.

In the next section, the application of weighted Bernstein
polynomials to the construction of Bezier curves will be taken up to
be followed by their use to construct by piece-wise addition the more
versatile spline curves (also known as B-spline curves).

2. Application of Bernstein Polynomials to the Bezier Curve
Function

A Bezier curve function 𝑷(𝒙) of degree p and order 𝒌 = 𝒑 + 𝟏 is
defined to consist of the sum (also known as a blend) of k weighted
Bernstein polynomials, 𝑩(𝒑, 𝒊, 𝒙) of the same degree p(1.4) and is
given by,

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙)
𝒑
𝒊=𝟎 = ∑ 𝒘𝒊

𝒑
𝒊=𝟎 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 , 𝒙 ∈ [𝟎, 𝟏]

(2.1)

Here, 𝒘𝒊 is not only the coefficient or weight of the 𝒊𝒕𝒉 B-polynomial

but is also the 𝒊𝒕𝒉 of the (𝒑 + 𝟏) control points. A linear Bezier curve
requires just two control points (𝒘𝟎, 𝒘𝟏)and using the first degree
Bernstein polynomial (see Table 1.1) is given by,

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙) = 𝒘𝟎𝑩(𝟏, 𝟎, 𝒙) + 𝒘𝟏𝑩(𝟏, 𝟏, 𝒙) = 𝒘𝟎(𝟏 − 𝒙) + 𝒘𝟏

𝟏

𝒊=𝟎

𝒙

 (2.2)

Anandaram Bernstein Polynomials: Properties and Applications

83

A quadratic Bezier curve requires 3 control points and a 2nd degree
Bernstein polynomial. It is given (see Table 1.1) by

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙) = 𝒘𝟎𝑩(𝟐, 𝟎, 𝒙) + 𝒘𝟏𝑩(𝟐, 𝟏, 𝒙) +𝟐
𝒊=𝟎

𝒘𝟐𝑩(𝟐, 𝟐, 𝒙) (2.3)

Substituting the polynomial expressions we obtain,

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟐 + 𝒘𝟏(𝟐𝒙(𝟏 − 𝒙)) + 𝒘𝟐𝒙𝟐, 𝒙 ∈ [𝟎, 𝟏] (2.4)

Similarly, a cubic Bezier curve can be written using (2.1) and Table
1.1 as

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟑 + 𝒘𝟏(𝟑𝒙 (𝟏 − 𝒙)𝟐) + 𝒘𝟐(𝟑𝒙𝟐(𝟏 − 𝒙)) + 𝒘𝟑𝒙𝟑,
𝒙 ∈ [𝟎, 𝟏] (2.5)

Similarly, a quartic Bezier curve can be written using (2.1) and Table
1 as

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟒 + 𝒘𝟏(𝟒𝒙(𝟏 − 𝒙)𝟑) + 𝒘𝟐(𝟔𝒙𝟐(𝟏 − 𝒙)𝟐) +
𝒘𝟑(𝟒𝒙𝟑(𝟏 − 𝒙)) + 𝒘𝟒𝒙𝟒 (2.6)

Figure 2.1: B-polys of degree 2 (left) are weighted at right to form Bezier curve P(x).

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

84

Figure 2.2: B-polys of degree 3 (left) are weighted at right to form Bezier curve P(x).

Figure 2.3: B-polys of degree 4 (left)are weighted at right to form Bezier curve P(x).

It is evident that the given number of weights (or control points)
decide the order of the Bernstein polynomials used, and their
member polynomials of degree (order - 1) span the entire domain of
the Bezier curve. The role of those weights is to modify the shape of
the Bezier curve as a whole, but they do not partition the domain
into smaller intervals.

The main disadvantage of constructing Bezier curves as is that while
their basis polynomial functions span the entire solution domain, a
change of any one weight changes the shape of the entire curve, and
also its degree becomes larger with an increase in the number of the

Anandaram Bernstein Polynomials: Properties and Applications

85

weights or control points. This problem can be addressed by
dividing the solution domain into a number of smaller intervals,
each of which can be spanned by using a basis spline or B-spline
functions of a smaller degree. This will be discussed in the next
section.

3. Splines and B-Splines

To draw smooth curves through data points, drafters used thin and
flexible strips of wood, hard rubber, metal, or plastic called
mechanical splines. Pins were placed at a judicious selection of
points along a curve in a design to use a mechanical spline, and then
the spline was bent so that it touched each of these pins. The spline
interpolates the curve at these pins with this construction. It can be
used to reproduce the curve in other drawings. The points where the
pins are located are called knots. We can change the shape of the
curve defined by the spline by adjusting the location of the knots.

A ‘spline’ is a function that is constructed piece-wise from
polynomial functions. Earlier, spline was the name of a tool used by
engineers to construct smooth shapes which had their desired
properties. Drafters have been using a bendable strip known as
“spline”, which is fixed in position at a number of points that relaxes
to form a smooth curve passing through those points. The
malleability of the spline material combined with the constraint of
the control points (also known as knots) caused the strip to take the
shape that minimized the energy required for bending it between the
fixed points, which resulted in the smoothest possible shape.

Now we can make use of a class of splines called B-splines (also

known as basis splines). A B-spline function is the maximally
differentiable interpolative basis function. The B-spline curve is a
generalization of the Bezier curve (Note: a B-spline curve with no

interior knots is a Bezier curve). The B-splines are defined by their
order k, their domain limited by the two end-point knots and a
number of interior knots m between the two end-point knots so that
the total number of knots will be m+2. A knot is simply a point where
splines on both sides meet with smooth continuity. The degree of the

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

86

B-spline polynomial is one less than the spline order k that is
(degree, p = k -1).

