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Bernstein Polynomials: Properties and 

Applications to Bezier Curves, B-Splines, 

and Solution of Boundary Value Problems 

M  N Anandaram* 

Abstract 

Bernstein polynomials (also known as B-polys) have 
excellent properties allowing them to be used as basis 
functions in many applications in physics. This paper 
provides a brief tutorial description of their properties, and 
their use in obtaining B-polys, B-splines or Basis spline 
functions, Bezier curves, and ODE solution curves is 
computationally demonstrated. Also, an example is 
described showing their application for solving the fourth 
order BVP relating to the bending at the free end of a 
cantilever. 

Keywords: Bernstein polynomials (B-polys), B-Splines, Bezier 
Curves, BVP solution 

1. Introduction to Bernstein Basis Polynomials 

Over a century ago, the Russian mathematician Sergei Natanovich 
Bernstein (1880-1968) discovered many properties and uses of 
Bernstein polynomials. They were originally used for constructing 
Bezier curves (see next section) in computer graphics, but their 
properties later enabled their use as basis functions for the solution 
of many types of differential equations (see [1] to [5], [8], [10] [11]  
and many more references therein). 
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The binomial theorem describes the algebraic expansion of a 
binomial  𝒙 + 𝒚 by 

(𝒙 + 𝒚)𝒑 = ∑ (𝒑
𝒊
)𝒙𝒊𝒚𝒑−𝒊 =  ∑ ( 𝒑

𝒑−𝒊
)

𝒑
𝒊=𝟎

𝒑
𝒊=𝟎 𝒙𝒑−𝒊𝒚𝒊                                                   (1.1) 

Here (𝒑
𝒊
)is the binomial (“p choose i” or combinational, pCi) 

coefficient of each term and is given by 

(𝒑
𝒊
) = 𝒑𝑪𝒊 = 𝑪(𝒑, 𝒊) =

𝒑!

𝒊!(𝒑−𝒊)!
                                                                  (1.2) 

It can be seen after defining  𝒚 ≡ (𝟏 − 𝒙)that, 

𝟏 = 𝟏𝒑 = (𝒙 + (𝟏 − 𝒙))
𝒑

= ∑ 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 = ∑ 𝑩(𝒑, 𝒊, 𝒙)
𝒑

𝒊=𝟎

𝒑

𝒊=𝟎

 

(1.3) 

In (1.3),  𝑩(𝒑, 𝒊, 𝒙) is known as the 𝒊𝒕𝒉 Bernstein basis polynomial, or 
B-poly of degree p for any x in the domain range [0,1] such that 𝟎 ≤
𝒙 ≤ 𝟏and is defined by, 

𝑩(𝒑, 𝒊, 𝒙) ≡ 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 ,          𝟎 ≤ 𝒊 ≤ 𝒑,        𝒙 ∈ [𝟎, 𝟏]    (1.4) 

The above expression is the 𝒊𝒕𝒉 B-polynomial and there exist 
polynomials such as 𝒌 = 𝒑 + 𝟏 (where k is the order) for a B-
polynomial of degree p (order k) with  𝒊 = 𝟎, 𝟏, 𝟐, … 𝒑, (𝒊 = 𝟏, 𝟐, … 𝒌 ). 
In (1.3), it is seen that all the B-polys are of unity weight, they are 
used in an unmodified manner as such and that the sum of all B-
polys of any given degree equals unity. In many applications, a 
given function is to be approximated by B-polynomials in a 
generalized domain [𝒂, 𝒃]of which[𝒂 = 𝟎, 𝒃 = 𝟏] is a special case. 
In that case, (1.3) takes the form 

𝟏 = ((𝒙 − 𝒂) + (𝒃 − 𝒙))𝒏(𝒃 − 𝒂)−𝒑 = ∑ 𝑪(𝒑, 𝒊)(𝒙 − 𝒂)𝒊(𝒃 −
𝒑
𝒊=𝟎

𝒙)𝒑−𝒊(𝒃 − 𝒂)−𝒑                                                                                                 (1.5) 

Obviously, the definition (1.4) is now modified as, 

𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙) ≡ 𝑪(𝒑, 𝒊)(𝒙 − 𝒂)𝒊(𝒃 − 𝒙)𝒑−𝒊 (𝒃 − 𝒂)𝒑⁄  , 𝒙 ∈ [𝒂, 𝒃]         

                             (1.6) 

Some of the properties ([2]) of the B-polynomials are outlined below.  
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They are symmetric for any x:   𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙) = 𝑩(𝒑, 𝒑 − 𝒊, 𝒂, 𝒃, 𝟏 −
𝒙).  

Both (1.3) and (1.5) show that they form a partition of unity:  

∑ 𝑩(𝒏, 𝒊, 𝒂, 𝒃, 𝒙)𝒏
𝒊=𝟎 = 𝟏, that is, the sum of all (k=p+1) 𝒑𝒕𝒉degree B-

polynomials at any point x is unity over the entire domain. Eqn. (1.6) 

shows that the first (𝟎𝒕𝒉)basis polynomial of 𝒑𝒕𝒉degree has a value 

of unity at the left domain limit and the last (𝒌𝒕𝒉 = (𝒑 + 𝟏)𝒕𝒉) basis 
polynomial has a value of unity at the right domain limit, that is, 
𝑩(𝒑, 𝒊 = 𝟎, 𝒂, 𝒃, 𝒙 = 𝒂) = 𝟏, and, 𝑩(𝒑, 𝒊 = 𝒑, 𝒂, 𝒃, 𝒙 = 𝒃) = 𝟏, 

respectively. In the domain interior 𝒂 < 𝑥 < 𝑏  each of the B-
polynomials has a unique local maximum at 𝒙 = 𝒊/𝒑 with a value 
given by, 

𝑩(𝒑, 𝒊, 𝒂, 𝒃, 𝒙 = 𝒊/𝒑) = 𝑪(𝒑, 𝒊)𝒊𝒊(𝒑 − 𝒊)𝒑−𝒊𝒑−𝒑                                      (1.7) 

All B-polynomials are conveniently defined to vanish outside their 

domain boundary limits. Thus, the set of (p+1) 𝒑𝒕𝒉degree B-
polynomials defined on a domain interval forms a complete basis of 
continuous polynomials in terms of which any arbitrary function can 
be expanded by using an appropriate weighting factor for each B-
polynomial (see 2.1). This will be demonstrated in the case of Bezier 
curve formation in the next section. Table 1.1 lists the expressions of 

all Bernstein basis polynomials up to the 𝟓𝒕𝒉degree for  𝒙 ∈  [𝟎, 𝟏].                                         

Table 1.1.  Listing of all k=(p+1) Bernstein polynomials by degree p 

𝐵(𝑝, 𝑖, 𝑥) for0 ≤ 𝑝 ≤ 5  and  0 ≤ 𝑖 ≤ 𝑝are provided below 
p i C(p,i) = p!/i!(p-i)!   B( p, i, a= 0, b= 1,  x) Figure Ref. 
0 0               1 B(0 ,0, x) =         1        NA 
1 0           1 B(1,0,x) = 1 − 𝑥 NA 
1 1                  1 B(1,1,x) =   𝑥    
2 0        1 B(2,0,x) =   (1 − 𝑥)2 Figure 2.1 

