
Mapana J Sci, 12, 1(2013), 49-68 
ISSN 0975-3303|http://dx.doi.org/10.12723/mjs.24.6 

 

Received: November 2012; Reviewed :December 2012                                 49 

 

Solvent Effect on the Fluorescence Properties 

of Two Biologically Active Thiophene 

Carboxamido Molecules 

D Nagaraja,* H S Geethanjali,† N R Patil,‡ 

F M Sanningannavar§, R A Kusanur ** and R M Melavanki†† 

Abstract 

The absorption and fluorescence spectra of two thiophene 
carboxamido molecules namely 2–( 5,4,3  - trimethoxy 

phenyl) imino–3–N–ethylcarboxamido–4, 5, 

tetramethylene thiophene (X) and 2-( 4 -N, N-

dimethylaminophenyl) imino-3-(N- 2
 methylphenyl carboxamido)-4, 5, tetramethylene 
thiophene (Y) have been recorded at room temperature. 

The ground (g) and excited (e) state dipole moments are 
estimated from Lippert, Bakhshiev, Kawski-Chamma-
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Viallet equations by using the variation of Stokes shift 

with microscopic solvent dielectric constant () and 
refractive index (n). The excited dipole moments were 
also estimated by using the variation of Stokes shift with 
microscopic empirical solvent polarity parameter  𝐸𝑇

𝑁  
and the values are compared. It was estimated that dipole 
moments of the excited state were higher than those of 
the ground state of both the molecules. Further, the 

change in dipole moment () were calculated both from 
solvatochromic shift method and on the basis of 
microscopic empirical solvent polarity parameter 𝐸𝑇

𝑁 .  

Keywords: Solvatochromic shift method, Ground state dipole 
moments, Excited state dipole moments, Thiophene 
carboxamido. 

1. Introduction 

In the last few years, thiophene-based materials which are 
semiconductor and fluorescent compounds have become a highly 
interdisciplinary field of research with diverse studies ranging 
from fabrication of electronic and optoelectronic devices to the 
selective detection of biosensors. These organic molecules are 
recognized to be important materials having novel electronic and 
photonic properties suitable for many technological applications [1-
5]. It is also evident from the literature survey that thiophene such 
as substituted thiophene and condensed thiophene are interesting 
compounds being studied in medicine and they are reported to 
possess an array of useful biological and pharmacological activities 
like antibacterial, antifungal, antiviral, anticancerous, analgesic and 
anti-inflammatory activities. The synthesis, reactivity and 
conformational analysis of substituted and condensed thiophene 
have been extensively studied in recent years. They are important 
both as interesting models for structural investigation and also for 
biological screening. The effect of solvent on the absorption and 
fluorescence characteristics of organic compounds has been a 
subject of interesting investigation. Excitation of a molecule by 
photon causes a redistribution of charges leading to conformational 
changes in the excited state. This can result in an increase or 
decrease of dipole moment of the excited state as compared to 
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ground state. The dipole moment of an electronically excited state 
of a molecule is an important property that provides information 
on the electronic and geometrical structure of the molecule in the 
short-lived state.  

Knowledge of the excited state dipole moment of electronically 
excited molecules is quite useful in designing nonlinear materials, 
elucidating the nature of the excited states and in determining the 
course of a photochemical transformation. The electro optic 
methods such as electronic polarization of fluorescence, electric-
dichroism, microwave conductivity and stark splitting are 
generally considered to be very accurate, but their use is limited 
because they are considered equipment sensitive and the studies 
have been restricted to relatively very simple molecules. The 
solvatochromic method is based on the shift of absorption and 
fluorescence maxima in different solvents of varying polarity. 
Koutek has shown that under suitable conditions, the 
solvatochromic method yields fairly satisfactory results. Similar 
works were also reported by others        [6-17]. In the present work, 
we report different solvent effect on the Photophysical properties 
such as Stokes shift which is useful for estimation of the ground 
and excited state dipole moments of two thiophene Carboxamidos 
by solvatochromic method based on absorption and fluorescence 
shift in various solvents. However, there are no reports available in 
literature on the determination of μg and μe values of these two 
biologically active thiophene Carboxamidos investigated.  The 
theoretical ground state (μg) dipole moments were estimated by 
Gaussian software using B3LYP/6-31g* method [18]. 