3.1. B-spline knots

B-spline curves are composed of many polynomial pieces and are
therefore more useful than Bezier curves. Consider m+ 2 real values
𝒕𝒊, always comprising of two end-points (end-knots) of physical
domain boundary, 𝒕𝟎 and 𝒕𝒎+𝟏 and 𝒎 interior knots 𝒕𝟏 to 𝒕𝒎 between
them such that 𝒎 ≥ 𝟎. These knots constitute a defined physical knot
sequence given by {𝒕𝒊} such that 𝒕𝟎 ≤ 𝒕𝟏 ≤∙∙∙∙∙≤ 𝒕𝒎+𝟏. When the knots
are equidistant, they are said to be uniform; otherwise, they are said
to be non-uniform. Here only uniform knot vectors are considered.
Thus, a knot vector of just two physical end-point knots could be
[𝟎, 𝟏]. Bezier curves (Sec.2) possess only two end-point knots, 𝒕𝟎(=
𝒂 = 𝟎) and 𝒕𝟏(= 𝒃 = 𝟏) but no interior knots(𝒎 = 𝟎) so that they
are a limiting case of a B-spline which has no interior physical knots.

An example of a general open uniform knot vector with 𝒎 = 𝟑 is
[𝟎, 𝟏, 𝟐, 𝟑, 𝟒] between the end knots [𝟎, 𝟒] and its normalized form
[𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓𝟎, 𝟎. 𝟕𝟓, 𝟏] also has similar properties. A uniform knot
vector with 𝒎 + 𝟐 knots can be given by [𝒕𝟎, 𝒕𝟏, 𝒕𝟐, ∙ ∙ ∙ ∙, 𝒕𝒎, 𝒕𝒎+𝟏] and
it can be normalized by dividing through the last knot of that
sequence. These knots (or points) are also referred to as physical

knots as they lead to non-zero knot intervals.

It is necessary to enable the uniform knot vector to make use of B-
spline basis functions of a chosen order or degree in each partition
interval created by the internal knots between the two end-knots.
This enablement is accomplished by introducing an equal number of
repetitions (or multiplicity) of both end-knots. The repeated knots
are called ghost knots (points).

3.2. The B-spline or Basis Spline function

Suppose we consider the uniform knot vector again with 𝒎 + 𝟐
knots. This number will now be increased by repeating both the left
and right end-point knots 𝒑 = 𝒌 − 𝟏 times in their respective places.
This is defined as the augmented knot vector, or the open uniform
knot vector, which now has 𝒎 + 𝟐𝒌 knots in all. The index of the
repeated knots can be reset as follows:

Anandaram Bernstein Polynomials: Properties and Applications

87

[𝒕𝟎 =∙ ∙ ∙ ∙ = 𝒕𝟎 = 𝒕𝟎, 𝒕𝟏, 𝒕𝟐, ∙ ∙ ∙ ∙, 𝒕𝒎, 𝒕𝒎+𝟏 = 𝒕𝒎+𝟏 = ∙ ∙ ∙ = 𝒕𝒎+𝟏](3.2.1)

The repeated knots are also referred to as ghost knots since they can
form only null or zero-valued knot intervals. In (3.2.2), the indexing
of the augmented knot vector runs as 𝒊 = {𝟎, 𝟏 … 𝒎 + 𝟐𝒌 − 𝟏}. An
example of an open uniform knot vector is [𝟎, 𝟎, 𝟎, 𝟏, 𝟏, 𝟏], which
has two repeated end-knots (or ghosts) but no internal knots.
Another example of an open uniform vector is [𝟎, 𝟎, 𝟎, 𝟎,
𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏, 𝟏, 𝟏, 𝟏]which has three repeats (ghosts) of end-
knots. The multiplicity of the end-knots is then defined to be four. In
this way, the augmentation is to be done, and this step also decides
the order and degree (order – 1) of the B-spline basis function
required. The method of finding expressions for the desired B-spline
basis has to use the well-known Cox-deBoor recurrence formula,
which is extensively used and also used in computer calculations. It
is outlined below.

Recursive Definition of the B-spline (Basis Spline)

For each of either uniform or augmented knots 𝒕𝒊 where 𝒊 is a
counter for the knot sequence such as (𝒊 = 𝟎, 𝟏 … 𝒎 + 𝟐𝒌 − 𝟏) a set
of real-valued functions 𝑵(𝒑, 𝒊, 𝒙) for 𝒌 = 𝟎, 𝟏,∙ ∙ ∙ , 𝒑 with 𝒑 being
the degree of the B-spline basis function is defined by the Cox-

deBoor recurrence relation given below after the following the note
on notation.

Important Note on notation: In Sec. 2, the notation 𝑩(𝒑, 𝒊, 𝒙) was
used for Bernstein Basis functions (aka, B-polys). This has been
changed to the notation 𝑵(𝒑, 𝒊, 𝒙) as it should refer to both B-polys
basis functions which apply to knot vectors containing only one
interval between its two end-knots and to the Basis spline functions
which apply to all knot vectors with any number of internal knots.
In the latter case, a shifting of B-polys has to be done in each interval
bounded by each pair of internal knots. Both notations are
interchangeably used in publications with the above remark in
mind.

The deBoor recursive definition (see [4], [5], and [11])now follows:

For zeroth degree B-spline (p = 0):

𝑵(𝟎, 𝒊, 𝒙) = 𝟏𝒊𝒇𝒕𝒊 ≤ 𝒙 ≤ 𝒕𝒊+𝟏𝒂𝒏𝒅 = 𝟎𝒆𝒍𝒔𝒆𝒊𝒇 (3.2.2a)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

88

For higher degrees (𝒑 > 0):

𝑵(𝒑, 𝒊, 𝒙) = [(𝒙 − 𝒕𝒊) (𝒕𝒊+𝒋 − 𝒕𝒊)⁄]𝑵(𝒑 − 𝟏, 𝒊, 𝒙) +

+[(𝒕𝒊+𝒋+𝟏 − 𝒙) (𝒕𝒊+𝒋+𝟏 − 𝒕𝒊+𝟏)⁄]𝑵(𝒑 − 𝟏, 𝒊 + 𝟏, 𝒙) (3.2.2b)

Expressions 3.2.2aand 3.2.2b specify how to construct a degree p (or, order
k) basis function from B-spline functions of lower degree p-1 (or, order k-

1). A few properties of 𝑵(𝒑, 𝒊, 𝒙) are similar to Bernstein basis polynomials,
and three of them are listed below.