(left panel) 2 1              2 B(2,1,x) = 2 𝑥  (1 − 𝑥) 
2 2                     1 B(2,2,x) =      𝑥2 
3 0      1 B(3,0,x) =    (1 − 𝑥)3 Figure 2.2 

(left panel) 
 

3 1           3 B(3,1,x) =  3 𝑥 (1 − 𝑥)2 
3 2                3 B(3,2,x) =  3 𝑥 2(1 − 𝑥) 
3 3                      1 B(3,3,x) =     𝑥3 
4 0    1 B(4,0,x) =  (1 − 𝑥)4 Figure2.3 

(left panel) 
 

4 1        4  B(4,1,x) = 4 𝑥 (1 − 𝑥)3 
4 2            6 B(4,2,x) = 6 𝑥2 (1 − 𝑥)2 
4 3                 4 B(4,3,x) =  4 𝑥3(1 − 𝑥) 
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4 4                      1 B(4,4,x) =   𝑥4 
5 0   1 B(5,0,x) =  (1 − 𝑥)5 NA 

 5 1       5 B(5,1,x) =  5𝑥 (1 − 𝑥)4 
5 2          10 B(5,2,x) =  10𝑥2 (1 − 𝑥)3 
5 3              10 B(5,3,x) =  10𝑥3(1 − 𝑥)2 
5 4                    5 B(5,4,x) =  5𝑥4(1 − 𝑥) 
5 5                        1 B(5,5,x) =   𝑥5 

 

The last column of Table 1.1 points to relevant figures which show 
all the B-polys on the left-side, whereas their right-sides show how 
the Bezier curves of the same degree can be created by the 
summation of all the individually and arbitrarily weighted Bernstein 
polynomials. This is discussed in the next section. 

In the next section, the application of weighted Bernstein 
polynomials to the construction of Bezier curves will be taken up to 
be followed by their use to construct by piece-wise addition the more 
versatile spline curves (also known as B-spline curves). 

2. Application of Bernstein Polynomials to the Bezier Curve 
Function 

A Bezier curve function  𝑷(𝒙)  of degree p and order 𝒌 = 𝒑 + 𝟏 is 
defined to consist of the sum (also known as a blend) of k weighted 
Bernstein polynomials, 𝑩(𝒑, 𝒊, 𝒙) of the same degree p(1.4) and is 
given by, 

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙)
𝒑
𝒊=𝟎 = ∑ 𝒘𝒊

𝒑
𝒊=𝟎 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 , 𝒙 ∈ [𝟎, 𝟏] 

(2.1) 

Here, 𝒘𝒊 is not only the coefficient or weight of the 𝒊𝒕𝒉  B-polynomial 

but is also the 𝒊𝒕𝒉 of the (𝒑 + 𝟏) control points.  A linear Bezier curve 
requires just two control points  (𝒘𝟎, 𝒘𝟏)and using the first degree 
Bernstein polynomial (see Table 1.1) is given by, 

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙) = 𝒘𝟎𝑩(𝟏, 𝟎, 𝒙) + 𝒘𝟏𝑩(𝟏, 𝟏, 𝒙) = 𝒘𝟎(𝟏 − 𝒙) + 𝒘𝟏

𝟏

𝒊=𝟎

𝒙 

 (2.2) 
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A quadratic Bezier curve requires 3 control points and a 2nd degree 
Bernstein polynomial. It is given (see Table 1.1) by  

𝑷(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙) = 𝒘𝟎𝑩(𝟐, 𝟎, 𝒙) + 𝒘𝟏𝑩(𝟐, 𝟏, 𝒙) +𝟐
𝒊=𝟎

𝒘𝟐𝑩(𝟐, 𝟐, 𝒙)                                                                                                       (2.3) 

Substituting the polynomial expressions we obtain, 

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟐 + 𝒘𝟏(𝟐𝒙(𝟏 − 𝒙)) + 𝒘𝟐𝒙𝟐, 𝒙 ∈ [𝟎, 𝟏]               (2.4)  

Similarly, a cubic Bezier curve can be written using (2.1) and Table 
1.1 as 

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟑 + 𝒘𝟏(𝟑𝒙 (𝟏 − 𝒙)𝟐) + 𝒘𝟐(𝟑𝒙𝟐(𝟏 − 𝒙)) + 𝒘𝟑𝒙𝟑,       
𝒙 ∈ [𝟎, 𝟏]                                                                                                   (2.5)  

Similarly, a quartic Bezier curve can be written using (2.1) and Table 
1 as 

𝑷(𝒙) = 𝒘𝟎(𝟏 − 𝒙)𝟒 + 𝒘𝟏(𝟒𝒙(𝟏 − 𝒙)𝟑) + 𝒘𝟐(𝟔𝒙𝟐(𝟏 − 𝒙)𝟐) +
𝒘𝟑(𝟒𝒙𝟑(𝟏 − 𝒙)) + 𝒘𝟒𝒙𝟒                                                                               (2.6)  

 

Figure 2.1:  B-polys of degree 2 (left) are weighted at right to form Bezier curve P(x). 
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Figure 2.2: B-polys of degree 3 (left) are weighted at right to form Bezier curve P(x). 

 

Figure 2.3: B-polys of degree 4 (left)are weighted at right to form Bezier curve P(x). 

It is evident that the given number of weights (or control points) 
decide the order of the Bernstein polynomials used, and their 
member polynomials of degree (order - 1) span the entire domain of 
the Bezier curve. The role of those weights is to modify the shape of 
the Bezier curve as a whole, but they do not partition the domain 
into smaller intervals. 

The main disadvantage of constructing Bezier curves as is that while 
their basis polynomial functions span the entire solution domain, a 
change of any one weight changes the shape of the entire curve, and 
also its degree becomes larger with an increase in the number of the 
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weights or control points. This problem can be addressed by 
dividing the solution domain into a number of smaller intervals, 
each of which can be spanned by using a basis spline or B-spline 
functions of a smaller degree. This will be discussed in the next 
section. 

3. Splines and B-Splines 

To draw smooth curves through data points, drafters used thin and 
flexible strips of wood, hard rubber, metal, or plastic called 
mechanical splines. Pins were placed at a judicious selection of 
points along a curve in a design to use a mechanical spline, and then 
the spline was bent so that it touched each of these pins. The spline 
interpolates the curve at these pins with this construction. It can be 
used to reproduce the curve in other drawings. The points where the 
pins are located are called knots. We can change the shape of the 
curve defined by the spline by adjusting the location of the knots. 

A ‘spline’ is a function that is constructed piece-wise from 
polynomial functions. Earlier, spline was the name of a tool used by 
engineers to construct smooth shapes which had their desired 
properties. Drafters have been using a bendable strip known as 
“spline”, which is fixed in position at a number of points that relaxes 
to form a smooth curve passing through those points. The 
malleability of the spline material combined with the constraint of 
the control points (also known as knots) caused the strip to take the 
shape that minimized the energy required for bending it between the 
fixed points, which resulted in the smoothest possible shape. 