2. Materials and Methods 

The solute molecules namely 2–( 5,4,3  -trimethoxyphenyl) imino–

3–N–thylcarboxamido-4,5,-tetramethylenethiophene (X) and 2(4'-N, 
N dimethylaminophenyl)imino 3(N-2'-methylphenylcarboxamido) 
 4,5,tetramethylenethiophene (Y) were synthesized in our laborator
y using standard methods [19-20]. The molecular structures of this 
thiophene Carboxamido are given in Fig. 1. The solvents used in 
the recent study namely acetonitrile  (AN), dichloro ethane  (DCE), 
 Diethylether (DEE), Dimethylformamide (DMF), dimethylsulphoxi
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de  (DMSO), heptane, hexane, isopropyl alcohol (IPA) and toluene 
(TL) for X and acetonitrile (AN), cyclohexane (CH), diethyl ether 
(DEE),    
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Fig. 1. The molecular structures of (a) X and ( b) Y. 

1,4-dioxane (DX), heptane, hexane, isopropyl alcohol-(IPA), 
tetrahydrofauran (THF) and toluene (TL) for Y were obtained from 
S-D-Fine Chemicals Ltd., India, and they were of spectroscopic 
grade. The required solutions were prepared at fixed concentration 

of solutes 110-5 M in each solvent. The absorption spectra were 

recorded using Hitachi 50–20 UV–Vis spectrophotometer. The 
fluorescence spectra were recorded using Hitachi F-2000 
fluorescence spectrophotometer. All these measurements were 
carried out at room temperature. 

3. Theory 

3.1 Determination of excited-state dipole moments  

The five independent equations were used for the estimation of 
excited state dipole moments of two thiophene carboxamido. They 
are as follows 

Lippert‟s equation [21]:    

 

Bakhshiev‟s equation [22]: 
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Kawski-Chamma-Viallet‟s equation [23]: 

 

The expressions for F1(,n) [Lippert‟s polarity function], F2(,n), 

[Bakhshiev‟s  polarity function]  F3(,n), [Kawski-Chamma-Viallet‟s 
polarity function] are given as  

 

 

 

Where a



  and 


f are absorption and fluorescence maxima 

wavelength in cm-1 respectively. The other symbols  and n are 
dielectric constant and refractive index respectively. From Eqs. (1)-

(3) it follows that 


 )( fa  versus F1 (,n), 


 )( fa   versus F2 (,n) 

and  
2



 fa 
 versus F3 (,n) should give linear graphs with slopes 

m1, m2 and m3 respectively and are given as  

 

 

 

Where µg and µe are the ground and excited state dipole moments 
of the solute molecules. The symbols h and c are Planck‟s constant 
and velocity of light in vacuum respectively; „a‟ is the Onsager 
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radius of the solute molecule. If the ground state and excited states 
are parallel, the following expressions are obtained on the basis of 
Eqs. (8) and (9)  

  

 

and 

 

3.2 Molecular-microscopic solvent polarity parameter  𝑬𝑻
𝑵   

The empirical polarity parameter  𝐸𝑇
𝑁  proposed by 

Richards [7] gave towering results with solvatochromic shift of 
dipolar molecules. The results correlate better with microscopic 

solvent polarity parameter  𝐸𝑇
𝑁  rather than the traditionally used 

bulk solvent polarity functions involving dielectric constant () and 
refractive index (n). In  𝐸𝑇

𝑁  the error estimation of the Onsager 
cavity radius has been minimized, it also includes intermolecular 
solute/solvent hydrogen bond donor/acceptor interactions along 
with solvent polarity. The theoretical basis for the correlation of the 

spectral band shift with  𝐸𝑇
𝑁  was proposed by Richards and 

developed by Ravi et al. [24], according to Eq. (13): 

fa   = 11307.6   
∆μ

∆μB
 

2

 
a𝐁

a
 

2

 ET
N

+ Constant                          13       
 

where B = 9D and aB=6.2 A are the change in dipole moment 

on excitation and Onsager cavity radius respectively of a betaine 

dye,  and „a’ are the corresponding quantities for the solute 
molecule of interest. A dimensionless normalized scale  𝐸𝑇

𝑁  was 
introduced in order to avoid the use of non SI unit kcal/mol in 
ET(30) solvent polarity scale and is defined by Eq. (14), using water                
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[ 𝐸𝑇
𝑁 =1] and tetramethylsilane (TMS =  𝐸𝑇

𝑁  = 0) as extreme 
reference solvents. 

