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Emden’s Polytropes: Gas Globes In 

Hydrostatic Equilibrium 

M N Anandaram* 

Abstract 

The theory of polytropes dealing with the hydrostatic 
equilibrium structure of gas globes had its origin in 
Emden’s publication, Gaskugeln a century ago (1907). 
This review article has been written for students of 
physics and astrophysics not only to understand the 
theory of polytropes as the simplest of stellar models but 
also computationally solve the Lane-Emden equation for 
polytropes. Anyone can easily obtain values of 
normalized temperature, density, pressure and mass 
distribution as a function of the normalized radius or 
mass in any polytrope model in tabular form as well as in 
graphical form using the program code. Explanation of 
the algorithm to write a code is provided (python script 
on request). A graphical description of how the polytropic 
index determines the structure of the polytrope is also 
given. 

Keywords: Lane-Emden polytropes, gas globes, hydrostatic equilibrium, 
normalized properties, all-in-one graphs, computer algorithm, analysis. 

1. Introduction  

Polytropes are massive self-gravitating gas globes (spheres). They 
are models of the simplest possible stellar structure because they 
are governed by the equations of hydrostatic equilibrium and mass 
conservation. The equation of hydrostatic equilibrium is given by, 
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where, )(rM  is the mass of an interior sphere of radius r , )(r  is 

the local density and )(rP is the local gas pressure at a distance r  

from the centre of a gas sphere of total mass M and radius R. The 
equation of mass continuity is given by, 
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dr
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where, )(rdM is the mass of a spherical shell  of thickness dr  

surrounding the mass )(rM  of radius r. We can now build up the 

model, that is, obtain a run of values of the pressure P(r) and the 
mass M(r) at any radius r from the centre (r = 0) of the polytrope to 
its surface (r = R) by noting that if dr  is the step size then P(r+dr) = 
P(r) + dP(r) and M(r+dr) = M(r) + dM(r).  To do this we need to 
know the third unknown parameter, the local  density )(r from a 

defined pressure-density relationship.  

Emden introduced a polytropic pressure-density relation similar to 
the equation of state for adiabatic processes [1].  This relation is 
based on the concept of quasistatic thermodynamic changes of state 
of an ideal gas during which a generalized specific heat is held 
constant. Chandrasekhar provides a detailed account of the 
polytropic changes of state [2]. 

The polytropic pressure-density relation is defined by the 
expression, 

                              nnKKP /)1(                                              (3) 

Here K is a constant,  is called the polytropic exponent, and n is 

called the polytropic index that characterizes the polytrope with a 
particular pressure- density relationship. Usually the constant K 
can be found from the physics of the problem (see the Appendix for 
some comments).  The polytropic gas globe models of interest are 
those with n = 1.5 (or,   = 5/3) which corresponds to adiabatic 

convective processes,  and those with n = 3 (or,   = 4/3) which 

corresponds to a constant radiation pressure in them. The 
polytrope with n = 3 is also known as the Eddington standard 
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model, since Eddington used this model to investigate properties of 
stars in radiative equilibrium. Similarly a polytrope of n = 1.5 can 
also describe a low mass white dwarf star supported by the 
pressure of  degenerate nonrelativistic electrons. But if the electrons 
are fully relativistic  then a polytrope of n = 3 is required to model 
the white dwarf and obtain its mass known as the Chandrasekhar 
limit. We can now combine the three equations to derive a 
dimensionless equation called the Lane-Emden equation. First, 
equations (1) and (2) are combined to yield, 

                                          
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This is a form of Poisson’s equation for the mass distribution under 
gravity. Using equation (3), equation (4) becomes, 
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Now we shall define a dimensionless variable   which relates the 

local density )(r to the central density c by, 

                                                
  n

cr                                                        (6) 

When 1 ,   = c, the central density.  So, =1 corresponds to r = 

0 the centre of the polytrope. When =0, =0, the surface density. 

So, =0 corresponds to r=R, the radius of the polytrope. On 
substituting equation (6),   equation (5) becomes, 
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Here, the radius scale constant n  is defined by, 
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In the last square bracket, K was eliminated using equation (3) 
applied to the central pressure and the central density respectively.  
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Also, in order to eliminate n in equation (7), we define a 

dimensionless radius variable  ,  also referred to as the Emden 

radius, by 

                                                          
n

r


                                                  (9) 

Substituting r = n  and  dr =  dn  equation (7) simplifies to, 
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This is the Lane-Emden equation for index n.  This expression is a 
second order differential equation and can also be written as, 

                                     



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                                       (11) 

The solution of the Lane-Emden equation,    known as the Lane-

Emden  function of index n is obtained by applying an even power 
series in   given by, 
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Since we know from equation (6) that    = 1 at the centre of the 

polytrope (r =   = 0), we find immediately here that 10 a . When 

the other six coefficients ia  are determined (David Reiss shows the 

use of the Mathematica software at www.scientificarts.com), the 
Lane-Emden function is found to be given by the series, 
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http://www.scientificarts.com/
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The reader can easily verify at least the first four coefficients of this 
series by substituting equation (12) into the Lane-Emden equation 
(10)  and comparing coefficients of identical powers of the scaled 
radius variable  . The slope, that is, the first derivative of this 

expression is given by, 
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 Since the surface of the polytrope of index n is reached when  n

=0, the first root of equation (13) denoted by 1  is the 

corresponding dimensionless radius parameter of the polytrope. 