Now we can make use of a class of splines called B-splines (also 

known as basis splines). A B-spline function is the maximally 
differentiable interpolative basis function. The B-spline curve is a 
generalization of the Bezier curve (Note: a B-spline curve with no 

interior knots is a Bezier curve). The B-splines are defined by their 
order k, their domain limited by the two end-point knots and a 
number of interior knots m between the two end-point knots so that 
the total number of knots will be m+2. A knot is simply a point where 
splines on both sides meet with smooth continuity. The degree of the 
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B-spline polynomial is one less than the spline order k that is 
(degree, p = k -1). 

3.1. B-spline knots 

B-spline curves are composed of many polynomial pieces and are 
therefore more useful than Bezier curves. Consider m+ 2 real values 
𝒕𝒊, always comprising of two end-points (end-knots) of physical 
domain boundary, 𝒕𝟎 and 𝒕𝒎+𝟏 and 𝒎 interior knots 𝒕𝟏 to 𝒕𝒎 between 
them such that 𝒎 ≥ 𝟎. These knots constitute a defined physical knot 
sequence given by {𝒕𝒊} such that 𝒕𝟎 ≤ 𝒕𝟏 ≤∙∙∙∙∙≤ 𝒕𝒎+𝟏. When the knots 
are equidistant, they are said to be uniform; otherwise, they are said 
to be non-uniform. Here only uniform knot vectors are considered. 
Thus, a knot vector of just two physical end-point knots could be 
[𝟎, 𝟏]. Bezier curves (Sec.2) possess only two end-point knots, 𝒕𝟎(=
𝒂 = 𝟎) and  𝒕𝟏(= 𝒃 = 𝟏) but no interior knots(𝒎 = 𝟎) so that they 
are a limiting case of a B-spline which has no interior physical knots. 

An example of a general open uniform knot vector with 𝒎 = 𝟑 is  
[𝟎, 𝟏, 𝟐, 𝟑, 𝟒] between the end knots [𝟎, 𝟒] and its normalized form  
[𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓𝟎, 𝟎. 𝟕𝟓, 𝟏] also has similar properties. A uniform knot 
vector with 𝒎 + 𝟐 knots can be given by [𝒕𝟎, 𝒕𝟏, 𝒕𝟐,  ∙ ∙ ∙ ∙, 𝒕𝒎, 𝒕𝒎+𝟏] and 
it can be normalized by dividing through the last knot of that 
sequence. These knots (or points) are also referred to as physical 

knots as they lead to non-zero knot intervals.  

It is necessary to enable the uniform knot vector to make use of B-
spline basis functions of a chosen order or degree in each partition 
interval created by the internal knots between the two end-knots. 
This enablement is accomplished by introducing an equal number of 
repetitions (or multiplicity) of both end-knots. The repeated knots 
are called ghost knots (points). 

3.2. The B-spline or Basis Spline function 

Suppose we consider the uniform knot vector again with 𝒎 + 𝟐 
knots. This number will now be increased by repeating both the left 
and right end-point knots 𝒑 = 𝒌 − 𝟏 times in their respective places. 
This is defined as the augmented knot vector, or the open uniform 
knot vector, which now has 𝒎 + 𝟐𝒌 knots in all. The index of the 
repeated knots can be reset as follows: 
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[𝒕𝟎 =∙ ∙ ∙ ∙ = 𝒕𝟎 = 𝒕𝟎, 𝒕𝟏, 𝒕𝟐,  ∙ ∙ ∙ ∙, 𝒕𝒎, 𝒕𝒎+𝟏 = 𝒕𝒎+𝟏 = ∙ ∙ ∙ = 𝒕𝒎+𝟏](3.2.1) 

The repeated knots are also referred to as ghost knots since they can 
form only null or zero-valued knot intervals. In (3.2.2), the indexing 
of the augmented knot vector runs as 𝒊 = {𝟎, 𝟏 …  𝒎 + 𝟐𝒌 − 𝟏}. An 
example of an open uniform knot vector is [𝟎, 𝟎, 𝟎, 𝟏, 𝟏, 𝟏  ], which 
has two repeated end-knots (or ghosts) but no internal knots. 
Another example of an open uniform vector is [𝟎, 𝟎, 𝟎, 𝟎,
𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓, 𝟏, 𝟏, 𝟏, 𝟏]which has three repeats (ghosts) of end-
knots. The multiplicity of the end-knots is then defined to be four. In 
this way, the augmentation is to be done, and this step also decides 
the order and degree (order – 1) of the B-spline basis function 
required. The method of finding expressions for the desired B-spline 
basis has to use the well-known Cox-deBoor recurrence formula, 
which is extensively used and also used in computer calculations. It 
is outlined below. 

Recursive Definition of the B-spline (Basis Spline) 

For each of either uniform or augmented knots 𝒕𝒊 where 𝒊 is a 
counter for the knot sequence such as (𝒊 = 𝟎, 𝟏 …  𝒎 + 𝟐𝒌 − 𝟏) a set 
of real-valued functions 𝑵(𝒑, 𝒊, 𝒙)  for 𝒌 = 𝟎, 𝟏,∙  ∙  ∙ , 𝒑 with  𝒑 being 
the degree of the B-spline basis function is defined by the Cox-

deBoor recurrence relation given below after the following the note 
on notation. 

Important Note on notation:  In Sec. 2, the notation 𝑩(𝒑, 𝒊, 𝒙)  was 
used for Bernstein Basis functions (aka, B-polys). This has been 
changed to the notation 𝑵(𝒑, 𝒊, 𝒙) as it should refer to both B-polys 
basis functions which apply to knot vectors containing only one 
interval between its two end-knots and to the Basis spline functions 
which apply to all knot vectors with any number of internal knots. 
In the latter case, a shifting of B-polys has to be done in each interval 
bounded by each pair of internal knots. Both notations are 
interchangeably used in publications with the above remark in 
mind. 

The deBoor recursive definition ( see [4], [5], and [11] )now follows: 

For zeroth degree B-spline (p = 0): 

𝑵(𝟎, 𝒊, 𝒙) =  𝟏𝒊𝒇𝒕𝒊 ≤ 𝒙 ≤ 𝒕𝒊+𝟏𝒂𝒏𝒅  =  𝟎𝒆𝒍𝒔𝒆𝒊𝒇                               (3.2.2a) 
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For higher degrees (𝒑 > 0): 

𝑵(𝒑, 𝒊, 𝒙) = [(𝒙 − 𝒕𝒊) (𝒕𝒊+𝒋 − 𝒕𝒊)⁄ ]𝑵(𝒑 − 𝟏, 𝒊, 𝒙) + 

+[(𝒕𝒊+𝒋+𝟏 − 𝒙) (𝒕𝒊+𝒋+𝟏 − 𝒕𝒊+𝟏)⁄ ]𝑵(𝒑 − 𝟏, 𝒊 + 𝟏, 𝒙)                        ( 3.2.2b) 

Expressions 3.2.2aand 3.2.2b specify how to construct a degree p (or, order 
k) basis function from B-spline functions of lower degree p-1 (or, order k-

1). A few properties of 𝑵(𝒑, 𝒊, 𝒙) are similar to Bernstein basis polynomials, 
and three of them are listed below. 

