

Open Support Strong Efficient Domination Number of Some Standard Graphs Under Addition and Multiplication

Murugan* & Meena[†]

Abstract

Let G = (V, E) be a graph with p points and q nodes. Let S be a γ_{se} - set of G. Let $v \in S$. An open support strong efficient domination number of v under addition is defined by $\sum_{u \in N(v)} deg(u)$ and it is denoted by supp $\gamma_{se}^+(v)$. An open support strong efficient domination number of G under addition is defined by $\sum_{v \in S} \text{supp } \gamma_{se}^+(v)$ and it is denoted by $\sup \gamma_{se}^+(G)$. An open support strong efficient domination number of v under multiplication is defined by $\prod_{u \in N(v)} deg(u)$ and it is denoted by $\sup \gamma_{se}^{\times}(v)$. An open support strong efficient domination number of G under multiplication is defined by $\prod_{v \in S} \text{supp } \gamma_{se}^{\times}(v)$ and it is denoted by $\sup \gamma_{se}^{\times}(G)$. In this paper, open support strong efficient domination number of some standard graphs is studied.

Keywords: Strong efficient domination number, open support strong efficient domination number of a point under addition, open support strong efficient domination number of a graph under addition, open support strong efficient domination number of a point under multiplication, and open support strong efficient domination number of a graph under multiplication.

* Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamilnadu, India;

murugan@mdthinducollege.org

[†] Department of Mathematics, The Madurai Diraviyam Thayumanavar Hindu College, Tirunelveli, Tamilnadu, India; meena@mdthinducollege.org

1. Introduction

Throughout this paper only finite, undirected graphs without loops or multiple nodes are considered. Let G = (V, E) be a graph with p points and q nodes. The degree of any point v of a graph G is the number of nodes incident with v and is denoted by deg (v). A subset S of V(G) is called a dominating set of G if every point in V(G) - S is adjacent to a point in S [6]. The domination number of a graph G, denoted by $\gamma(G)$, is the minimum cardinality of a dominating set of G. Sampath Kumar et al introduced the concept of strong (weak) domination in graphs [11]. A subset S of V(G) is called a strong dominating set of G if for every $v \in V(G) - S$ there exists a point $u \in S$ such that u and v are adjacent and deg(u) $\geq \deg(v)$. A subset S of V(G) is called an efficient dominating set if for every $v \in V(G)$, $|N[v] \cap S| = 1$ [3, 5]. The concept of strong (weak) efficient domination in graphs was introduced by Meena et al [10] and further studied in [7, 8, 9]. A subset S of V(G) is called a strong (weak) efficient dominating set of G if for every point $v \in V(G)$ we have $|N_s[v] \cap S| = 1$ ($|N_w[v] \cap S|1$), where $N_s(v)$ $= \{ u \in V(G); uv \in E(G), \deg(u) \ge \deg(v) \} \text{ and } N_s[v] = N_s(v) \cup$ $\{v\}(N_w(v) = \{u \in V(G); uv \in E(G), \deg(u) \leq \deg(v)\}$ and $N_w[v]$ = $N_{w}(v) \cup \{v\}$). The minimum cardinality of a strong (weak) efficient dominating set of G is called the strong (weak) efficient domination number of G and is denoted by $\gamma_{se}(G)(\gamma_{we}(G))$. A graph G is strong efficient if there exists a strong efficient dominating set of G. Balamurugan et al introduced the concept of open support of a graph under addition [2] and multiplication [1]. Open support of a point v under addition is defined by $\sum_{u \in N(v)} deg(u)$ and it is denoted by supp(v). An open support of a graph G under addition is defined by $\sum_{v \in V(G)} supp(v)$ and it is denoted by supp(G). An open support of a point v under multiplication is defined by $\prod_{u \in N(v)} deg(u)$ and is denoted by mult(v). An open support of a graph G under multiplication is defined by $\prod_{u \in V(G)} \text{ mult}(u)$ and it is denoted by mult(G). Inspired by the above definitions, the concept of an open support strong efficient domination number of a graph under addition and multiplication is introduced in this paper. For all Graph-theoretic terminologies and notations, Harary [4] is followed. Following previous results are necessary for the present study.