 

The change in dipole moment () can be evaluated from the slope 
of the stokes shift versus  𝐸𝑇

𝑁  plot and is given by Eq. (15) 

 
Where „m‟ is the slope obtained from the plot of Stokes shift 



 )( fa  versus microscopic solvent polarity  𝐸𝑇
𝑁  using Eq. (13). 

For the computation, Gaussian software is used to calculate 

theoretical g using DFT.  

4. Results and discussion  

4.1 Experimental determination of excited state 

(e) dipole moments of the molecules 

The typical absorption and fluorescence spectra of X and Y in 
isopropanol are as shown in Fig. 2 and Fig. 3 respectively. Solvent 

polarity function values F1(,n), F2(,n), F3(,n) and microscopic 
solvent function  𝐸𝑇

𝑁  for various solvents used in this report are 
presented in Table 1 and Table 2. The absorption and emission 
maxima wave numbers, Stokes shift and arithmetic mean of Stokes 
shift values (in cm-1) for both the molecules in different solvents are 
given in Table 1 and Table 2. Absorption and emission maxima 
wave numbers are calculated from wavelength maxima values. The 
large magnitude of Stokes shift indicates that the excited state 
geometry could be different from that of the ground state. The 
general observation is that there is an increase in the Stokes shift 
values with increasing solvent polarity which shows there is an 
increase in the dipole moment on excitation.  

The Solvatochromic data can be used to identify the spectra, 

namely *, nn*, etc. The fluorescence emission peak 
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undergoes a red shift, confirming a * transition. The shift of the 
fluorescence wavelengths towards longer wavelengths could be 
due to the marked difference between the excited state charge 
distribution in the solute and the ground state charge distribution 
resulting in a stronger interaction with polar solvents in the excited 
state. 

 

Fig. 2. Typical absorption spectra of X and Y in Isopropanol 

 

Fig. 3. Typical fluorescence spectra of X and Y in Isopropanol. 
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Fig. 4. The plots of 


 )( fa   vs F1 (, n) for X and Y. 

 

Fig. 5. The plots of 


 )( fa  vs F2 (, n) for X and Y. 
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Fig. 6. The plots of 1/2


 )( fa   vs F3(, n) for X and Y. 

 
 

Fig. 7. The plots of 


 )( fa   vs molecular- microscopic solvent polarity 

parameter     𝐸𝑇
𝑁   for X and Y. 
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Fig. 8. Possible resonance structures of X. 

 

 

Fig. 9.  Possible resonance structures of Y 
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(a)                                              (b) 

Fig. 10. Optimized geometry of (a) X and (b) Y 

 

  
(a)                                        (b)  

Fig. 11. Ground state optimized geometry of (a) X and (b) Y. The arrow 
indicates the direction of the dipole moment. 

Fig. 4 to Fig. 7 show the graph of


 )( fa  versus F1(,n),
 



 )( fa   

versus F2(,n) and 
2



 fa 
versus F3(,n) from which slopes m1, m2 

and m3 are obtained respectively. The plot of 


 )( fa   versus 

 𝐸𝑇
𝑁  will give the slope m. The correlation co-efficient, slopes and 

number of data of the fitted lines are given in Table 3. Good 
correlation coefficient is obtained for all both the solutes. In most of 
the cases the correlation coefficients are larger than 0.900 and 
indicate a linearity for m, m1, m2 and m3 with selected number of 

Stokes shift data points. The ground state dipole moments (g) of 
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the two molecules have been estimated by using Eq. (10) and are 

presented in Table 4. However, no other experimental data on g 

could be obtained from literature for comparison. The e values 

obtained from Eqs. (11) and (12) are given in Table 4. The ratio of e 

and g obtained from Eq. (12) and  obtained from eq. (15) are 
presented in the Table 4. It may be noted that discrepancies occur 

between the estimated values of e for both the molecules. These 

differences in the values of e may be, in part, due to the various 
assumptions and simplifications made in the use of different 
Solvatochromic methods.  

