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1. Introduction 
Throughout this paper only finite, undirected graphs without loops 
or multiple nodes are considered.  Let G = (V, E) be a graph with p 
points and q nodes. The degree of any point v of a graph G is the 
number of nodes incident with v and is denoted by deg (v). A 
subset S of V(G) is called a dominating set of G if every point in 
V(G) - S is adjacent to a point in S [6]. The domination number of a 

graph G, denoted by  is the minimum cardinality of a 
dominating set of G. Sampath Kumar et al introduced the concept 
of strong (weak) domination in graphs [11]. A subset S of V(G) is 

called a strong dominating set of G if for every v  there 

exists a point u  such that u and v are adjacent and deg(u) 

 A subset S of V(G) is called an efficient dominating set if 

for every v  [3, 5]. The concept of strong 
(weak) efficient domination in graphs was introduced by Meena et 
al [10] and further studied in [7, 8, 9]. A subset S of V(G) is called a 
strong (weak) efficient dominating set of G if for every point 

 we have  ( 1), where  

=  and  =     

{v}( and  

=  {v}). The minimum cardinality of a strong (weak) 
efficient dominating set of G is called the strong (weak) efficient 

domination number of G and is denoted by . A 
graph G is strong efficient if there exists a strong efficient 
dominating set of G. Balamurugan et al introduced the concept of 
open support of a graph under addition [2] and multiplication [1]. 
Open support of a point v under addition is defined by 

 and it is denoted by 𝑠𝑢𝑝𝑝(𝑣).  An open support of 

a graph G under addition is defined by   and it is 

denoted by 𝑠𝑢𝑝𝑝(𝐺). An open support of a point 𝑣 under 

multiplication is defined by  and is denoted by 

𝑚𝑢𝑙𝑡(𝑣). An open support of a graph 𝐺 under multiplication is 

defined by and it is denoted by 𝑚𝑢𝑙𝑡(𝐺). Inspired 

by the above definitions, the concept of an open support strong 
efficient domination number of a graph under addition and 
multiplication is introduced in this paper. For all Graph-theoretic 
terminologies and notations, Harary [4] is followed. Following 
previous results are necessary for the present study. 
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Previous results [9]: 

1) For any path  

2) For any cycle ,  = n, n  

3)  = 1, n  

4)  = 1, n  

5)  = m + 1, m>n, m, n  

2. Main results 
Definition 2.1: Let G = (V, E) be a strong efficient graph. Let S be a 

- set of G. Let v  S. An open support strong efficient 
domination number of v under addition is defined by 

 and it is denoted by supp  

Example 2.2:  Consider the following graph G. 

 

 

 

 

 

 

 

 

S =  is a - set of G.  

supp =deg +deg deg(  deg( =7 

supp ) = deg + deg deg( =8  

Definition 2.3: Let G = (V, E) be a strong efficient graph.  Let S be a 

- set of G. Let v  S. An open support strong efficient 
domination number of v under multiplication is defined 

by  and it is denoted by supp . 

u1 
u2 

u3 u4 

v1 v2 

t2 t1 

Fig. 1 
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Example 2.4: In Fig. 1,  

supp  =deg  deg deg( deg( =4 

supp =deg  deg deg( =16 

Definition 2.5: Let G = (V, E) be a strong efficient graph.  Let S be a 

- set of G. An open support strong efficient domination number 

of G under addition is defined by  and it is 

denoted by supp . 

Example 2.6: In Fig.1, supp =supp +supp =7+8=15 

Definition 2.7: Let G = (V, E) be a strong efficient graph.  Let S be a 

- set of G. An open support strong efficient domination number 

of G under multiplication is defined by  and it is 

denoted by supp . 

Example 2.8: In Fig.1,supp =supp Xsupp =4X16=64. 

Note 2.9: Open support strong efficient domination number under 
addition of a graph G is not unique. 

Example 2.10: Consider the following graph G. 

 
                                                       Fig. 2 

 
={ , ={ and ={ are three - sets of G and (G)=2. 

For , supp =  = deg( ) + deg( ) + deg( )=8. 

supp =  = ( ) = 3.  

v1 v2 v3 

v4 v5 



Murugan & Meena       Open Support Strong Efficient Domination Number 

55 

 

supp = =supp + supp = 11. 

supp = 11.  

For , supp (v2)= = ( ) + ( )+ ( )=7. 

supp ( ) =  = (v1) + (v4) = 6.  

supp ( )= =supp ( )+supp ( )=13. 

supp = 13. 

For , supp (v4)= = ( )+ ( )+ ( )=8. 

supp ( ) =  = ( ) = 3.  

supp ( )= =supp ( )+supp ( )=11. 

supp = 11. 

Here min supp  = 8 and max supp = 11 

 

Note 2.11: Open support strong efficient domination number under 
multiplication of a graph G is not unique. 

Example 2.12: Consider Fig.2, 

={ , ={ & ={  are three - sets of G & ( )=2. 

For , supp ( )= =deg( ) deg( )  deg( )=18. 

supp ( ) =  = deg( ) = 3.  

supp ( )= ( )=supp ( )  supp ( )=54. 

supp ( ) = 54. 

For ,supp ( )= =deg( ) deg( ) deg( )=9. 

supp ( ) =  = deg( )  deg( ) = 9.  

supp ( )= ( )=supp ( )  supp ( )=81. 

supp ( ) = 81. 

For ,supp ( )= =deg( ) deg( ) deg( )=18. 

supp ( ) =  = deg( ) = 3.  
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supp ( )= ( )=supp ( ) supp ( )=54. 

supp ( ) = 54. 