1. 𝑵(𝒑, 𝒊, 𝒙) is a degree p (order k=p+1) polynomial in x, non-zero
and non-negative.

2. At most non-zero k= p+1 degree basis functions for 𝒙𝝐 [𝒕𝒊, 𝒕𝒊+𝟏]
are:

𝑵(𝒑, 𝒊 − 𝒑, 𝒙),𝑵(𝒑, 𝒊 − 𝒑 + 𝟏, 𝒙),𝑵(𝒑, 𝒊 − 𝒑 + 𝟐, 𝒙),..., etc. up to
𝑵(𝒑, 𝒊, 𝒙).

3. Partition of unity: The sum of all 𝒌 = 𝒑 + 𝟏 degree p basis
functions as given above is 1.

3.3 Now, a few simple examples for a closed domain interval [0, 1]
as end-knots but without internal knots are demonstrated below.

3.3.1. Consider the open uniform knot vector [𝟎 𝟎 𝟎 𝟏 𝟏 𝟏], of degree,

p = 2 (order = 3). The six knots in it can form five intervals of type
[𝒕𝒊, 𝒕𝒊+𝟏] out of which the four formed by ghost (or repeated) knots
such as [0, 0] and [1, 1] do not exist and hence do not give rise to
non-zero basis functions. The remaining non-zero physical
interval is the end-knot interval [0, 1] for which the B-spline basis
functions 𝑵(𝟎, 𝒊, 𝒙) can be calculated [8] by hand using the Cox-
deBoor recursive formula, and they are as listed in Table 2 below:

Table 2: Basis functions 𝑁(𝑝, 𝑖, 𝑥) of degree = 2 for knot vector
[0 0 0 1 1 1]

The three non-zero of 2nd degree basis functions shown in the table
above (bottom row) are seen to be the same as the Bernstein

polynomials (B-polys) of 2nd degree in Table 1.1 (they can also be

N(0, 0, x) = 0 N(0,1, x) = 0 N(0,2, x) = 1 N(0,3, x) = 0
N(1,0, x) = 0 N(1, 1, x) = (1 − 𝑥) N(1,2, x) = x N(1,3, x) = 0
N(2,0, x) = (1 − 𝑥)2 N(2,1, x) = 2𝑥(1 − 𝑥) N(2, 2, x) =𝑥2 N(2,3, x) = 0

Anandaram Bernstein Polynomials: Properties and Applications

89

directly computed using Eqn. (1.4)) and are shown graphed in
Figure 3.3.1 below using the B-spline computing and plotting script
(also see the left panel of Fig. 2.1).

Figure 3.3.1: 2nd degree B-spline (B-polys) basis functions drawn in single closed interval for

the open uniform knot vector [0, 0, 0, 0, 1, 1, 1, 1] with 3 ghosts (repeated knots).

3.3.2. Consider the open uniform knot vector [𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏], of
degree, p = 3 (order = 4). The degree wise basis functions 𝑵(𝒊, 𝟎, 𝒙)
to 𝑵(𝒊, 𝟑, 𝒙) resulting from the deBoor recursive formula for the
non-zero end-knot interval [0, 1] are as tabulated below:

Table 3: Basis functions 𝑁(3, 𝑖, 𝑥) of degree = 3 for knot vector
[0 0 0 0 1 1 1 1] in domain [0, 1] (Reference: Magoon [8])

All four B-spline basis functions in the 5th row above are plotted in
Fig. 3.3.2.

The four non-zero basis functions of the 3rd degree shown in Table 3
above (5th row) are the same as the Bernstein polynomials of the 3rd
degree in Table 1.1. These were computed by the author’s Python

N(0, 0, x) =
0

N(0, 1, x) = 0 N(0, 2, x) = 0 N(0, 3, x) = 1 N(0, 4,
x)=0

N(1, 0, x) =
0

N(1, 1, x) = 0 N(1, 2, x)
=(1 − 𝑥)

N(1, 3, x) = x N(1, 4,
x)=0

N(2, 0, x) =
0

N(2, 1, x) =
(1 − 𝑥)2

N(2, 2, x)
= 2𝑥(1 − 𝑥)

N(2, 3, x) = 𝑥2 N(2, 4,
x)=0

N(3, 0, x)=
(1 − 𝑥)3

N(3, 1, x)
=3𝑥(1 − 𝑥)2

N(3, 2, x)
=3𝑥2(1 − 𝑥)

N(3, 3, x)= 𝑥3 N(3, 4,
x)=0

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

90

computing script and plotted in Figure 3.3.2 below (note: can also
compute directly using Eqn. (1.4)) and are shown graphed in Figure
3.3.3 below (see also the left side panel of Figure 2.2). Many examples
of similar hand calculations of such basis functions are given with all
details in [8] and [9]. However, now the use of dedicated software
such as SPLIPY has enabled calculations of all basis functions,
including derivatives and their evaluations at all specified
collocation points.

Figure 3.3.2: 3rd degree B-spline (B-polys) basis functions drawn in single closed interval for

the open uniform knot vector [0, 0, 0, 0, 1, 1, 1, 1] with 3 ghosts (repeated knots).

3.3.3. Consider the open uniform knot vector [𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏], of
degree, p = 4 (order = 5). The five B-spline basis functions
𝑵(𝒊(= 𝟎, 𝟏, 𝟐, 𝟑, 𝟒), 𝟒, 𝒙) in the closed interval [0, 1] resulting from
the Cox-deBoor recursive formula are found to be the same as the 4th
degree Bernstein polynomials listed in Table 1.1 above (Note: It can
also be directly computed using Eqn. (1.4)) and by using the B-spline
computing and plotting script are shown graphed in Figure 4.2.1 (in
Sec.4.2) (also the left side panel of Figure 2.3).