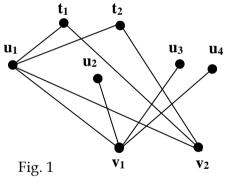
Previous results [9]:

- 1) For any path P_m , $\gamma_{se}(P_m)$ $\begin{cases}
 n \text{ if } m = 3n, n \in N \\
 n + 1 \text{ if } m = 3n + 1, n \in N \\
 n + 2 \text{ if } m = 3n + 2, n \in N
 \end{cases}$
- 2) For any cycle C_{3n} , γ_{se} $(C_{3n}) = n, n \in N$
- 3) $\gamma_{se}(K_{1,n}) = 1, n \in N$
- 4) $\gamma_{se}(K_n) = 1, n \in N$
- 5) $\gamma_{se}(D_{m,n}) = m + 1, m > n, m, n \in N$

2. Main results

Definition 2.1: Let G = (V, E) be a strong efficient graph. Let S be a γ_{se} - set of G. Let $v \in S$. An open support strong efficient domination number of v under addition is defined by $\sum_{u \in N(v)} \deg(u)$ and it is denoted by $\sup \gamma_{se}^{+}(v)$

Example 2.2: Consider the following graph G.



 $S = \{v_1, v_2\}$ is a γ_{se} - set of G.

 $supp \gamma_{se}^{+}(v_1) = \sum_{u \in N(v_1)} \deg(u) = \deg(u_1) + \deg(u_2) + \deg(u_3) + \deg(u_4) = 7$ $supp \gamma_{se}^{+}(v_2) = \sum_{u \in N(v_2)} \deg(u) = \deg(u_1) + \deg(t_1) + \deg(t_2) = 8$

Definition 2.3: Let G = (V, E) be a strong efficient graph. Let S be a γ_{se} - set of G. Let $v \in S$. An open support strong efficient domination number of v under multiplication is defined by $\prod_{u \in N(v)} \deg(u)$ and it is denoted by supp $\gamma_{se} \times (v)$.

Example 2.4: In Fig. 1,

supp $\gamma_{se}^{\times}(v_1) = \prod_{u \in N(v_1)} \deg(u) = \deg(u_1) \times \deg(u_2) \times \deg(u_3) \times \deg(u_4) = 4$ supp $\gamma_{se}^{\times}(v_2) = \prod_{u \in N(v_2)} \deg(u) = \deg(u_1) \times \deg(t_1) \times \deg(t_2) = 16$ **Definition 2.5:** Let G = (V, E) be a strong efficient graph. Let S be a γ_{se} - set of G. An open support strong efficient domination number of G under addition is defined by $\sum_{v \in S} \operatorname{supp} \gamma_{se}^+(v)$ and it is denoted by supp $\gamma_{se}^+(G)$.

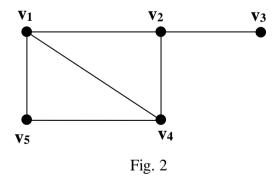
Example 2.6: In Fig.1, supp $\gamma_{se}^+(G) = \operatorname{supp}\gamma_{se}^+(v_1) + \operatorname{supp}\gamma_{se}^+(v_2) = 7 + 8 = 15$

Definition 2.7: Let G = (V, E) be a strong efficient graph. Let S be a γ_{se} - set of G. An open support strong efficient domination number of G under multiplication is defined by $\prod_{v \in S} \operatorname{supp} \gamma_{se}^{\times}(v)$ and it is denoted by $\sup \gamma_{se}^{\times}(G)$.

Example 2.8: In Fig.1, supp $\gamma_{se}^{\times}(G)$ =supp $\gamma_{se}^{\times}(v_1)$ Xsupp $\gamma_{se}^{\times}(v_2)$ =4X16=64.

Note 2.9: Open support strong efficient domination number under addition of a graph G is not unique.