Then the physical radius of the polytrope is given by  R = 1n  

where the constant is given by equation (9).  The quantity  1  

found by evaluating equation (14) at the radius of the polytrope 

1  is also required to determine the physical properties of the 

polytrope.  

The first root can be found analytically by solving equation (13) 
only for n = 0, 1, and 5: 

n = 0:  Equation (13) reduces to   06/1 2

0  .   

            Hence 44949.261                    (15a) 

n = 1:  Equation (13) reduces to   0/)(sin1  .   

            Hence 14159.31                  (15b) 

n = 5:  Equation (13) reduces to     031
1

2

5 


.  

            Hence 1 .             (15c) 



M N Anandaram                                                                          ISSN 0975-3303 

104 
 

The polytrope of index 5 has the unphysical property of finite mass 
but infinite radius (see below) and hence it finds application as a 
zeroth approximation to a red giant star and as a model of the 
distribution of stars in globular clusters. For other values of n,  
Roxburgh and Stockman [3] point out that the power series 
solution is typically very slow to converge and, in fact, only 
converges over the whole model when n < 1.9. Hence a computer 
program is used to do a numerical solution of the Lane-Emden 

equation and find the first root. Both 1 , and the product [-  1

2

1  ] 

from which  1  can be found, are listed in Table 1 along with 

other data.  

 n 
1  

1
)( 2



 

c   RGM
n

/
5

3 2


 

0 2.4495082 4.89909021 1.0000000 0.600 

0.5 2.7526956 3.78888395 1.8350251 0.667 

1.0 3.1415926 3.14159265 3.2898639 0.750 

1.5 

( 3/5 ) 

3.6537499 2.71404716 5.9907031 0.857 

2.0 4.3528746 2.41104601 11.402543 1.000 

2.5 5.3552754 2.18720200 23.406462 1.200 

3.0 

( 3/4 ) 

6.8968486 2.01823595 54.182481 1.500 

3.25 8.0189375 1.94980396 88.153242 1.714 

3.5 9.5358053 1.89055709 152.88366 2.000 

4.0 14.971546 1.79722991 622.40788 3.000 

4.5 31.836463 1.73779887 6189.4731 6.000 

4.9 171.43345 1.72461859 973805.85 30.00 

5 ∞ 1.73205081 ∞ ∞ 

Table 1: Physical Parameters of Polytropes (computed from author's python script). 
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The central and surface boundary conditions are: 

                Centre,   (r = 0):      00;10;0                                  (16a) 

                Surface, (r = R):      0;0; 111                              (16b) 

Physical Properties of Polytropes  

We observe from equations (3) and (6) that 

                           
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The two equations (17) and (18) indicate that once we know the 

value of  n  we can calculate n  and 1n which correspond to 

the normalized density and normalized pressure respectively at the 

radius nr  / in the polytrope. The actual values of the density 

and pressure can be found after determining their central values. 

We notice here that  n  it has no defined physical significance. 

If we assume that the polytrope contains an ideal gas then it’s well 
known equation of state gives the corresponding temperature as, 

                           
c

c T
TTTrT  ,                                 (19a) 

   where,  the central temperature cT  is given by        

                       c

cH
c

P

k

m
T




                                           (19b) 

We can now relate the Lane-Emden function )(  to the local 

temperature expressed as a fraction of the central temperature.  

Thus , n  and 1n represent the local values of the normalized 
temperature, the normalized density and the normalized pressure 
given by equations (17), (18) and (19) respectively. These three 
thermodynamic parameters monotonically decrease from unity at 

the centre to zero at the surface, just as  ,  n and  1n do in the 

polytrope. We also notice that, the inequality 1 nn  exists 
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throughout any polytrope for which n > 1, and also since

  nn 1 , the following relation should also hold: 

                              
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Thus a tabular output of  , 
n and  

1n

 can also be included in a 
computer solution and equation (20) can be verified at any radius. 

In the foregoing discussion, we noted that the temperature is 
coupled to the pressure and the density through the equation of 
state (19b) which describes an ideal gas that obeys the Maxwell-
Boltzmann statistics and whose constituent particles are non-
degenerate as well as non-relativistic. In the case of some objects 
like white dwarf stars, neutron stars and red giant star cores the 
pressure and the density relation becomes independent of the 
temperature. This is because the hydrostatic   pressure is provided 
by degenerate gases which obey the Fermi-Dirac distribution. In 
such cases )(  is just a parameter from which we can calculate the 

density and the pressure using equations (17) and (18) respectively. 
In these objects the conventional temperature may be treated as an 
absolute zero Kelvin. 