It is evident from the above three examples (3.3.1 to 3.3.3) that
Bernstein basis polynomials of the same degree can be directly used
as B-spline basis functions when the open uniform (or augmented)
knot vectors have any number of repeated end-knots but do not have
any internal knot between the two end-knots. These examples
suggest instances of augmented end-knot vectors, which can be used
to approximate the solutions of simpler ODEs ([9], [10], [11]).

Anandaram Bernstein Polynomials: Properties and Applications

91

4.1 Application of B-polys to a 4th order ODE

The example of the 4th order DE considered here arises from the
Euler-Bernoulli beam theory. The relationship between the
deflection 𝒚(𝒙) and the uniformly applied load 𝒘(𝒙) at any point 𝒙
of a beam is described by a fourth order differential equation given
by

𝑬𝑰𝒚𝒊𝒗(𝒙) = 𝑬𝑰 (𝒅𝟒𝒚(𝒙) 𝒅𝒙𝟒⁄) = 𝒘(𝒙) , (4.1)

where E is the elastic modulus of the beam material assumed to be
linear, I is the moment of inertia of the beam of uniform cross-section
about its neutral axis so that their product EI is constant for a given
beam of length L and 𝒘(𝒙) is the weight per unit length that may
depend on the nature of load distribution along the beam, but here
it is assumed to be a constant. In this case, the total weight of the
beam 𝒘𝟎 = 𝒘𝑳 will be the load that acts along the entire length, 𝑳,
of the beam downwards. In the examples considered here, this will
be taken as the only load acting to cause a proportionate deflection
along the length of the beam. Then (1.1) can be rewritten as,

𝒚𝒊𝒗(𝒙) = −(𝒘𝟎 𝑬𝑰)⁄ = −𝟏 (4.2)

As the second term (𝒘𝟎 𝑬𝑰)⁄ is a constant for a given beam, it is
normalised for convenience in this paper by setting (𝒘𝟎 𝑬𝑰)⁄ ≡ 𝟏.
This expression constitutes the BVP of the problem, and its solution
requires four boundary conditions (BCs). These BCs depend on the
way the beam is set up for study and analysis. In this paper, the beam
is set up as a cantilever of unit length, 𝑳 ≡ 𝟏, by having one end
firmly clamped and keeping the other end free. The four BCs
relevant to this cantilever set up are:

y(0) = 0 ; y’(0) = 0; y’’(1) = 0, and y’’’(1) = 0 (4.3)

where the clamped end provides the first two BCs, and the free end
provides the last two BCs, respectively. Using these Eqn. (4.2) is
easily solved to yield the cantilever deflection profile and the
maximum deflection at the free end as follows:

𝒚(𝒙) = − (𝟏 𝟐𝟒) (𝒙𝟒 − 𝟒𝒙𝟑 + 𝟔𝒙𝟐)⁄ (4.11)

𝒚𝒎𝒂𝒙 = 𝒚(𝒙 = 𝟏) = −𝟎. 𝟏𝟐𝟓 (4.12)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

92

The computed solution, to be described next, will be compared with
the exact expressions (4.11) and (4.12) later.

4.2 Algorithmic Steps of Computer Solution

We will now express the desired solution 𝒚(𝒙) by adopting the same
form as Eqn. (2.1) and rewrite it in terms of a pth degree (order, 𝒌 =
𝒑 + 𝟏) bspline basis function 𝑩(𝒑, 𝒊, 𝒙), which has 𝒌 = 𝒑 + 𝟏 basis
functions (Sec. 2) counted by the second index 𝒊 as follows:

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙)𝒑
𝒊=𝟎 = ∑ 𝒘𝒊

𝒑
𝒊=𝟎 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 , 𝒙 ∈ [𝟎, 𝟏]

 (4.13)

As many publications also use order instead of a degree, 4.13 can be
recast as follows.

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒌, 𝒊, 𝒙)𝒌
𝒊=𝟏 = ∑ 𝒘𝒊

𝒌
𝒊=𝟏 𝑪(𝒌, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒌−𝒊 , 𝒙 ∈ [𝟎, 𝟏]

 (4.14)

It is noticed that the index starts with unity in 4.14, which keeps the
number of basis functions is unchanged as long as 𝒌 = 𝒑 + 𝟏. This is
convenient for computer calculations done in this paper, so hand
calculation of both B-polys and bsplines basis functions was
avoided. The Python software package SPLIPY [7] is used here for
all orders (or degrees) of bspline basis function calculations and their
evaluation at any or all x values in the domain of the solution space.
It should be recalled here that when bspline basis functions are
applied to the entire domain extent as a single interval, then they
reduce to the Bernstein basis functions (B-polys) of the same order
or degree (see Table 1.1). However, if the domain is subdivided into
two or more intervals, then the B-polys are to be separately
computed for each interval. This job is better left to the SPLIPY
software, which does all necessary calculations using the same
CarlDeBoor’s algorithm [5] to [11]. This software can calculate B-
polys basis functions of any order also for undivided domains with
only two end-knots, and this will be used to solve the 4th order ODE
problem. The solution is solved in sequential steps outlined below.

Step 1.The problem statement. The 4th order ODE for the cantilever
is given by

Anandaram Bernstein Polynomials: Properties and Applications

93

𝒚𝒊𝒗(𝒙) = −𝟏 with BCs y(0) = 0 ; y’(0) = 0; y’’(1) = 0, and

y’’’(1) = 0; 𝒙 ∈ [𝟎, 𝟏] (4.15)

Since this ODE is of 4th order, the solution of the form (4.14) must
contain at least 5th order b-spline basis functions in order that they
can be smoothly differentiated four times. Hence we set 𝒌 = 𝒑 + 𝟏 =
𝟓 which means 5 B-polys of 4th degree are involved. They are listed
in five rows starting from 14th row in Table 1.1 and Figure 3.3.3
shows their plot which is also suitable for solving Eqn.(4.15). The
undetermined solution and its differentials now have the form

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝟓, 𝒊, 𝒙)𝟓
𝒊=𝟏 where there are 5 unknown weights {𝒘𝒊} to

be determined. It is these weights (aka, control points) which help to
modify the attached basis functions at a few selected positions (aka,
Greville coordinates; see below) in the domain and add them
together to determine the shape of the solution curve (see Sec.2). The
expanded solution and its all four derivatives in their compact form
are given below.