Example 2.10: Consider the following graph G.



$$\begin{split} S_1 = \{v_1, v_3\}, S_2 = \{v_2, v_5\} \text{ and } S_3 = \{v_4, v_3\} \text{ are three } \gamma_{se} \text{ - sets of G and } \gamma_{se} \text{ (G)} = 2. \\ \text{For } S_1, \text{ supp } \gamma_{se} + (v_1) = \sum_{u \in N(v_1)} \deg(u) = \deg(v_2) + \deg(v_4) + \deg(v_5) = 8. \\ \text{supp } \gamma_{se} + (v_3) = \sum_{u \in N(v_3)} \deg(u) = \deg(v_2) = 3. \end{split}$$

 $supp \gamma_{se}^{+}(G) = \sum_{v \in S_{1}} supp \gamma_{se}^{+}(v) = supp \gamma_{se}^{+}(v_{1}) + supp \gamma_{se}^{+}(v_{3}) = 11.$ $supp \gamma_{se}^{+}(G) = 11.$ For S₂, supp $\gamma_{se}^{+}(v_{2}) = \sum_{u \in N(v_{2})} deg(u) = deg(v_{1}) + deg(v_{4}) + deg(v_{3}) = 7.$ $supp \gamma_{se}^{+}(v_{5}) = \sum_{u \in N(v_{5})} deg(u) = deg(v_{1}) + deg(v_{4}) = 6.$ $supp \gamma_{se}^{+}(G) = \sum_{v \in S_{2}} supp \gamma_{se}^{+}(v) = supp \gamma_{se}^{+}(v_{2}) + supp \gamma_{se}^{+}(v_{5}) = 13.$ $supp \gamma_{se}^{+}(G) = 13.$ For S₃, supp $\gamma_{se}^{+}(v_{4}) = \sum_{u \in N(v_{4})} deg(u) = deg(v_{2}) + deg(v_{1}) + deg(v_{5}) = 8.$ $supp \gamma_{se}^{+}(v_{3}) = \sum_{u \in N(v_{3})} deg(u) = deg(v_{2}) = 3.$ $supp \gamma_{se}^{+}(G) = \sum_{v \in S_{3}} supp \gamma_{se}^{+}(v) = supp \gamma_{se}^{+}(v_{4}) + supp \gamma_{se}^{+}(v_{3}) = 11.$ Here min supp $\gamma_{se}^{+}(G) = 8$ and max supp $\gamma_{se}^{+}(G) = 11$

Note 2.11: Open support strong efficient domination number under multiplication of a graph G is not unique.

Example 2.12: Consider Fig.2,

$$\begin{split} S_1 = \{v_1, v_3\}, S_2 = \{v_2, v_5\} \& S_3 = \{v_4, v_3\} \text{ are three } \gamma_{se} \text{ - sets of } G \& \gamma_{se} (G) = 2. \\ \text{For } S_1, \text{ supp} \gamma_{se} \times (v_1) = \prod_{u \in N(v_1)} \deg(u) = \deg(v_2) \times \deg(v_4) \times \deg(v_5) = 18. \\ \text{supp } \gamma_{se} \times (v_3) = \prod_{u \in N(v_3)} \deg(u) = \deg(v_2) = 3. \\ \text{supp } \gamma_{se} \times (G) = \prod_{v \in S_1} \sup p \gamma_{se} \times (v) = \sup p \gamma_{se} \times (v_1) \times \sup p \gamma_{se} \times (v_3) = 54. \\ \text{supp } \gamma_{se} \times (G) = 54. \\ \text{For } S_2, \text{supp } \gamma_{se} \times (v_2) = \prod_{u \in N(v_2)} \deg(u) = \deg(v_1) \times \deg(v_4) \times \deg(v_3) = 9. \\ \text{supp } \gamma_{se} \times (v_5) = \prod_{u \in N(v_5)} \deg(u) = \deg(v_1) \times \deg(v_4) = 9. \\ \text{supp } \gamma_{se} \times (G) = S1. \\ \text{For } S_3, \text{supp} \gamma_{se} \times (v_4) = \prod_{u \in N(v_4)} \deg(u) = \deg(v_2) \times \deg(v_1) \times \deg(v_5) = 18. \\ \text{supp } \gamma_{se} \times (v_3) = \prod_{u \in N(v_4)} \deg(u) = \deg(v_2) \times \deg(v_1) \times \deg(v_5) = 18. \\ \text{supp } \gamma_{se} \times (v_3) = \prod_{u \in N(v_4)} \deg(u) = \deg(v_2) \times \deg(v_1) \times \deg(v_5) = 18. \\ \text{supp } \gamma_{se} \times (v_3) = \prod_{u \in N(v_3)} \deg(u) = \deg(v_2) = 3. \end{split}$$