1. 𝑵(𝒑, 𝒊, 𝒙) is a degree p (order k=p+1) polynomial in x, non-zero 
and non-negative. 

2. At most non-zero k= p+1 degree basis functions for 𝒙𝝐  [𝒕𝒊, 𝒕𝒊+𝟏] 
are: 

𝑵(𝒑, 𝒊 − 𝒑, 𝒙),𝑵(𝒑, 𝒊 − 𝒑 + 𝟏, 𝒙),𝑵(𝒑, 𝒊 − 𝒑 + 𝟐, 𝒙),..., etc. up to 
𝑵(𝒑, 𝒊, 𝒙). 

3. Partition of unity: The sum of all 𝒌 = 𝒑 + 𝟏 degree p basis 
functions as given above is 1. 

3.3 Now, a few simple examples for a closed domain interval [0, 1] 
as end-knots but without internal knots are demonstrated below. 

3.3.1. Consider the open uniform knot vector [𝟎 𝟎 𝟎 𝟏 𝟏 𝟏], of degree, 

p = 2 (order = 3). The six knots in it can form five intervals of type 
[𝒕𝒊, 𝒕𝒊+𝟏] out of which the four formed by ghost (or repeated) knots 
such as [0, 0] and [1, 1] do not exist and hence do not give rise to 
non-zero basis functions. The remaining non-zero physical 
interval is the end-knot interval [0, 1] for which the B-spline basis 
functions 𝑵(𝟎, 𝒊, 𝒙)  can be  calculated [8] by hand using the Cox-
deBoor recursive formula, and they are as listed in Table 2  below: 

Table 2: Basis functions 𝑁(𝑝, 𝑖, 𝑥) of degree = 2 for knot vector 
[0 0 0 1 1 1] 

The three non-zero of 2nd degree basis functions shown in the table 
above (bottom row) are seen to be the same as the Bernstein 

polynomials (B-polys) of 2nd degree in Table 1.1 (they can also be 

N(0, 0, x) =  0 N(0,1, x) = 0 N(0,2, x) =  1 N(0,3, x) = 0 
N(1,0, x) =  0 N(1, 1, x) =  (1 − 𝑥) N(1,2, x) =  x N(1,3, x) = 0 
N(2,0, x) = (1 − 𝑥)2 N(2,1, x) = 2𝑥(1 − 𝑥) N(2, 2, x) =𝑥2 N(2,3, x) = 0 
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directly computed using Eqn. (1.4))  and are shown graphed in 
Figure 3.3.1 below using the B-spline computing and plotting script 
( also see the left panel of Fig. 2.1). 

 

Figure 3.3.1:  2nd degree B-spline (B-polys) basis functions drawn in single closed interval for 

the open uniform knot vector [0, 0, 0, 0, 1, 1, 1, 1] with 3 ghosts (repeated knots). 

3.3.2. Consider the open uniform knot vector [𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏], of 
degree, p = 3 (order = 4). The degree wise basis functions 𝑵(𝒊, 𝟎, 𝒙) 
to  𝑵(𝒊, 𝟑, 𝒙)  resulting from the deBoor recursive formula for the 
non-zero end-knot interval [0, 1] are as tabulated below: 

Table 3: Basis functions 𝑁(3, 𝑖, 𝑥) of degree = 3 for knot vector                                            
[0 0 0 0 1 1 1 1] in domain   [0, 1]  (Reference: Magoon [8]) 

All four B-spline basis functions in the 5th row above are plotted in 
Fig. 3.3.2. 

The four non-zero basis functions of the 3rd degree shown in Table 3 
above (5th row) are the same as the Bernstein polynomials of the 3rd 
degree in Table 1.1. These were computed by the author’s Python 

N(0, 0, x) =    
0 

N(0, 1, x) =  0 N(0, 2, x) =  0 N(0, 3, x) = 1 N(0, 4, 
x)=0 

N(1, 0, x) =    
0 

N(1, 1, x) =  0 N(1, 2, x)   
=(1 − 𝑥) 

N(1, 3, x) = x N(1, 4, 
x)=0 

N(2, 0, x) =    
0 

N(2, 1, x) = 
(1 − 𝑥)2 

N(2, 2, x)    
= 2𝑥(1 − 𝑥) 

N(2, 3, x) = 𝑥2 N(2, 4, 
x)=0 

N(3, 0, x)= 
(1 − 𝑥)3 

N(3, 1, x) 
=3𝑥(1 − 𝑥)2 

N(3, 2, x)  
=3𝑥2(1 − 𝑥) 

N(3, 3, x)=  𝑥3 N(3, 4, 
x)=0 
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computing script and plotted in Figure 3.3.2 below (note: can also 
compute directly using Eqn. (1.4)) and are shown graphed in Figure 
3.3.3 below (see also the left side panel of Figure 2.2). Many examples 
of similar hand calculations of such basis functions are given with all 
details in [8] and [9]. However, now the use of dedicated software 
such as SPLIPY has enabled calculations of all basis functions, 
including derivatives and their evaluations at all specified 
collocation points. 

 

Figure 3.3.2: 3rd degree B-spline (B-polys) basis functions drawn in single closed interval for 

the open uniform knot vector [0, 0, 0, 0, 1, 1, 1, 1] with 3 ghosts (repeated knots). 

3.3.3. Consider the open uniform knot vector  [𝟎 𝟎 𝟎 𝟎 𝟎 𝟏 𝟏 𝟏 𝟏 𝟏], of 
degree, p = 4 (order = 5). The five B-spline basis functions 
𝑵(𝒊(= 𝟎, 𝟏, 𝟐, 𝟑, 𝟒), 𝟒, 𝒙) in the closed interval [0, 1]  resulting from 
the Cox-deBoor recursive formula are found to be the same as the 4th 
degree Bernstein polynomials listed in Table 1.1 above (Note: It can 
also be directly computed using Eqn. (1.4)) and by using the B-spline 
computing and plotting script are shown graphed in Figure 4.2.1 (in 
Sec.4.2) (also the left side panel of Figure 2.3). 