𝒚(𝒙) = 𝒘𝟏𝑩(𝟓, 𝟏, 𝒙) + 𝒘𝟐𝑩(𝟓, 𝟐, 𝒙) + 𝒘𝟑𝑩(𝟓, 𝟑, 𝒙) + 𝒘𝟒𝑩(𝟓, 𝟒, 𝒙) +
𝒘𝟓𝑩(𝟓, 𝟓, 𝒙) (4.16)

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏 BC: 𝒚(𝒙 = 𝟎) = 𝟎 (4.16)

𝒚′(𝒙) = ∑ 𝒘𝒊𝑩′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏 BC: 𝒚′(𝒙 = 𝟎) = 𝟎 (4.17)

𝒚′′(𝒙) = ∑ 𝒘𝒊𝑩′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏 BC: 𝒚′′(𝒙 = 𝟏) = 𝟎 (4.18)

𝒚′′′(𝒙) = ∑ 𝒘𝒊𝑩′′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏 BC: 𝒚′′′(𝒙 = 𝟏) = 𝟎 (4.19)

𝒚′′′′(𝒙) = ∑ 𝒘𝒊𝑩′′′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏 BC: 𝒚′′′′(𝒙) = −𝟏 (4.20)

It is to be noted that weights are kept constant, only the 𝒌 = 𝟓 basis
functions 𝑩(𝒌 , 𝒊, 𝒙) are successively differentiated in the above
expressions, and they can also be evaluated at the specified 𝒙 values
provided by the Greville averaging method (Step 2 below)by the
SPLIPY [6] software. Since there are five equations all the BCs stated
in (4.15) can be applied, and they are also shown to the right of the
arrow against each equation above. When all the five expressions are
expanded, a simultaneous equation is obtained as a five by six
matrix. This can easily be solved by using the Numpy’s linear
algebra module to obtain the five Bezier control points (weights) 𝒘𝒊.

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

94

These five weights can then be immediately substituted in (4.16) to
yield a general equation for the deflection profile.

We now require a set of five well-placed evaluation coordinates (aka,
collocation points) along the domain width, that is, along the unit
length of the cantilever. To find these points, we need to specify the
knot vector for the problem, and this is done in the next step.

Step 2. Knot vector specification for the problem domain

Since the solution (4.16) has 5th order b-splines and there is just one
interval between the end knots [𝟎, 𝟏], the appropriate open uniform
knot vector is given by [𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟏, 𝟏, 𝟏, 𝟏]. The domain end
knots 0 and 1 are each repeated 𝒑 = 𝟒 times, which of course,
corresponds to the degree (and order, 𝒌 = 𝟓) of the b-splines. This
knot vector specification was developed by Carl deBoor in order that
the computing software identifies it and the needed 5 basis functions
are calculated. Further, this knot vector is used to determine the
evaluation coordinates for the solution by carrying out a sequential
averaging of 𝒑 = 𝟒 knots in the knot vector. This is known as the
Greville averaging, and the coordinates so obtained are called
Greville abscissas. First this process yields the values (0+0+0+0)/4,
(0+0+0+0)/4, (0+0+0+1)/4, (0+0+1+1)/4, (0+1+1+1)/4, (1+1+1+1)/4,
and (1+1+1+1)/4 . The resulting values are 0.0, 0.0, 0.25, 0.50, 0.75,

1.0, and 1.0. It is standard practice to omit one of the first and one of
the last repeated values, and the remaining five values {0.0, 0.25, 0.50,

0.75, 1.0] constitute the Greville abscissas (aka, control points or
Greville collocation coordinates, [8],[9]). By using these values, all
the B-poly basis functions in (4.16) are evaluated and plotted. The
SPLIPY {6] software can do these calculations too once the open knot
vector and its order values are supplied to it. The following python
function can be used to get the Greville abscissa values.

Anandaram Bernstein Polynomials: Properties and Applications

95

def GrevilleAbsc(degree, agknots):

 # GREVILLE Abcissa Control Points (Coordinates) computation

 agk = np.array(agknots); magk = len(agk); Ngx = magk - degree

 Gx = np.zeros((Ngx+1))

 for i in range (Ngx+1):

 for j in range(degr): #while i < magk-ndegr+1

 Gx[i] += agk [i + j] / degree

 print("Full array Gx as obtained is:\n", Gx)

 # now omit the first and last repeated coordinates

Gx = Gx[1 : -1] # <-- This is array of Greville abcissae values

 return Gx

The Greville abscissae method as outlined above is excellent and
adequate for problems considered here and has been applied to
solve several ODEs ([8],[9]). For more complicated problems,
collocation points are found as nodes and weights supplied by
applying the Gauss-Legendre quadrature method. These are
described in [10], [11] and [12].

Step 3. Solution Evaluation and plotting.

This is the final step. The five Greville collocation points found in
Step 2 for the given 5th order knot vector are [𝟎. 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓,
𝟏. 𝟎]. Of these, the first and the last are used to evaluate all the five

basis functions in each of the five equations (4.16) to (4.20).
Therefore, they form a square matrix of 5 rows and 5 columns, which
may be labelled as A. The values on the right-hand side of the
equations can be collected to form a column vector labelled as B. It

is given by [𝟎, 𝟎 , 𝟎, 𝟎, −𝟏]𝑻. The unknown column vector of the five

weights labelled as Y is given by [𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓]𝑻. Together
these may be written as 𝑨𝒀 = 𝒃, and this matrix equation can be
readily solved by the linear algebra module of numpy. These
weights (or, control points) can now be used in Eqn. (4.16) along with
the five Greville points to compute the Bezier curve, which defines
the deflection profile of the cantilever. The RMS error of points on

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

96

this curve can be computed by comparing with the exact theoretical
solution, and the error profile can also be plotted.

