
ISSN 0975-3303 
Mapana J Sci, 11, 4(2012), 59-64 

Received: July 2012, Reviewed: Aug. 2012                                                      59 

 

Antibandwidth of a Graph 

Aditya Shastry*  and Nidhi Khandelwal† 

Abstract 

The antibandwidth problem consists of placing the 
vertices of a graph on a line in consecutive integer points 
in such a way that the minimum difference of adjacent 
vertices is maximized. This problem is NP- hard. In this 
paper, we find some bounds for antibandwidth using 
some invariants of graphs. We prove that considerating 
the interior boundary and the exterior boundary when 
estimating the antibandwidth of connected graphs gives 
the same results. 

Keywords: Vertex independent number, chromatic number, vertex 
connectivity, antibandwidth. 

1. Introduction 

Let ),( EVG   be a  qp, graph. A 11   mapping 
 p21GVf ,...,,)(:   is called a proper numbering of G . The 

antibandwidth ),( fGab  of a proper numbering f  of G  is the 
number  )(:)()(min),( GEuvvfuffGab   and the antibandwidth 

)(Gab  of G  is the number :),(max{)( fGabGab  f  is a proper 
numbering of }G A proper numbering f  is called an 
antibandwidth numbering of G  if ).(),( GabfGab   

The antibandwidth problem is a special case of the antidilation 
problem [1]. Antidilation is a problem of injective embedding of a 
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graph G  in a graph H  such that the length of the shortest edge of 
G  measured in H  is maximized over all possible embeddings of G  
in .H  Antidilation is a dual problem to a well studied dilation 
problem [2]. The special case of dilation is bandwidth problem. The 
antibandwidth problem is a dual modification of bandwidth 
problem. Antibandwidth is known as separation number, dual 
bandwidth as well. Antibandwidth of a graph can be visualized as 
placing the vertices of graph into the integer points along the               
X - axis so that length of shortest edge is maximized. 

The concept of antibandwidth was introduced by Leung, 
Vornberger and Witthoff under the name separation number [3]. 
There was also another name used for this problem. Lin & Yuan 
called it dual bandwidth [4]. Leung, Vornberger and Witthoff show 
by reduction that directed version of antibandwidth problem is 
connected to some multiprocessor scheduling problems. They 
show for a graph ),( EVG  , it is NP- complete to decide whether 

2Gab )( . Answering this question is equivalent to finding the 
Hamiltonian path in the complement of .G  

A cut set of a connected graph G  is a set of vertices whose removal 
renders G disconnected. The connectivity or vertex connectivity 

)(G  (where G  is not complete graph) is the size of smallest vertex 
cut set. An independent set or stable set is a set of vertices in a 
graph, no two of which are adjacent. Vertex independent number 

0  is the cardinality of the largest vertex independent set. The 
chromatic number of a graph G  is the minimum number of colors 

)(G  needed to color the vertices of G  so that no two adjacent 
vertices share the same color. 

2. Some Bounds for Antibandwidth of a Graph 

Our notation follows Harary [5]. Particularly, we reserve: a letter p  
for number of vertices, q  for number of edges,   for the highest 
degree,   for connectivity, 0  for vertex independent number,             
  for chromatic number, id  for degrees of vertices
 p321 dddd  ... . 
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As in [5], we write k
pP  for the thk  power of the path ,pP  in which 

two vertices u, v of    p21PV p ,...,,  are adjacent if, and only if 
.|| kvu0    

Theorem 1. )(Gab  is the largest integer k  such that .1k
pPG   

Proof. Every inclusion 1k
pPGVf )(:  induces a valuation 

 p21GVf ,...,,)(:  such that kvfuf
GEuv




)()(min
)(

 and vice versa. 

Hence kGab )(  if and only if 1k
pPG  .  

Therefore  1k
pPGkGab  :max)( . 

Lemma 1. The invariants of the graph 1k
pP   satisfy: 
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Theorem 2. For any connected graph G  with kGab )( , we have 

1. 
2

1q8p21
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
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3. 0k   

4. 
2

1pk 
   
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  

6. 
1

1 1
min max ,

2 2
i

ii p

i p d
k p d

 

         
   

. 