It is evident from the above three examples (3.3.1 to 3.3.3) that 
Bernstein basis polynomials of the same degree can be directly used 
as B-spline basis functions when the open uniform (or augmented) 
knot vectors have any number of repeated end-knots but do not have 
any internal knot between the two end-knots. These examples 
suggest instances of augmented end-knot vectors, which can be used 
to approximate the solutions of simpler ODEs ([9], [10], [11]). 
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4.1 Application of B-polys to a 4th order ODE 

The example of the 4th order DE considered here arises from the 
Euler-Bernoulli beam theory. The relationship between the 
deflection 𝒚(𝒙) and the uniformly applied load 𝒘(𝒙) at any point 𝒙  
of a beam is described by a fourth order differential equation given 
by 

𝑬𝑰𝒚𝒊𝒗(𝒙) =  𝑬𝑰 (𝒅𝟒𝒚(𝒙) 𝒅𝒙𝟒⁄ ) = 𝒘(𝒙) ,                                                         (4.1) 

where E is the elastic modulus of the beam material assumed to be 
linear, I is the moment of inertia of the beam of uniform cross-section 
about its neutral axis so that their product EI is constant for a given 
beam of length L and 𝒘(𝒙) is the weight per unit length that may 
depend on the nature of load distribution along the beam, but here 
it is assumed to be a constant. In this case, the total weight of the 
beam  𝒘𝟎 = 𝒘𝑳 will be the load that acts along the entire length, 𝑳, 
of the beam downwards. In the examples considered here, this will 
be taken as the only load acting to cause a proportionate deflection 
along the length of the beam. Then (1.1) can be rewritten as, 

𝒚𝒊𝒗(𝒙) = −(𝒘𝟎 𝑬𝑰)⁄ = −𝟏                                                                    (4.2) 

As the second term (𝒘𝟎 𝑬𝑰)⁄  is a constant for a given beam, it is 
normalised for convenience in this paper by setting (𝒘𝟎 𝑬𝑰)⁄ ≡ 𝟏. 
This expression constitutes the BVP of the problem, and its solution 
requires four boundary conditions (BCs). These BCs depend on the 
way the beam is set up for study and analysis. In this paper, the beam 
is set up as a cantilever of unit length, 𝑳 ≡ 𝟏, by having one end 
firmly clamped and keeping the other end free. The four BCs 
relevant to this cantilever set up are: 

y(0) = 0 ;   y’(0) = 0;   y’’(1) = 0,  and  y’’’(1) = 0                               (4.3) 

where the clamped end provides the first two BCs, and the free end 
provides the last two BCs, respectively. Using these Eqn. (4.2) is 
easily solved to yield the cantilever deflection profile and the 
maximum deflection at the free end as follows: 

𝒚(𝒙) =  − (𝟏 𝟐𝟒) (𝒙𝟒 − 𝟒𝒙𝟑  + 𝟔𝒙𝟐)⁄                                                    (4.11) 

𝒚𝒎𝒂𝒙 = 𝒚(𝒙 = 𝟏) =  −𝟎. 𝟏𝟐𝟓                                                             (4.12) 
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The computed solution, to be described next, will be compared with 
the exact expressions (4.11) and (4.12) later.  

4.2 Algorithmic Steps of Computer Solution 

We will now express the desired solution 𝒚(𝒙) by adopting the same 
form as Eqn. (2.1) and rewrite it in terms of a pth degree (order, 𝒌 =
𝒑 + 𝟏) bspline basis function 𝑩(𝒑, 𝒊, 𝒙), which has 𝒌 = 𝒑 + 𝟏 basis 
functions (Sec. 2) counted by the second index  𝒊 as follows: 

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒑, 𝒊, 𝒙)𝒑
𝒊=𝟎 = ∑ 𝒘𝒊

𝒑
𝒊=𝟎 𝑪(𝒑, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒑−𝒊 ,      𝒙 ∈ [𝟎, 𝟏] 

          (4.13)  

As many publications also use order instead of a degree, 4.13 can be 
recast as follows. 

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒌, 𝒊, 𝒙)𝒌
𝒊=𝟏 = ∑ 𝒘𝒊

𝒌
𝒊=𝟏 𝑪(𝒌, 𝒊)𝒙𝒊(𝟏 − 𝒙)𝒌−𝒊 , 𝒙 ∈ [𝟎, 𝟏] 

          (4.14)  

It is noticed that the index starts with unity in 4.14, which keeps the 
number of basis functions is unchanged as long as 𝒌 = 𝒑 + 𝟏. This is 
convenient for computer calculations done in this paper, so hand 
calculation of both B-polys and bsplines basis functions was 
avoided. The Python software package SPLIPY [7] is used here for 
all orders (or degrees) of bspline basis function calculations and their 
evaluation at any or all x values in the domain of the solution space. 
It should be recalled here that when bspline basis functions are 
applied to the entire domain extent as a single interval, then they 
reduce to the Bernstein basis functions (B-polys) of the same order 
or degree (see Table 1.1). However, if the domain is subdivided into 
two or more intervals, then the B-polys are to be separately 
computed for each interval. This job is better left to the SPLIPY 
software, which does all necessary calculations using the same 
CarlDeBoor’s algorithm [5] to [11]. This software can calculate B-
polys basis functions of any order also for undivided domains with 
only two end-knots, and this will be used to solve the 4th order ODE 
problem. The solution is solved in sequential steps outlined below. 

Step 1.The problem statement. The 4th order ODE for the cantilever 
is given by 
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𝒚𝒊𝒗(𝒙) = −𝟏 with BCs y(0) = 0 ;   y’(0) = 0;   y’’(1) = 0,  and   

y’’’(1) = 0;      𝒙 ∈ [𝟎, 𝟏]                                                                     (4.15) 

Since this ODE is of 4th order, the solution of the form (4.14) must 
contain at least 5th order b-spline basis functions in order that they 
can be smoothly differentiated four times. Hence we set 𝒌 = 𝒑 + 𝟏 =
𝟓 which means 5 B-polys of 4th degree are involved. They are listed 
in five rows starting from 14th row in Table 1.1 and Figure 3.3.3 
shows their plot which is also suitable for solving Eqn.(4.15). The 
undetermined solution and its differentials now have the form 

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝟓, 𝒊, 𝒙)𝟓
𝒊=𝟏  where there are 5 unknown weights {𝒘𝒊} to 

be determined. It is these weights (aka, control points) which help to 
modify the attached basis functions at a few selected positions (aka, 
Greville coordinates; see below) in the domain and add them 
together to determine the shape of the solution curve (see Sec.2). The 
expanded solution and its all four derivatives in their compact form  
are given below. 

𝒚(𝒙) = 𝒘𝟏𝑩(𝟓, 𝟏, 𝒙) + 𝒘𝟐𝑩(𝟓, 𝟐, 𝒙) + 𝒘𝟑𝑩(𝟓, 𝟑, 𝒙) + 𝒘𝟒𝑩(𝟓, 𝟒, 𝒙) +
𝒘𝟓𝑩(𝟓, 𝟓, 𝒙) (4.16) 

𝒚(𝒙) = ∑ 𝒘𝒊𝑩(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏             BC:   𝒚(𝒙 = 𝟎) = 𝟎                                (4.16) 

𝒚′(𝒙) = ∑ 𝒘𝒊𝑩′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏           BC:   𝒚′(𝒙 = 𝟎) = 𝟎          (4.17) 

𝒚′′(𝒙) = ∑ 𝒘𝒊𝑩′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏         BC:  𝒚′′(𝒙 = 𝟏) = 𝟎          (4.18) 

𝒚′′′(𝒙) = ∑ 𝒘𝒊𝑩′′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏      BC:   𝒚′′′(𝒙 = 𝟏) = 𝟎         (4.19) 

𝒚′′′′(𝒙) = ∑ 𝒘𝒊𝑩′′′′(𝒌, 𝒊, 𝒙)𝟓
𝒊=𝟏    BC:    𝒚′′′′(𝒙) = −𝟏            (4.20) 

It is to be noted that weights are kept constant,  only the 𝒌 = 𝟓 basis 
functions 𝑩(𝒌 , 𝒊, 𝒙) are successively differentiated in the above 
expressions, and they can also be evaluated at the specified 𝒙 values 
provided by the Greville averaging method (Step 2 below)by the 
SPLIPY [6] software. Since there are five equations all the BCs stated 
in (4.15) can be applied, and they are also shown to the right of the 
arrow against each equation above. When all the five expressions are 
expanded, a simultaneous equation is obtained as a five by six 
matrix. This can easily be solved by using the Numpy’s linear 
algebra module to obtain the five Bezier control points (weights) 𝒘𝒊. 
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These five weights can then be immediately substituted in (4.16) to 
yield a general equation for the deflection profile. 