All these steps are programmed with explanatory comments and
written in the Python 3.7 script listed in the Appendix. The results
are presented in the three graphs (Fig.4.2.1, 4.2.2, and 4.2.3), which
are also provided with relevant details.

Figure 4.2.1: 4th degree Bernstein basis functions drawn in single closed
interval for the open uniform knot vector [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] with 4
ghosts (repeated knots).

Figure 4.2.2. The lower part of all the 4th degree Bernstein basis functions
drawn for the 5th order(4th degree)open knot vector
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]are shown above the abscissa line, and their weighted

Anandaram Bernstein Polynomials: Properties and Applications

97

summation to form the Bezier curve is shown below the abscissa line. This
Bezier curve at the bottom of this figure defines the computed cantilever
deflection profile, which has its maximum value of -0.125 at the free end at
the right.

Figure 4.2.3. The computed cantilever deflection profile is drawn here as a Bezier curve with

its five control points (weights). This profile coincides with the exact theoretical curve with an

RMS error smaller than the machine precision. The maximum deflection of 0.125 at the free

end (right edge of cantilever) also agrees with the calculated value.

5. Conclusion

The solution methodology of the 4th order cantilever BVP making
use of Bernstein basis polynomials, basis spline functions, and
construction of the Bezier curve as the solution profile of the problem
under consideration highlights the role these basis functions can
play as constituting an alternate method of solving various types of
ODEs and BVPs occurring in many fields of physics. These basis
functions have near ideal properties required for their use not only
directly (as shown in Sec.4 above) but as Ritz variational basis
functions too. Especially in quantum mechanics [12], where it rivals
other routine methods. A good review of the many possible
applications of B-splines in the field of atomic physics and quantum
mechanics and their ease of use in making highly accurate
computations as of 2001 is provided in [11]. Since then, the use of B-
splines has become a vigorously active field of research worldwide.

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

98

References

[1] https://en.wikipedia.org/wiki/Bernstein_polynomial
[2] http://mae.engr.ucdavis.edu/~farouki/bernstein.pdf
[3] https://en.wikipedia.org/wiki/B-spline
[4] J.S. Racine,”A Primer on Regression Splines”,(Chapter article), 2019.

Pdf (downloadable from https://cran.r-project.org/ web/ packages/
crs/vignettes/spline_primer.pdf)

[5] https://en.wikipedia.org/wiki/De_Boor's_algorithm
[6] https://sintefmath.github.io/Splipy/index.html
[7] M. I. Bhatti and P. Bracken,” Solutions of differential equations in a

Bernstein polynomial basis”, Journal of Computational and Applied
Mathematics, Vol. 205(1), pp.272-280, 2007.

[8] J. Magoon, "Application of the b-spline collocation method to a
geometrically non-linear beam problem" , MS Thesis, 2010, RIT, 2010.
(Access from:http://scholarworks.rit.edu/theses)

[9] R. Jhaveri, "Design of passive suspension system with non-linear
springs using b-spline collocation method", MS Thesis, RIT, 2011.
(Accessfrom:http://scholarworks.rit.edu/theses)

[10] http://www.am.qub.ac.uk/users/h.vanderhart/Splinestop.htm
[11] H.Bachau etal., “Applications of B-splines in atomic and molecular

physics”, Rep. Prog. Phys. 64, 1815–1942, 2001.
[12] Johnson, “Lectures in Atomic Physics”, University of Notre Dame,

USA, 2006. (access this book from) https:// www3.nd.edu/
~johnson/Publications/book.pdf

Appendix

Python 3.7 Script to solve to solve the 4th order-BVP ODE:
“”” ********written by Mandyam N.Anandaram********

This BVP-01_FreeEndedCantilever.py problem script solves
Free Ended Cantilever Problem (left end clamped and right end free)
P'''' = -w_EI where w_EI = w/EI, and w = w0*L acting downwards
 (e.g., w0 = 15 kN/m, E = 2.0e05 MPa; I = 3.0e04 cm^4, L = 3.0 m)
 with 4 BCs: P(0) = 0; P'(0) = 0; P''(L) = 0; P'''(L) = 0 for 0 <= x <= L
Exact solution: P(x) = -(w_EI/24)*(x**4 - 4*L*x**3 + 6*L**2*x**2),
P(L) = -(w_EI * 3/24)*L**4 (Max deflection at x = L)
Unitless form: set L = 1 and w_EI = 1 to get P'''' = -1 for 0 <= x <= 1
with exact normalized solution:
 P(x) = -(1.0/24)*(x**4 - 4*x**3 + 6*x**2);

https://en.wikipedia.org/wiki/Bernstein_polynomial
http://mae.engr.ucdavis.edu/~farouki/bernstein.pdf
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/De_Boor's_algorithm
https://sintefmath.github.io/Splipy/index.html
http://scholarworks.rit.edu/theses%20)