Mapana–Journal of Sciences

 $\operatorname{supp} \gamma_{se}^{\times}(G) = \prod_{v \in S_n} \operatorname{supp} \gamma_{se}^{\times}(v) = \operatorname{supp} \gamma_{se}^{\times}(v_4) \times \operatorname{supp} \gamma_{se}^{\times}(v_3) = 54.$ $\operatorname{supp} Y_{se}^{\times}(G) = 54.$ Here min supp $\gamma_{se}^{\times}(G) = 54$ and max supp $\gamma_{ee}^{\times}(G) = 81$ **Remark 2.13**: Let G be a connected strong efficient graph with a γ_{se} - set S. Since S \subseteq V(G), supp γ_{se}^+ (G)<supp(G) and supp $\gamma_{se}^{\times}(G)_{< mult(G)}$. **Theorem 2.14:** Let $G = P_{3n}$, $n \in N$ Then $\operatorname{supp} \gamma_{se}^{+}(G) = 4n - 2$ and $supp \gamma_{ss} \times (G) = 4^{n-1}$ **Proof:** Let G = P_{3n} $n \in N$ Let V(G) = { v_i ; $1 \le i \le 3n$ }. Then S = { $v_2, v_5, v_8, \dots, v_{3n-4}, v_{3n-1}$ } is the unique γ_{se} - set of G. $\deg(v_1) = \deg(v_{3n}) = 1$ and $\deg(v_i) = 2, 2 \le i \le 3n - 1$. $\sup \gamma_{se}^{+}(v_{2}) = \deg(v_{1}) + \deg(v_{3}) = 3$ For i = 5, 8,..., 3n - 4, supp $\gamma_{ss}^{+}(v_i) = \deg(v_{i-1}) + \deg(v_{i+1}) = 4$ Supp $\gamma_{se}^{+}(v_{3n-1}) = \deg(v_{3n-2}) + \deg(v_{3n}) = 3$ Hence supp γ_{se}^+ (G) = supp γ_{se}^+ (v_2) + $\sum_{i=1}^{n-2}$ supp γ_{se}^+ (v_{3i+2}) + $\sup \gamma_{se}^{+}(v_{3n-1}) = 3 + (n-2)4 + 3 = 4n - 2.$ $\operatorname{supp} \gamma_{ee} \times (v_2) = \operatorname{deg}(v_1) \times \operatorname{deg}(v_2) = 2$ For i = 5, 8,..., 3n - 4, supp $\gamma_{se} \times (v_i) = \deg(v_{i-1}) \times \deg(v_{i+1}) = 4$ Supp $\gamma_{ss} \times (v_{3n-1}) = \deg(v_{3n-2}) \times \deg(v_{3n}) = 2$ Hence supp γ_{se}^{\times} (G) = supp γ_{se}^{\times} (v_2) + $\prod_{i=1}^{n-2} supp \gamma_{se}^{\times}$ (v_{3i+2}) + supp $\gamma_{se}^{\times}(v_{3n-1}) = 2 \times 4^{n-2} \times 2 = 4^{n-1}$.

Theorem 2.15: Let $G = P_{3n+1}$, $n \in N$ Then supp $\gamma_{se}^{+}(G) = 4n+1$ and supp $\gamma_{se}^{\times}(G) = 4^{n}$.