Here min supp ( ) = 54 and max supp  ( ) = 81 

Remark 2.13: : Let G be a connected strong efficient graph with a 

- set S. Since S  V(G),  supp (G)𝑠𝑢𝑝𝑝(𝐺) and  supp 

𝑚𝑢𝑙𝑡(𝐺). 

Theorem 2.14: Let G =   Then  

supp  (G) = 4n – 2 and  

supp  (G) =4n-1 

Proof: Let G =  Let V(G) =  

Then S = { }is the unique  - set of G. 

deg  = deg  = 1 and deg  = 2, 2  i 3n – 1. 

supp ( ) = deg deg  = 3 

For i = 5, 8,…, 3n – 4, supp  ( ) = deg deg  = 4 

Supp  ( ) = deg deg  = 3 

Hence supp  (G) = supp  ( ) + + 

supp  ( ) = 3+(n – 2)4 +3 = 4n – 2. 

supp  ( ) = deg deg  = 2 

For i = 5, 8,…, 3n – 4, supp  ( ) = deg deg  = 4 

Supp   ( ) = deg deg  = 2 

Hence supp  (G) = supp  ( ) + + 

supp  ( ) = 2 2 = . 

Theorem 2.15: Let G =   Then  

supp  (G) = 4n+ 1 and  

supp  (G) = . 
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Proof: Let G = Let V(G) = . Then 

={ } and 

={ }are two distinct  - sets of 

G.deg  = deg  = 1 and deg  = 2, 2  i n. 

Consider . (Proof is similar for ) 

supp  ( ) = deg = 2  

For i = 3, 6,…, 3n – 3, supp  ( ) = deg deg  = 4 

supp  ( ) = deg  + deg  = 3 

Hence supp  (G) = supp  ( ) + +  

( ) = 2+ (n – 1)4 + 3 = 4n+ 1 

supp  ( )= deg = 2  

For i = 3, 6,…, 3n – 3, supp  ( ) = deg deg  = 4  

supp  ( ) = deg deg  = 2  1 = 2 

 

Hence supp  (G) = supp  ( ) × ×supp 

( )  = 2 2= . 

Hence supp  (G) = 4n+ 1 and supp  (G) . 

Theorem 2.16: Let G =   Then  

supp  (G) = 4(n+ 1) and  

supp  (G) = . 

Proof: Let G =  Let V(G) = . 

Then S = { } is the unique  - set of G. 

deg  = deg( )  = 1 and deg   = 2, 2  i  3n + 1. 

supp  ( ) = deg = 2 

For i = 3, 6,…, 3n, supp  ( )= deg deg  = 4 

Supp  ( )= deg  = 2  
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Hence supp  (G) = supp  ( ) +  + 

supp  ( )= 2 + n(4) +2 = 4(n+ 1). 

supp  ( )= deg  = 2  

For i = 3, 6,…, 3n, supp  ( ) = deg deg  = 4 

Supp  ( ) = deg  = 2  

Hence supp  (G) = supp  ( )×  

supp  ( )= 2 2 = . 

Theorem 2.17: Let G =   Then  

supp  (G) = 4nand  

supp  (G) = . 

Proof: Let G =  Let V(G) =   

Then ={  = {  = 

 are three distinct  -  sets of G.deg  = 2, 1  

i n. 

Consider = { . (Proof is similar for  and ) 

For i=1, 4, 7,,…,3n – 2, supp  ( )= deg + deg =2+2=4 

Hence supp  (G) = = 4n 

For i=1, 4, 7,…3n – 2, supp  ( )=deg ×deg =2 2=4 

Hence supp  (G) = =  

Hence supp  (G) = 4n and supp  (G) =  

Theorem 2.18: Let G =   Then  

supp  (G) =  and  

supp  (G) =  
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Proof: Let G =  Let V(G) ={ ; 1  } where v is 

the central point. Then S = {v} is the unique  -  set of G.deg =n 

and deg = 1, 1  

supp   ( ) = = n(1) = n 

Hence supp  (G) = supp  ( ) = n. 

supp  ( ) = =  = 1 

Hence supp  (G) =supp  ( ) = 1 

Theorem 2.19: Let G =   Then  

supp  (G) =  and  

supp  (G) =  

Proof: Let G = .  Let ; 1  be the points of G. Then 

 = { }, 1  are n distinct  - sets of G.deg ( )= n – 1, 

1 . 

Consider the set  (Proof is similar for the other sets) 

supp  ( ) = = (n–1)(n–1) = ,1  

Hence supp  (G) =supp  ( ) = . 

supp  ( ) =  = ,1  

Hence supp  (G) =supp  ( ) =  

Hence supp  (G) =  and supp  (G) =  

Remark 2.20: Let G be a nontrivial connected strong efficient graph 

on n ≥ 2 points. Then 1  and 1 supp 

 (G) . 

Theorem 2.21: Let G =  m, n Є N. Then  

supp (G) = if m ≥ n 

supp  (G) =  
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Proof: Let G =  Let V(G) ={ ; 1 }  

Let E(G) = {uv, ; 1  1 }.  

Then  = {  } is the unique  - set of G.deg (u) = m 

+ 1, deg (v) = n + 1, deg ( ) = deg ( ) = 1, 1  1  

supp  ( ) = deg ( ) = m +n+1 

For j = 1, 2,…, n, supp  ( ) = deg  n +1 

Hence supp  (G) = supp  ( ) + = m +n 

+1+n(n+1) =  

supp  ( ) = deg ( ) = 1(n+1) = n+1 

For j = 1, 2,…, n, supp  ( ) = deg  n +1 

Hence supp  (G) = supp ( ) 

=(n+1 =  

3. Conclusion 

In this paper, open support strong efficient domination number of 
some standard graphs under addition and multiplication is 
studied. Similar studies can be done for the other domination 
parameters. 
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