Proof. By Theorem 1, 1k
pPG  . Now since ),()( 21 GpGp   21 GG   

implies ),()( 21 GqGq   ),()( 21 GG   ),()( 2010 GG   ),()( 21 GG   
),()( 21 GG   )()( 2i1i GdGd   for each i .                                                                 

The rest follows by lemma 1. 

Definition. For a subset )(GVS  , the interior and exterior 
boundaries of S  are defined respectively as 

           SGVvSuS  )(:{  such that )(GEuv } 

and    SuSGVvSN  :)({ such that )(GEuv }. 

Suppose an edge labeling f  is given. Let ),(ifv 1
i

 pi1  , define 

 1kp1ppk vvvfS  ,...,,)(  =  1kp1ppf 1  ,...,, . 

Theorem 3. Let ),( EVG   be a connected ),( qp - graph. Then
  )(minmax)( fSpGab kpk1f



, where  p21GVf ,...,,)(:   is an 

injective mapping. 

Proof. Let f  be any injective vertex labeling of G . Choose a vertex 
 )( fSu k  such that  )(:)(min{)( fSvvfuf k }.  

Then   .|)(|)( fS1puf1kp k  Also 1vf )(   )( fSNv k . 

 )(:)()(min),( GEuvvfuffGab   

   )()()()( fSp1fS1pvfuf kk   

Therefore   .)(minmax)( fSpGab kpk1f



. 
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Theorem 4. Let ),( EVG   be a connected ),( qp - graph. Then 
  )(minmax fSp kpk1f



 =   )(minmax fSNp kpk1f




, where the minimum 

is taken over all vertex labelings of G . 

Proof. Let f  is any vertex labeling of G . For pk1  , consider the 
set )(* fSk , which is defined as )()()(* fSGVfS kk  , p21k ,...,, . 
Then   ))(()( * fSNfS kk   p21k ,...,, .  

Define a vertex labeling g  on G  by )()( * fSgS kpk  ; 1p21k  ,...,,  
and )()( GVGS p  . Since g  depends uniquely on f  and labeling 
runs over all possible choices, we have 

     |))((|min|))((|min|)((|min * gSNpfSNpfSp kpk1kpk1kpk1



 

                  .|))((|minmax|))((|minmax fSNpfSp kpk1f
kpk1f




 

Corollary 1. Let ),( EVG   be a connected ),( qp  graph. Then 

 |)((|minmax)( fSNpGab kpk1f



, where the minimum is taken over all 

vertex labeling. 

3. Some Applications 

1. Given n  transmitters and n  frequencies find such a 
bijective frequency assignment where the interfering 
transmitters have as different frequency as possible. 

Graph Model: 

 Transmitters = Vertices; Interferences = Edges between 
interfering transmitters; Frequency assignment = Optimal 
antibandwidth labeling. 

2. Find a scheduling of a tournament such that every player 
will rest as much as possible before playing the next match 
without delaying the whole schedule. 

Graph Model: 
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 Players = Vertices; Match to be played = Edge; Example: 
Round-robin tournament = Complete graph; Optimal 
schedule = Edge antibandwidth of underlying graph. 

3. Find a scheduling of a examination in a university such that 
every student will get holidays as much as possible before 
giving the next exam without delaying the whole schedule. 

Graph Model: 

 Examinations = Vertices; Examinations of same class = Edge 

 Optimal schedule = Optimal antibandwidth labeling. 

4. The problem also belongs to the family of obnoxious facility 
location problem. The enemy graph is representing some 
kind of enemy facilities and the task is to arrange them on 
the line such that the minimal distance between any of two 
enemies is maximized. The enemy relation is represented 
by adjacency in the underlying graph. 

4. Conclusion 

In this paper, we find some bounds for antibandwidth using the 
invariants of the graph .1k

pP   We also find some upper bounds 
using the interior and exterior boundaries. 
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