Proof: Let G = P_{3n+1} , $n \in N$. Let V(G) = $\{v_i; 1 \le i \le 3n+1\}$. Then $S_{1=\{v_1, v_3, v_6, \dots, v_{3n-3}, v_{3n}\}}$ and $S_{2=\{v_2, v_5, v_8, \dots, v_{3n-1}, v_{3n+1}\}}$ are two distinct γ_{se} - sets of G.deg $(v_1) = deg(v_{3n+1}) = 1$ and $deg(v_i) = 2, 2 \le i \le 3n$. Consider S_1 . (Proof is similar for S_2) $\sup v_{2} + (v_1) = \deg(v_2) = 2$ For i = 3, 6,..., 3n - 3, supp $\gamma_{se}^{+}(v_i) = \deg(v_{i-1}) + \deg(v_{i+1}) = 4$ $\operatorname{supp} \gamma_{ss}^{+}(v_{3n}) = \operatorname{deg}(v_{3n-1}) + \operatorname{deg}(v_{3n+1}) = 3$ Hence supp γ_{se}^+ (G) = supp γ_{se}^+ (v_1) + $\sum_{i=1}^{n-1}$ supp γ_{se}^+ (v_{3i}) + γ_{se}^+ (v_{3n}) = 2+ (n - 1)4 + 3 = 4n + 1 $\operatorname{supp} \gamma_{se} \times (v_1) = \operatorname{deg}(v_2) = 2$ For i = 3, 6,..., 3n - 3, supp $\gamma_{se}^{+}(v_i) = \deg(v_{i-1}) + \deg(v_{i+1}) = 4$ $\sup \gamma_{se}^{+}(v_{3n}) = \deg(v_{3n-1}) \times \deg(v_{3n+1}) = 2 \times 1 = 2$ Hence supp $\gamma_{se}^{\times}(G) = \operatorname{supp} \gamma_{se}^{\times}(v_1) \times \prod_{i=1}^{n-1} \operatorname{supp} \gamma_{se}^{\times}(v_{3i}) \times \operatorname{supp}$ $\gamma_{se} \times (v_{3n}) = 2 \times 4^{n-1} \times 2^{4^n}$ Hence supp γ_{se}^+ (G) = 4n+1 and supp γ_{se}^{\times} (G) = 4^{*n*}. **Theorem 2.16:** Let $G = P_{3n+2}$, $n \in N$ Then $\operatorname{supp} \gamma_{se}^+(G) = 4(n+1)$ and supp $\gamma_{ee} \times (G) = 4^{n+1}$ **Proof:** Let G = P_{3n+2} , $n \in N$. Let V(G) = $\{v_i; 1 \le i \le 3n+2\}$. Then S = { v_1 , v_3 , v_6 , ..., v_{3n} , v_{3n+2} } is the unique γ_{se} - set of G. $\deg(v_1) = \deg(v_{3n+2}) = 1$ and $\deg(v_i) = 2, 2 \le i \le 3n + 1$. $\operatorname{supp} \gamma_{se}^{+}(v_1) = \operatorname{deg}(v_2) = 2$ For i = 3, 6,..., 3n, supp $\gamma_{se}^+(v_i) = \deg(v_{i-1}) + \deg(v_{i+1}) = 4$ Supp $\gamma_{se}^{+}(v_{3n+2}) = \deg(v_{3n+1}) = 2$

Hence supp γ_{se}^{+} (G) = supp γ_{se}^{+} (v_1) + $\sum_{i=1}^{n}$ supp γ_{se}^{+} (v_{3i}) + supp γ_{se}^{+} (v_{3n+2})= 2 + n(4) +2 = 4(n+1). supp γ_{se}^{\times} (v_1)= deg(v_2) = 2 For i = 3, 6,..., 3n, supp γ_{se}^{\times} (v_i) = deg(v_{i-1}) × deg(v_{i+1}) = 4 Supp γ_{se}^{\times} (v_{3n+2}) = deg(v_{3n+1}) = 2 Hence supp γ_{se}^{\times} (G) = supp γ_{se}^{\times} (v_1)× $\prod_{i=1}^{n}$ supp γ_{se}^{\times} (v_{3i}) × supp γ_{se}^{\times} (v_{3n+2})= 2× 4ⁿ ×2 = 4ⁿ⁺¹. Theorem 2.17: Let G = C_{3n} , $n \in N$ Then supp γ_{se}^{+} (G) = 4nand

supp γ_{se} ' (G) = 4nand supp γ_{se} ' (G) = 4ⁿ. **Proof:** Let G = C_{3n} , $n \in N$ Let V(G) ={ v_i ; $1 \le i \le 3n$ } Then $S_1 = \{v_1, v_4, v_7, ..., v_{3n-2}\}$, $S_2 = \{v_2, v_5, v_8, ..., v_{3n-1}\}$, $S_3 = v_3$, v_6 , v_9 , ..., v_{3n} } are three distinct γ_{se} - sets of G.deg(v_i) = 2, $1 \le i \le 3n$.