Anandaram Bernstein Polynomials: Properties and Applications

99

 P(1) = -w_EI*L**4/8 ==> -1/8 = -0.125 ( max deflection at free-
end)
and the BCs to be used now are:
P(0) = 0; P'(0) = 0; P''(1) = 0; P'''(1) = 0;
and the given data that P''''(x) = -1 (normalized for 0 <= x <= 1)
“”” ****************************
import splipy as splinpy #  SPLIPY 1.3.1 must be pre-installed
import numpy as np
from numpy.linalg import solve as npLA_solve
import matplotlib.pyplot as plt
def mainsolver(order, augknotvec) :
 ordr, agknots = order, np.array(augknotvec); agkmax = agknots[-1]
 degr = ordr-1 #degree = number of ghost knots, degree of B-polys etc
 #create B-spline basis function operator
 basis = splinpy.BSplineBasis(ordr, agknots)
 #if agkmax > 1: agknots = basis.reparam(agkmax) #normalize()
#agknots)
 print("Basis Spline Function Parameters :")
 print(" Input data: order =",ordr,"; degree =",degr)
 print(" Input augmented (open uniform) knots:",agknots)
 print(" Total number of knots: basis.__len__() = ",basis.__len__())
 print(" Starting point of knots: basis.start() = ",basis.start())
 print(" Ending point of knots: basis.end() = ",basis.end())
 print(" Physical/unique knots vector: basis.knot_spans() = ",
 basis.knot_spans(include_ghost_knots=False))
 print(" Number of internal knots within basis.knot_spans() = ",
 basis.__len__() - 2*ordr)
 print(" Number of repeated end-knots (ghost knots) = degree =",degr)
 nbfs = basis.num_functions(); # Number of Basis funcs
 print(" Number of Basis Spline funcs: basis.num_functions() = ",nbfs)
 # create an array of nbfs controlpoints (= the number of basis funcs).
 # For 1D get weights/control points using Greville abcissa points
 # using grevx = basis.greville() --- done above.
 # curve = splp.Curve(basis, controlpoints)
 grevx = np.array(basis.greville()) # compute/get greville eval points
 print("The",len(grevx),"Greville abcissa pts are:\n ",grevx)
 # 201 uniformly spaced evaluation points on the domain (0,augkmax)
 t = np.linspace(0, agkmax, 201)
 # evaluate *all* basis functions on *all* points t. The
 # returned variable B is a matrix
 B = basis.evaluate(t, d = 0)
 # B.shape = (201,nbfs), 201 visualization points, nbfs basis functions

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

100

 print("B.shape =", B.shape)
 degr = ordr-1; augk = np.array(agknots[degr:-degr]) # omit ghost
knots
 # display the b-spline basis functions:
 plt.figure(figsize=(8,6),dpi=120)
 # plot the basis functions
 plt.plot(t, B, label="B(%d,i,x)"%nbfs)
 plt.plot(augk,augk*0.0 ,"kx", ms=8,label="knot partitions")
 for ia in range(len(augk)): # ghosts not marked/repeated
 kx = augk[ia]
 plt.plot([kx,kx],[0.0,1.0] ,"b-.", ms=8)
 plt.grid(which="both"); plt.minorticks_on()
 plt.legend(loc=0,ncol=2,frameon=False)
 plt.title("Bernstein Basis functions of 4th Degree and 5th Order")
 plt.show()

 # Here we compute needed derivatives upto 4th order required for the
 # BVP by evaluating them at the Greville evaluation points which
 # were computed above from the augmented knot vector.
 # Note that for a 4th order ODE an augmented knot vector of
minimum
 # order 5 (degree 4) and above must be used
 w_EI = 1.0 # w_EI = W/EI = 1.0 assumed for the beam cantilever
 # basis.eval() for all greville coords is not required here:
 nwts = len(grevx) # note that nwts = nbfs, the number of basis funcs
 # Create an array ywts (= len(grevx) to hold control points to be
 # determined at all the corresponding Greville abcissae points
 #nwts = len(grevx) # note that nwts = nbfs, the number of basis funcs
 ywts = np.zeros((nwts,1),float);#print("y control points:",ywts)
 # To determine the nwts control points (weights) the following #nwts
 # equations are evaluated at only required/selected greville x-coords
 P0 = basis.evaluate(grevx[0],d=0) # P (x = grevx[0]) = 0.0(value)
 dP0 = basis.evaluate(grevx[0],d=1) # P'(x = grevx[0]) = 0.0
 d2P1 = basis.evaluate(grevx[-1],d=2) # P'''(x = grevx[-1]) = 0.0
 d3P1 = basis.evaluate(grevx[-1],d=3) # P'''(x = grevx[-1]) = 0.0
 d4P_gx2 = basis.evaluate(grevx[2],d=4) # P''''(x = grevx[2]) = -1.0
 d4P_gx3 = basis.evaluate(grevx[3],d=4) # P''''(x = grevx[3]) = -1.0
 #d4P_gxk = basis.evaluate(grevx[-1],d=4) # P''''(x = grevx[-1]) = -1.0
 #Ax = See below
 # bx is the vector of all BCs and has len(bx) = nwts
 bx = np.zeros((nwts,1),float);print("bx:\n",bx)
 if nwts == 5:

Anandaram Bernstein Polynomials: Properties and Applications

101

 Ax = np.vstack((P0, dP0, d2P1, d3P1, d4P_gx2))
 bx[-1,0] = -1.0
 elif nwts == 6:
 Ax = np.vstack((P0, dP0, d2P1, d3P1, d4P_gx2, d4P_gx3))
 bx[-1,0] = -1.0; bx[-2,0] = -1.0;
 elif nwts == 7:
 d4P_gx4 = basis.evaluate(grevx[-1],d=4) # P''''(x = grevx[4]) = -1.0
 Ax = np.vstack((P0,dP0,d2P1,d3P1, d4P_gx2, d4P_gx3, d4P_gx4))
 bx[-1,0] = -1.0; bx[-2,0] = -1.0; bx[-3,0] = -1.0
 elif nwts == 8:
 d4P_gx4 = basis.evaluate(grevx[4],d=4) # P''''(x = grevx[4]) = -1.0
 d4P_gx5 = basis.evaluate(grevx[-1],d=4) # P''''(x = grevx[5]) = -1.0
 Ax =
np.vstack((P0,dP0,d2P1,d3P1,d4P_gx2,d4P_gx3,d4P_gx4,d4P_gx5))
 bx[-1,0] = -1.0;bx[-2,0] = -1.0; bx[-3,0] = -1.0; bx[-4,0] = -1.0
 else:
 print("solution works for 5th,6th,7th and 8th order knot vectors
only")