We now require a set of five well-placed evaluation coordinates (aka, 
collocation points) along the domain width, that is, along the unit 
length of the cantilever. To find these points, we need to specify the 
knot vector for the problem, and this is done in the next step. 

Step 2. Knot vector specification for the problem domain 

Since the solution (4.16) has 5th order b-splines and there is just one 
interval between the end knots  [𝟎, 𝟏], the appropriate open uniform 
knot vector is given by [𝟎, 𝟎, 𝟎, 𝟎, 𝟎, 𝟏, 𝟏, 𝟏, 𝟏, 𝟏]. The domain end 
knots 0 and 1 are each repeated 𝒑 = 𝟒 times, which of course, 
corresponds to the degree (and order,  𝒌 = 𝟓 ) of the b-splines. This 
knot vector specification was developed by Carl deBoor in order that 
the computing software identifies it and the needed 5 basis functions 
are calculated. Further, this knot vector is used to determine the 
evaluation coordinates for the solution by carrying out a sequential 
averaging of 𝒑 = 𝟒 knots in the knot vector. This is known as the 
Greville averaging, and the coordinates so obtained are called 
Greville abscissas. First this process yields the values  (0+0+0+0)/4, 
(0+0+0+0)/4, (0+0+0+1)/4, (0+0+1+1)/4, (0+1+1+1)/4, (1+1+1+1)/4, 
and (1+1+1+1)/4 . The resulting values are 0.0, 0.0, 0.25, 0.50, 0.75, 

1.0, and 1.0. It is standard practice to omit one of the first and one of 
the last repeated values, and the remaining five values {0.0, 0.25, 0.50, 

0.75, 1.0] constitute the Greville abscissas (aka, control points  or 
Greville collocation coordinates, [8],[9]). By using these values, all 
the B-poly basis functions in (4.16) are evaluated and plotted. The 
SPLIPY {6] software can do these calculations too once the open knot 
vector and its order values are supplied to it. The following python 
function can be used to get the Greville abscissa values. 
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def   GrevilleAbsc(degree,  agknots): 

      # GREVILLE Abcissa Control Points (Coordinates) computation 

     agk = np.array(agknots); magk = len( agk ); Ngx = magk - degree 

     Gx = np.zeros((Ngx+1)) 

     for  i  in  range (Ngx+1): 

             for j in range(degr):      #while i < magk-ndegr+1 

                   Gx[i] += agk [ i + j ] / degree 

     print("Full array Gx as obtained is:\n", Gx) 

     # now omit the first and last repeated coordinates 

Gx = Gx[ 1 : -1 ] # <-- This is array of Greville abcissae values 

     return Gx 

 

The Greville abscissae method as outlined above is excellent and 
adequate for problems considered here and has been applied to 
solve several ODEs ([8],[9]). For more complicated problems, 
collocation points are found as nodes and weights supplied by 
applying the Gauss-Legendre quadrature method. These are 
described in  [10], [11] and [12]. 

Step 3. Solution Evaluation and plotting. 

This is the final step. The five Greville collocation points found in 
Step 2 for the given 5th order knot vector are [𝟎. 𝟎, 𝟎. 𝟐𝟓, 𝟎. 𝟓, 𝟎. 𝟕𝟓,
𝟏. 𝟎 ]. Of these, the first and the last are used to evaluate all the five 

basis functions in each of the five equations (4.16) to (4.20). 
Therefore, they form a square matrix of 5 rows and 5 columns, which 
may be labelled as A. The values on the right-hand side of the 
equations can be collected to form a column vector labelled as B. It 

is given by [𝟎, 𝟎 , 𝟎, 𝟎, −𝟏]𝑻. The unknown column vector of the five 

weights labelled as Y is given by [𝒘𝟏, 𝒘𝟐, 𝒘𝟑, 𝒘𝟒, 𝒘𝟓]𝑻. Together 
these may be written as 𝑨𝒀 = 𝒃, and this matrix equation can be 
readily solved by the linear algebra module of numpy. These 
weights (or, control points) can now be used in Eqn. (4.16) along with 
the five Greville points to compute the Bezier curve, which defines 
the deflection profile of the cantilever. The RMS error of points on 
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this curve can be computed by comparing with the exact theoretical 
solution, and the error profile can also be plotted.  

All these steps are programmed with explanatory comments and 
written in the Python 3.7 script listed in the Appendix. The results 
are presented in the three graphs (Fig.4.2.1, 4.2.2, and 4.2.3), which 
are also provided with relevant details. 

 

Figure 4.2.1:  4th degree Bernstein basis functions drawn in single closed 
interval for the open uniform knot vector [0, 0, 0, 0, 0, 1, 1, 1, 1, 1] with 4 
ghosts (repeated knots). 
 

 

Figure 4.2.2.  The lower part of all the 4th degree Bernstein basis functions 
drawn for the 5th order(4th degree)open knot vector 
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1]are shown above the abscissa line, and their weighted 
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summation to form the Bezier curve is shown below the abscissa line. This 
Bezier curve at the bottom of this figure defines the computed cantilever 
deflection profile, which has its maximum value of -0.125 at the free end at 
the right. 

 

Figure 4.2.3.  The computed cantilever deflection profile is drawn here as a Bezier curve with 

its five control points (weights). This profile coincides with the exact theoretical curve with an 

RMS error smaller than the machine precision. The maximum deflection of 0.125 at the free 

end (right edge of cantilever) also agrees with the calculated value. 

5. Conclusion 

The solution methodology of the 4th order cantilever BVP making 
use of Bernstein basis polynomials, basis spline functions, and 
construction of the Bezier curve as the solution profile of the problem 
under consideration highlights the role these basis functions can 
play as constituting an alternate method of solving various types of 
ODEs and BVPs occurring in many fields of physics. These basis 
functions have near ideal properties required for their use not only 
directly (as shown in Sec.4 above) but as Ritz variational basis 
functions too. Especially in quantum mechanics [12], where it rivals 
other routine methods. A good review of the many possible 
applications of B-splines in the field of atomic physics and quantum 
mechanics and their ease of use in making highly accurate 
computations as of 2001 is provided in [11]. Since then, the use of B-
splines has become a vigorously active field of research worldwide. 
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Appendix 

Python 3.7 Script to solve to solve the  4th order-BVP ODE: 
“””             ********written by Mandyam N.Anandaram******** 