Consider $S_1 = \{v_1, v_4, v_7, ..., v_{3n-2}.$ (Proof is similar for S_2 and S_3) For i=1, 4, 7,...,3n - 2, supp $\gamma_{se}^+ (v_i) = \deg(v_{i-1}) + \deg(v_{i+1}) = 2 + 2 = 4$ Hence supp $\gamma_{se}^+ (G) = \sum_{i=1}^n \operatorname{supp} \gamma_{se}^+ (v_{3i-2}) = 4n$ For i=1, 4, 7,...3n - 2, supp $\gamma_{se}^\times (v_i) = \deg(v_{i-1}) \times \deg(v_{i+1}) = 2 \times 2 = 4$ Hence supp $\gamma_{se}^\times (G) = \prod_{i=1}^n \operatorname{supp} \gamma_{se}^\times (v_{3i-2}) = 4^n$ Hence supp $\gamma_{se}^+ (G) = 4n$ and supp $\gamma_{se}^\times (G) = 4^n$ **Theorem 2.18:** Let $G = K_{1,n}, n \in N$ Then supp $\gamma_{se}^+ (G) = n$ and supp $\gamma_{se}^\times (G) = 1$

Proof: Let $G = K_{1,n}$, $n \in N$. Let $V(G) = \{v, v_i; 1 \le i \le n\}$ where v is the central point. Then $S = \{v\}$ is the unique γ_{se} - set of G.deg(v)=n and $deg(v_i)=1$, $1 \le i \le n$

supp $\gamma_{se}^{+}(v) = \sum_{i=1}^{n} \deg(v_i) = n(1) = n$ Hence supp $\gamma_{se}^{+}(G) = \operatorname{supp} \gamma_{se}^{+}(v) = n$. supp $\gamma_{se}^{\times}(v) = \prod_{i=1}^{n} \deg(v_i) = 1^n = 1$ Hence supp $\gamma_{se}^{\times}(G) = \operatorname{supp} \gamma_{se}^{\times}(v) = 1$ **Theorem 2.19:** Let $G = K_n$, $n \in N$. Then supp $\gamma_{se}^{+}(G) = (n-1)^2$ and supp $\gamma_{se}^{\times}(G) = (n-1)^{n-1}$

Proof: Let $G = K_n$, $n \in N$. Let v_i ; $1 \le i \le n$ be the points of G. Then $S_i = \{v_i\}, 1 \le i \le n$ are n distinct γ_{se} - sets of G.deg $(v_i) = n - 1$, $1 \le i \le n$.

Consider the set S_i (Proof is similar for the other sets) $\sup \gamma_{se}^{+}(v_i) = \sum_{\substack{j=1 \\ j \neq i}}^{n} \deg(v_j) = (n-1)(n-1) = (n-1)^2, 1 \le i \le n$ Hence $\sup \gamma_{se}^{+}(G) = \sup \gamma_{se}^{+}(v_i) = (n-1)^2$. $\sup \gamma_{se}^{\times}(v_i) = \prod_{\substack{j=1 \\ j\neq i}}^{n} \deg(v_j) = (n-1)^{n-1}, 1 \le i \le n$ Hence $\sup \gamma_{se}^{\times}(G) = \sup \gamma_{se}^{\times}(v_i) = (n-1)^{n-1}$ Hence $\sup \gamma_{se}^{+}(G) = (n-1)^2$ and $\sup \gamma_{se}^{\times}(G) = (n-1)^{n-1}$ Remark 2.20: Let G be a nontrivial connected strong efficient graph on $n \ge 2$ points. Then $1 \le \sup \gamma_{se}^{+}(G) \le (n-1)^2$ and $1 \le \sup \gamma_{se}^{\times}(G) \le (n-1)^{n-1}$.