The values of Onsager cavity radii of the X and Y molecules were 
calculated by molecular volumes and Parachor [25] and are listed 
in Table 4. The theoretically calculated (ab intio calculations using 
DFT) values are presented in Table 4. The difference in the ground 
state dipole moment is due to the necessity of knowing the radius 
of the solute molecule in Eq. (10) as compared theoretical values 
obtained from ab initio calculations using DFT.  

The dipole moments of both the molecules studied here are higher 
in the excited state compared to ground state. This is explained in 
terms of possible resonance structures as shown in Fig. 8 and Fig. 9.  
The dipole moments of X and Y increases twice on excitation. This 
change in dipole moment on excitation can be explained in terms of 
nature of emitting state or intermolecular charge transfer. Further 
large change in dipole moment on excitation suggests that excited 
state is twisted intermolecular charge transfer  
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Table 1: Solvatochromic data of X along with the calculated values of polarity functions. 

 

a Lippert’s polarity function  
b Bakhshiev’s  polarity function 
c Kawski-Chamma-Viallet’s polarity function  
d Microscopic solvent polarity function. 

 

Solvents 𝑎    

(cm-1) 

𝑓    

(cm-1) 



 )( fa 

(cm-1) 

½ 


 )( fa   

(cm-1) 

 n F1(,n)a F2(,n)b F3(,n)c  𝐸𝑇
𝑁 d 

Acetonitrile 25176.23 21929.82 3246.40 23553.02 37.50 1.345 0.3050 0.8628 0.6663 0.460 

DCE 25062.65 22021.58 3041.07 23542.11 10.70 1.445 0.2227 0.6300 0.6165 0.194 

DEE 25220.68 22237.04 2983.63 23728.86 4.34 1.353 0.1668 0.3772 0.4289 0.210 

DMF 25157.23 21909.16 3248.06 23533.19 39.00 1.431 0.2753 0.8408 0.7215 0.404 

DMSO 25081.51 21910.60 3170.91 23496.05 48.00 1.479 0.2636 0.8425 0.7450 0.444 

Heptane 25188.91 22471.91 2717.00 23830.41 2.00 1.388 0.0090 0.0173 0.2724 0.012 

Hexane 25207.96 22558.08 2649.87 23883.02 2.00 1.376 0.0133 0.0252 0.2684 0.009 

Isopropanol 25201.61 21982.85 3218.75 23597.23 18.30 1.378 0.2727 0.7650 0.6396 0.617 

Toluene 25157.23 22434.60 2722.62 23795.91 2.40 1.497 0.0150 0.0330 0.3519 0.099 
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Table 2: Solvatochromic data of Y along with the calculated values of polarity functions 

 

a Lippert’s polarity function  
b Bakhshiev’s  polarity function 
c Kawski-Chamma-Viallet’s polarity function  
d Microscopic solvent polarity function. 

Solvents 𝑎    

(cm-1) 

𝑓    

(cm-1) 



 )( fa 

(cm-1) 

½ 


 )( fa   

(cm-1) 

 N F1(,n)a F2(,n)b F3(,n)c  𝐸𝑇
𝑁 d 

Acetonitrile 23446.65 19569.47 3877.18 21508.06 37.50 1.345 0.3050 0.86280 0.6663 0.460 

Cyclohexane 23463.16 20811.65 2651.50 22137.4 2.02 1.426 -0.0015 -0.00313 0.2859 0.006 

DCE 23419.20 20100.50 3318.70 21759.85 10.70 1.445 0.2227 0.63000 0.6165 0.194 

DEE 23612.75 20399.83 3212.91 22006.29 4.34 1.353 0.1668 0.37720 0.4289 0.210 

1,4-Dioxane 23501.76 20695.36 2806.39 22098.56 2.20 1.423 0.0192 0.03890 0.3064 0.164 

Heptane 23866.34 20790.02 3076.32 22328.18 2.00 1.388 0.0090 0.01734 0.2724 0.012 

Hexane 23640.66 20725.38 2915.27 22183.02 2.00 1.376 0.0133 0.02525 0.2684 0.009 

Isopropanol 23364.48 19868.86 3483.77 21616.67 18.30 1.378 0.2727 0.76500 0.6396 0.617 