This  BVP-01_FreeEndedCantilever.py problem script solves 
Free Ended Cantilever Problem (left end clamped and right end free) 
P'''' = -w_EI  where w_EI = w/EI, and w = w0*L acting downwards 
   (e.g., w0 = 15 kN/m, E = 2.0e05 MPa; I = 3.0e04 cm^4, L = 3.0 m) 
 with 4 BCs: P(0) = 0; P'(0) = 0; P''(L) = 0; P'''(L) = 0 for 0 <= x <= L 
Exact solution: P(x) = -(w_EI/24)*(x**4 - 4*L*x**3 + 6*L**2*x**2),  
P(L) = -(w_EI * 3/24)*L**4  (Max deflection at x = L)  
Unitless form: set L = 1 and w_EI = 1 to get  P'''' = -1 for 0 <= x <= 1 
with exact normalized solution: 
  P(x) = -(1.0/24)*(x**4 - 4*x**3 + 6*x**2);  

https://en.wikipedia.org/wiki/Bernstein_polynomial
http://mae.engr.ucdavis.edu/~farouki/bernstein.pdf
https://en.wikipedia.org/wiki/B-spline
https://en.wikipedia.org/wiki/De_Boor's_algorithm
https://sintefmath.github.io/Splipy/index.html
http://scholarworks.rit.edu/theses%20)
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  P(1) = -w_EI*L**4/8 ==> -1/8 = -0.125    ( max  deflection  at   free-
end  ) 
and the BCs to be used now are:  
P(0) = 0; P'(0) = 0; P''(1) = 0; P'''(1) = 0;  
and the given data that  P''''(x) = -1 (normalized for 0 <= x <= 1) 
“””                               **************************** 
import splipy as splinpy   #  SPLIPY 1.3.1 must be pre-installed 
import numpy as np 
from numpy.linalg import solve as npLA_solve 
import matplotlib.pyplot as plt 
def mainsolver(  order,   augknotvec  )  : 
    ordr, agknots = order, np.array(augknotvec); agkmax = agknots[-1]     
    degr = ordr-1 #degree = number of ghost knots, degree of B-polys etc 
    #create B-spline basis function operator 
    basis = splinpy.BSplineBasis(ordr, agknots) 
    #if agkmax > 1: agknots = basis.reparam(agkmax) #normalize() 
#agknots) 
    print("Basis Spline Function Parameters :") 
    print("  Input data:  order =",ordr,"; degree =",degr) 
    print("  Input augmented (open uniform) knots:",agknots) 
    print("  Total number of knots: basis.__len__() = ",basis.__len__()) 
    print("  Starting point of knots: basis.start() = ",basis.start()) 
    print("  Ending point of knots: basis.end() = ",basis.end()) 
    print("  Physical/unique knots vector: basis.knot_spans() = ", 
                      basis.knot_spans(include_ghost_knots=False)) 
    print("  Number of internal knots within basis.knot_spans() = ", 
                                            basis.__len__() - 2*ordr ) 
    print("  Number of repeated end-knots (ghost knots) = degree =",degr) 
    nbfs = basis.num_functions(); # Number of Basis funcs 
    print("  Number of Basis Spline funcs: basis.num_functions() = ",nbfs) 
    # create an array of nbfs controlpoints (= the number of basis funcs). 
    # For 1D get weights/control points using Greville abcissa points 
    # using grevx = basis.greville()  --- done above. 
    # curve = splp.Curve(basis, controlpoints) 
    grevx = np.array(basis.greville()) # compute/get greville eval points 
    print("The",len(grevx),"Greville abcissa pts are:\n   ",grevx) 
    # 201 uniformly spaced evaluation points on the domain (0,augkmax) 
    t = np.linspace( 0,  agkmax,  201) 
    # evaluate *all* basis functions on *all* points t. The 
    # returned variable B is a matrix 
    B = basis.evaluate(t, d = 0)  
    # B.shape = (201,nbfs), 201 visualization points, nbfs basis functions 
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    print("B.shape =",  B.shape) 
    degr = ordr-1;  augk = np.array(agknots[degr:-degr])  # omit ghost 
knots 
    # display the b-spline basis functions: 
    plt.figure(figsize=(8,6),dpi=120) 
    # plot the basis functions 
    plt.plot(t, B, label="B(%d,i,x)"%nbfs) 
    plt.plot(augk,augk*0.0 ,"kx", ms=8,label="knot partitions") 
    for ia in range(len(augk)):  # ghosts not marked/repeated 
            kx = augk[ia] 
            plt.plot([kx,kx],[0.0,1.0] ,"b-.", ms=8) 
    plt.grid(which="both");  plt.minorticks_on() 
    plt.legend(loc=0,ncol=2,frameon=False) 
    plt.title("Bernstein Basis functions of 4th Degree  and 5th Order") 
    plt.show() 
 
    # Here we compute needed derivatives upto 4th order required for the 
    # BVP by evaluating them  at the Greville evaluation points which  
    # were computed above from the augmented knot vector. 
    # Note that for a 4th order ODE an augmented knot vector of 
minimum 
    # order 5 (degree 4) and above must be used 
    w_EI = 1.0  # w_EI = W/EI = 1.0  assumed for the beam cantilever  
    # basis.eval() for all greville coords is not required here: 
    nwts = len(grevx) # note that nwts = nbfs, the number of basis funcs 
    # Create an array ywts (= len(grevx) to hold control points to be 
    # determined at all the corresponding Greville abcissae points 
    #nwts = len(grevx) # note that nwts = nbfs, the number of basis funcs 
    ywts = np.zeros((nwts,1),float);#print("y control points:",ywts) 
    # To determine the nwts control points (weights) the following #nwts  
    # equations are evaluated at only required/selected greville x-coords  
    P0 = basis.evaluate(grevx[0],d=0)       # P (x = grevx[0]) = 0.0(value) 
    dP0 = basis.evaluate(grevx[0],d=1)      # P'(x = grevx[0]) = 0.0 
    d2P1 = basis.evaluate(grevx[-1],d=2)    # P'''(x = grevx[-1]) = 0.0 
    d3P1 = basis.evaluate(grevx[-1],d=3)    # P'''(x = grevx[-1]) = 0.0 
    d4P_gx2 = basis.evaluate(grevx[2],d=4)  # P''''(x = grevx[2]) = -1.0 
    d4P_gx3 = basis.evaluate(grevx[3],d=4)  # P''''(x = grevx[3]) = -1.0 
    #d4P_gxk = basis.evaluate(grevx[-1],d=4)  # P''''(x = grevx[-1]) = -1.0 
    #Ax = See below  
    # bx is the vector of all BCs and has len(bx) = nwts 
    bx = np.zeros((nwts,1),float);print("bx:\n",bx) 
    if nwts == 5:  
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           Ax = np.vstack((P0, dP0, d2P1, d3P1, d4P_gx2)) 
           bx[-1,0] = -1.0 
    elif nwts == 6: 
           Ax = np.vstack((P0, dP0, d2P1, d3P1, d4P_gx2, d4P_gx3))  
           bx[-1,0] = -1.0; bx[-2,0] = -1.0; 
    elif nwts == 7: 
           d4P_gx4 = basis.evaluate(grevx[-1],d=4) # P''''(x = grevx[4]) = -1.0 
           Ax = np.vstack((P0,dP0,d2P1,d3P1, d4P_gx2, d4P_gx3, d4P_gx4))  
           bx[-1,0] = -1.0; bx[-2,0] = -1.0; bx[-3,0] = -1.0 
    elif nwts == 8: 
           d4P_gx4 = basis.evaluate(grevx[4],d=4) # P''''(x = grevx[4]) = -1.0 
           d4P_gx5 = basis.evaluate(grevx[-1],d=4) # P''''(x = grevx[5]) = -1.0 
           Ax = 
np.vstack((P0,dP0,d2P1,d3P1,d4P_gx2,d4P_gx3,d4P_gx4,d4P_gx5))  
           bx[-1,0] = -1.0;bx[-2,0] = -1.0; bx[-3,0] = -1.0; bx[-4,0] = -1.0 
    else:  
           print("solution works for 5th,6th,7th and 8th order knot vectors 
only") 
 