Theorem 2.21: Let $G = D_{m,n}$, $m, n \in \mathbb{N}$. Then supp $\gamma_{se}^{+}(G) = m + (n + 1)^2$, if $m \ge n$ supp $\gamma_{se}^{\times}(G) = (n + 1)^{n+1}$, if $m \ge n$ **Proof:** Let G = $D_{m,n}$. m \geq n. Let V(G) = { $u, u_i, v, v_j, 1 \leq i \leq n$ }

Let $E(G) = \{uv, uu_i, vv_j; 1 \le i \le m, 1 \le i \le n\}.$

Then $S = \{ u, v_j ; 1 \le j \le n \}$ is the unique γ_{se} - set of G.deg (u) = m

+ 1, deg (v) = n + 1, deg
$$(u_i)$$
 = deg (v_j) = 1, $1 \le i \le m$, $1 \le j \le n$

$$supp \gamma_{se}^{+}(u) = \sum_{i=1}^{m} deg (u_i) + deg (v) = m + n + 1$$

For j = 1, 2,..., n, supp $\gamma_{se}^{+}(v_j) = deg(v) = n + 1$
Hence supp $\gamma_{se}^{+}(G) = supp \gamma_{se}^{+}(u) + \sum_{j=1}^{n} supp \gamma_{se}^{+}(v_j) = m + n + 1 + n(n+1) = m + (n+1)^2$

$$supp \gamma_{se}^{\times}(u) = \prod_{i=1}^{m} deg (u_i) \times deg (v) = 1(n+1) = n + 1$$

For j = 1, 2,..., n, supp $\gamma_{se}^{\times}(v_j) = deg(v) = n + 1$
Hence supp $\gamma_{se}^{\times}(v_j) = deg(v) = n + 1$

$$Hence supp \gamma_{se}^{\times}(v_j) = (n+1) \times (n+1)^n = (n+1)^{n+1}$$

3. Conclusion

In this paper, open support strong efficient domination number of some standard graphs under addition and multiplication is studied. Similar studies can be done for the other domination parameters.

References

- S. Balamurugan, M. Anitha, C. Karnan and P. Palani Kumar, Open Support of a Graph Under Multiplication, International Journal of Mathematics Trends and Technology, Vol. 65, Issue 5, (May 2019), 134-138.
- [2] S. Balamurugan, M. Anitha, P. Aristotle and C. Karnan, A Note on Open Support of a Graph Under Addition I, International Journal of Mathematics Trends and Technology, Vol. 65, Issue 5, (May 2019), 110-114.

- [3] Bange. D. W, Barkauskas. A. E. and Slater. P. J., Efficient dominating sets in graphs, Application of Discrete Mathematics, 189-199, SIAM, Philadelphia (1988).
- [4] Harary. F., Graph Theory, Addison Wesley(1969).
- [5] F. Harary, T. W. Haynes and P. J. Slater, Efficient and excess domination in graphs, J. Combin. Math. Combin .Comput., 26(1998),83-95.
- [6] Haynes. T W., Stephen T. Hedetmiemi, Peter J. Slater. Fundamentals of domination in graphs, Advanced Topics, Marce; Dekker, Inc, New York (1998).
- [7] Meena. N, Further Results on Sum of Strong Efficient Domination Number and Chromatic Number, International Journal of Innovative Science, Engineering & Technology, Vol. 3, Issue 11, (November 2016), 300-304.
- [8] Meena. N, Strong Efficient Domination Number of Inflated Graphs of Some Standard Graphs, International Journal of Scientific and Innovative Mathematical Research, Vol. 2, Issue 5, (May 2014), 435-440.
- [9] Meena. N, Subramanian. A, Swaminathan. V, Strong efficient domination and strong independent saturation number of graphs, International Journal of Mathematics and Soft Computing, Vol. 3, No. 2 (2013), 41-48
- [10] Meena. N, Subramanian. A, Swaminathan. V, Strong Efficient Domination in Graphs, International Journal of Innovative Science, Engineering & Technology, Vol. 1, Issue 4, (June 2014), 172-177.
- [11] Sampath Kumar. E and Pushpa Latha. L, Strong Weak domination and domination balance in a graph, Discrete Math., 161: (1996), 235 -242.