THF 23391.81 20020.00 3371.79 21705.91 7.60 1.408 0.2092 0.54954 0.5519 0.207 

Toluene 23364.48 20533.88 2830.60 21944.97 2.40 1.497 0.0150 0.03304 0.3519 0.099 
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Correlations Compound Slope Correlation Number of 

data 

Lippert Correlation X 1934.19 0.989 9 

 Y 2811.329 0.933 10 

Bakhshiev’s 

correlation 

X 639.057 0.985 9 

 Y 1002.185 0.934 10 

Kawski-Chamma-

Viallet’s 

correlation 

X 754.928 0.986 9 

 Y 1571.769 0.954 10 

 correlation X 1046.01 0.927 9 

Y 1509.943 0.8 10 

Table 3: Statistical treatment of the correlations of the spectral shifts of X and Y 

 

Compound Radius 

‘a’(Ao) 

µg
a 

(D) 

µg
b 

(D) 

µe
c 

(D) 

µe
d 

(D) 

µe
e 

(D) 

Δµf 

(D) 

Δµg 

(D) 

(µe/µg)
h 

X 4.452 0.8571 0.215 2.583 4.334 1.880 2.368 1.665 12.140 

Y 4.521 4.736 0.863 3.897 5.946 2.905 3.034 2.042 4.518 

Table 4: Ground and excited state dipole moments of X and Y 

Debye (D) = 3.33564X10-30cm = 10-18 esu cm. 

a Calculated by Gaussian Software. 
b The ground states dipole moments calculated using Eq. 10.  

c The excited states dipole moments calculated using Eq. 11. 
d The experimental excited state dipole moments calculated from 
   Lippert‟s equation. 
e The experimental excited state dipole moments calculated from 
  microscopic solvent polarity correlation.  
f The change in dipole moments for µe

c and µg
b 

g The change in dipole moments calculated from Eq. 15. 

h The ratio of excited state and ground state dipole moments values 
   calculated using   Eq.12.  
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(TICT) in nature. Thus presence of a large TICT and increase in 
planarity on excitation render the molecule more polar (as 
compared to ground state) giving rise to a large change in the 
dipole. In literature one may find that large number of investigators 
have used solvatochromic shift method to estimate ground and 
excited state dipole moments. In literature there is a dearth of data 

on g and e for the molecules used in the present study. Therefore 
we have not made any comparison.  

4.2 Theoretical determination of ground state (g) dipole 
moments 

The primary task for the computational work was to determine the 
optimized geometry of the compound. The entire calculations were 
performed at DFT/B3LYP level on a Pentium IV/2.8 GHz personal 
computer using Gaussian 03W program package, invoking 
gradient geometry optimization [18]. The input geometry of X and 
Y molecules has been first optimized without any constraint in the 
potential energy surfaces at DFT/6-31g* theory/basis set for C, N 
and H atoms. The molecular structure of the title molecules in the 
ground state were optimized by a DFT method using B3LYP 
functional combined with 6-31g* basis set. The optimized geometry 
of the title molecules is given in Fig. 10. 

Dipole moment shows the molecular charge distribution and is 
given as a vector in three dimensions. Therefore, it can be used as a 
descriptor to depict the charge movement across the molecule. 
Direction of the dipole moment vector in a molecule depends on 
the centers of positive and negative charges. Dipole moments are 
strictly determined for neutral molecules. The ground state dipole 
moments are calculated using DFT/6-31g* theory/basis set and are 
compared with experimental values. The optimized directions of 
the dipole moments are shown in Fig. 11.    

5. Conclusion 

We have estimated and compared the dipole moments of two 
molecules X and Y in the ground and excited states as a function of 
the solute-solvent interactions by Solvatochromic shift method. It 
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can be seen that the dipole moments of X and Y are significantly 
higher in the excited state than in the ground state. The dipole 
moments of excited states range between 2.58 to 7.97D depending 

on the compounds. It may be noted that the measured values of g 

and e for X and Y differ from each other. This may be attributed to 
the structural difference between the molecules. Also Eq. (12) can 
be used to estimate the values of excited state dipole moments by 
pre knowledge of the value of the ground state dipole moment 
without the necessity of knowing Onsager radius of the solute. To 
our knowledge this is the first report on the dipole moments of 
these molecules and would be of great help in many fields as 
mentioned in introduction.  
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