 print("Ax[]:\n",Ax);print("bx :\n",bx);# print("y control points:",ywts)
 # Solve for all the nwts control points using np.linalg.solve() below
 yx = npLA_solve(Ax,bx); #print("Ax[]:\n",Ax);print("bx :",bx);
 print("yx =",yx); print("Verify: bx = Ax @ yx =",Ax@yx)
 for ilen in range(len(yx)): ywts[ilen,0] = yx[ilen]
 print("Number of Curve weights (control pts) =",ywts.shape[0])
 print("Curve weights (control points) array:\n =",ywts)
 # Bspline Curve
 # Curves are defined by associating a controlpoint to each basis
 # function. y(x) = \sum_{i=1}^n w_i. B{p, i, x} where w_i are the
 # controlpoints and B{p,i,x} are the basis functions. y(x) is the
 # parametric curve, and by letting each controlpoint be a vector of
 # length 1, we may create aplanar curve. It is necessary to create an
 # array of as many controlpoints as the number of basis functions.
 # For 1D curves Greville abcissa points are found from the augmented
 # knot vector using grevx = basis.greville() and these are used to
 # determine the weights or control points from the problem matrix.
 # Finally the planar curve is generated from the command :
 # curve = splp.Curve(basis, controlpoints)
 # ywts = weights array = number of Greville abcissae (eval
coordinates).
 print("weights:", ywts)
 #wts = np.array([0.0, 1.25, 1.0]); print("weights:",wts)

Mapana Journal of Sciences, Vol. 20, No.1 ISSN 0975-3303

102

 clrs1 = ['b--','g--','m--','y--','r--','c--','k--','m-','k--','g--']
 clrs2 = ['b-.','g-.','m-.','y-.','r-.','c-','k-.','m-.','k-.','g-.']
 # display the spline curve by combining the weighted B-splines
 plt.figure(figsize=(8,6),dpi=120)
 # plot the basis functions, weighted basis funcs and blended curve
 for iw in range(ordr):
 plt.plot(t, B[:,iw],clrs1[iw],label="Bpolys(%d,%d,t)"%(degr,iw))
 plt.plot(t, B[:,iw]*ywts[iw,0],clrs2[iw], label=" %.2f *
B(%d,%d,t)"%(ywts[iw,0],degr,iw))
 plt.plot(t, B@ywts,"k",label="Curve:B@ywts")
 plt.plot(augk,augk*0.0 ,"kx", ms=8,label="knots")
 #for ia in range(len(augk)): # ghosts not marked/repeated
 # kx = augk[ia]; plt.plot([kx,kx],[0.0,1.0] ,"k-.", ms=8)
 plt.grid(which="both"); plt.minorticks_on()
 plt.legend(loc=0,ncol=2,frameon=False)
 plt.title('B-polys Basis splines weighted and combined')
 plt.show()

 curve1d = splinpy.Curve(basis,ywts) # Construct spline curve from
ywts
 print("# access curve evaluation at greville abcissae points below:")
 for igr in grevx:
 print("curve1d(",igr,") = ", curve1d(igr))
 #print("d(curveid.deriv(",igr,"))= ", curve1d.derivative(igr))
 #print("dd(curveid.deriv(",igr,",d=2)) = ", curve1d.derivative(igr,
d=2))
 print("# access spline curve controlpoints (= weights) below :")
 for i in range(ordr): print("curve1d[",i,"] =", curve1d[i])
 # prints all the (0-indexed) polygon control points (= weights)
 print("Given knot vector is :",basis.knots)
 # Evaluate the curve at all visualization points of the domain.
 tx = np.linspace(0,agkmax,201) # spline evaluation points
 Pbspx = curve1d(tx); Pbspx = Pbspx[:,0];
 #print("Px.shape =", Pbspx.shape) #Px[:,0]--->Px[:]
 Pexact = w_EI / 24*tx*tx*(4.0*tx - tx*tx - 6.0) # recall that w_EI =
1
 print("Maximum sag at the free end = ",min(Pexact)) # -ve
 # get RMS error for the difference (Exact sol - Bspline sol)
 rmserr = np.sqrt(((Pexact - Pbspx)**2).mean())
 print("RMS Error =", rmserr)
 # plot the curve itself
 plt.figure(figsize=(6,8),dpi=180)

Anandaram Bernstein Polynomials: Properties and Applications

103

 plt.plot(tx, Pbspx, "k",label="Spline Order %d"%ordr)
 plt.plot(tx, Pexact,"b",label="Exact Curve")
 plt.plot(tx, Pbspx-Pexact, "g",label="RMSErr: %.1e"%rmserr)
 # then evaluate the break-points (the knots)
 tbk = basis.knots; #print("basis knots, ti = ",tbk)
 xtbk = curve1d(tbk); #print("xtbk.shape",xtbk.shape)
 # Also plot the breakpoints as black dots
 plt.plot(tbk, xtbk, 'ko ',ms=12, label="basis.knots")
 plt.plot(grevx, curve1d.controlpoints,'rs--',label="control pts")
 plt.plot(augk,augk*0.0 ,"kx", ms=8,label="end-knots")
 plt.grid(which = “both”); plt.minorticks_on()
 plt.legend(loc=0,frameon=False)
 plt.title("Spline Curve of Simple Cantilever BVP $P^{iv}(x)=-1$")
 plt.show()
if __name__ == "__main__":
 # Use ONE of 5th, 6th 7th and 8th Order augmented knot vectors
(ONLY)
 order, augknots = 5, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]; # 4th degree B-polys
 #order, augknots = 6, [0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1]; # 5th degree B-polys
 #order, augknots = 7, [0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1]; # sextic basls
 #order, augknots = 8, [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1];# septic
basis
 mainsolver(order, augknots) #  computes the solution now

Conflict of Interest statement

No funding or any help has been received from any funding Agency
or persons respectively. Hence there is no conflict of interest with
any entity.

Author contribution statement

The work reported in this single-authored paper has been fully
(100%) carried out by M.N. Anandaram.