    print("Ax[]:\n",Ax);print("bx :\n",bx);# print("y control points:",ywts) 
    # Solve for all the nwts control points using np.linalg.solve() below 
    yx = npLA_solve(Ax,bx); #print("Ax[]:\n",Ax);print("bx :",bx); 
    print("yx =",yx); print("Verify: bx = Ax @ yx =",Ax@yx) 
    for ilen in range(len(yx)): ywts[ilen,0] = yx[ilen] 
    print("Number of Curve weights (control pts) =",ywts.shape[0]) 
    print("Curve weights (control points) array:\n =",ywts) 
    #   Bspline Curve 
    # Curves are defined by associating a controlpoint to each basis  
    # function. y(x) = \sum_{i=1}^n w_i. B{p, i, x} where w_i are the 
    # controlpoints and B{p,i,x} are the basis functions. y(x) is the 
    # parametric curve, and by letting each controlpoint be a vector of 
    # length 1, we may create aplanar  curve.   It is necessary to create an 
    # array of as many controlpoints as the number of basis functions. 
    # For 1D curves Greville abcissa points are found from the augmented  
    # knot vector using grevx = basis.greville()  and these are used to 
    # determine the weights or control points from the problem matrix. 
    # Finally the planar  curve is generated from the command : 
    #           curve = splp.Curve(basis, controlpoints) 
    # ywts = weights array = number of Greville abcissae (eval 
coordinates). 
    print(  "weights:",  ywts) 
    #wts = np.array([0.0, 1.25, 1.0]); print("weights:",wts) 
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    clrs1 = ['b--','g--','m--','y--','r--','c--','k--','m-','k--','g--'] 
    clrs2 = ['b-.','g-.','m-.','y-.','r-.','c-','k-.','m-.','k-.','g-.'] 
    # display the spline curve by combining the weighted B-splines 
    plt.figure(figsize=(8,6),dpi=120) 
    # plot the basis functions, weighted basis funcs and blended curve 
    for iw in range(ordr):  
          plt.plot(t, B[:,iw],clrs1[iw],label="Bpolys(%d,%d,t)"%(degr,iw)) 
          plt.plot(t, B[:,iw]*ywts[iw,0],clrs2[iw], label=" %.2f * 
B(%d,%d,t)"%(ywts[iw,0],degr,iw)) 
    plt.plot(t, B@ywts,"k",label="Curve:B@ywts") 
    plt.plot(augk,augk*0.0 ,"kx", ms=8,label="knots") 
    #for ia in range(len(augk)):  # ghosts not marked/repeated 
    #    kx = augk[ia]; plt.plot([kx,kx],[0.0,1.0] ,"k-.", ms=8) 
    plt.grid(which="both"); plt.minorticks_on() 
    plt.legend(loc=0,ncol=2,frameon=False) 
    plt.title('B-polys Basis splines  weighted and combined') 
    plt.show() 
 
    curve1d = splinpy.Curve(basis,ywts) # Construct spline curve from 
ywts 
    print("# access curve evaluation at greville abcissae points below:") 
    for igr in grevx: 
          print("curve1d(",igr,")  =  ",  curve1d(igr) ) 
          #print("d(curveid.deriv(",igr,") )= ", curve1d.derivative(igr) ) 
          #print("dd(curveid.deriv(",igr,",d=2)) = ", curve1d.derivative(igr, 
d=2) ) 
    print("# access spline curve controlpoints (= weights) below :") 
    for i in range(ordr): print("curve1d[",i,"] =", curve1d[i] )  
    # prints all the (0-indexed) polygon control points (= weights) 
    print("Given knot vector is :",basis.knots)  
    # Evaluate the curve at all visualization points of the domain. 
    tx = np.linspace(0,agkmax,201) # spline evaluation points 
    Pbspx = curve1d(tx); Pbspx = Pbspx[:,0];  
    #print( "Px.shape =",  Pbspx.shape)    #Px[:,0]--->Px[:] 
    Pexact = w_EI / 24*tx*tx*(4.0*tx   - tx*tx  -  6.0)   #    recall that w_EI = 
1 
    print("Maximum sag at the free end = ",min(Pexact))  # -ve 
    # get RMS error for the difference (Exact sol - Bspline sol) 
    rmserr  =   np.sqrt(  (  (Pexact  -  Pbspx)**2 ).mean()  ) 
    print( "RMS Error =",  rmserr) 
    # plot the curve itself 
    plt.figure(figsize=(6,8),dpi=180)     
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    plt.plot(tx, Pbspx, "k",label="Spline Order %d"%ordr) 
    plt.plot(tx, Pexact,"b",label="Exact Curve") 
    plt.plot(tx, Pbspx-Pexact, "g",label="RMSErr: %.1e"%rmserr) 
    # then evaluate the break-points (the knots) 
    tbk = basis.knots; #print("basis knots, ti = ",tbk) 
    xtbk = curve1d(tbk); #print("xtbk.shape",xtbk.shape) 
    # Also plot the breakpoints as black dots 
    plt.plot(tbk, xtbk, 'ko ',ms=12, label="basis.knots") 
    plt.plot(grevx, curve1d.controlpoints,'rs--',label="control pts") 
    plt.plot(augk,augk*0.0 ,"kx", ms=8,label="end-knots") 
    plt.grid(which = “both” ); plt.minorticks_on() 
    plt.legend(loc=0,frameon=False) 
    plt.title("Spline Curve of Simple Cantilever BVP $P^{iv}(x)=-1$") 
    plt.show() 
if __name__ == "__main__": 
    # Use  ONE of 5th, 6th 7th and 8th Order augmented knot vectors 
(ONLY) 
    order, augknots = 5, [0, 0, 0, 0, 0, 1, 1, 1, 1, 1]; # 4th degree B-polys 
    #order, augknots = 6, [0, 0, 0, 0, 0, 0,  1, 1, 1, 1, 1, 1]; # 5th degree B-polys 
    #order, augknots = 7, [0, 0, 0, 0, 0, 0, 0,  1, 1, 1, 1, 1, 1, 1]; # sextic basls 
    #order, augknots = 8, [0, 0, 0, 0, 0, 0, 0, 0,  1, 1, 1, 1, 1, 1, 1, 1];# septic 
basis 
    mainsolver( order,  augknots )  #  computes  the  solution now 
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