We can show that the pressure Pe of fully degenerate non-
relativistic electrons is given in terms of atomic constants by, 
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where, e , defined as the mean molecular weight per electron has 

a value 2 for a pure helium white dwarf, h is the Planck constant, 

em is the mass of the electron and  Hm is the mass of the hydrogen 

atom and  is the local density. When this pressure determines the 

hydrostatic structure we have a polytrope of index n = 1.5.  On the 
other hand, if the fully degenerate electrons are also fully 
relativistic with all electrons moving at the speed of light in the 
polytrope, we can then show that their pressure is given by, 
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Then a polytrope of index n = 3 can be used to model this case. In 
fact we can use this expression in equation (26) to show that this 
polytrope has a total mass given by, 

                                sun

e

n MM
23
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
 .                                                         (23) 

For a pure helium white dwarf ( e =2) we immediately obtain the 

well known Chandrasekhar mass limit of 1.455 solar masses. 
However,  Chandrasekhar also showed that a white dwarf of that 
mass  has a theoretical radius of zero [2]. 

Radius of a Polytrope  

 The radius R of a polytrope of index n can be written from its 
defining equation (9) as 
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Mass of a Polytrope 

The total mass of a polytrope is defined by    1 MRMM .  We 

first find the mass     MrM  of an interior sphere of radius r  

given by, 
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Using the definition (9) this becomes, 

                          
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dM n

cn
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Using equation (10) to replace the expression in the integral, 
carrying out the integration and evaluating the result using 
equation (16a) we get, 
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The total mass of the polytrope is then found by evaluating 

equation (25) at 1 : 
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The increase of mass with radius can be studied by plotting the 
mass fraction which expresses )(M  as a fraction of the total 

enclosed mass M. It is deduced from equations (25) and (26) as, 
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Where the quantities on the right hand side of the equation can 

easily be calculated after evaluating the denominator at 1 . 

For the standard model (n = 3), we find that its mass 3M is 

independent of its central density from equation (26).  To find the 
total mass for the case n = 5 since its radius is infinite, we proceed 
as follows. 

We first evaluate the square bracket in equation (26) using equation 
(16c): 
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The mass fraction for this polytrope is deduced from equation (27) 
as 
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The total mass of the n = 5 polytrope is found, from equation (26), 
to be a finite quantity: 



Emden’s Polytropes                                                    Mapana J Sci, 12, 1(2013) 
 

109 
 

                     

5
12

3

5
2

36












 c

G

K
M                                                         (28b) 

Mass-Radius Relationship 

If we invert (24) to get an expression for central density in terms of 
radius and use it to eliminate it in (26), the resulting M-R 
relationship would be: 
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The right hand side of this expression is always a constant for any 
given K and n.  Therefore we can easily deduce from equation (24) 
that for polytropes with n = 1.5, the product of their mass and 
volume is a constant.  A consequence is that these polytropes 
shrink as their mass increases, a result found true for low mass 
white dwarfs which are supported by the pressure of degenerate 
non-relativistic electrons. On the other hand equation (24) suggests 
that the mass of a polytrope with n = 3 is a constant, and is 
independent of its radius, a result that leads to the well known 
limiting mass of white dwarfs deduced by Chandrasekhar. 

The Central Condensation 

The ratio of the central density of a polytrope to its mean density is 
defined as the central condensation.  The mean density of a sphere 

of radius  nr  can be written as, 
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where substitution for the mass from (25) has been used.  When 
this is evaluated at the radius of the polytrope, its mean density is 
obtained as, 
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The central condensation can also be written in a convenient form 
as, 

                                

1

2

3

3

























c                                                 (31) 

This parameter is listed in Table 1.  It shows that the central density 
of a polytrope increases as its index value increases, becoming 
infinite for n = 5. 

The increase in central density also implies that more work is done 
in compressing matter into the core of the polytrope. This is 
indicated by the increase in the gravitational binding energy with 
the polytropic index which is discussed in section 7 and section 8 
examines the stability issue. When the mean density   is 

expressed in terms of the solar mass, 
 

30109891.1 sunM kg and 

the solar radius, 81095508.6 sunR  m, and  G  =  111067428.6   
213  skgm  we obtain the following expression: 
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(32) 

The Central Pressure of Polytropes 

     The central pressure is given by equation (3a): nn

cc KP /)1(  . If 

we substitute for K and c  from equations (30) and (32) 

respectively, and simplify we get, 
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If we bring in solar mass and solar radius units equation (33) yields, 
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The Gravitational Binding Energy (GBE) of Polytropes 

We now show that the GBE of a polytrope of index n, mass M and 
radius R is given by, 

                                                R

GM

n

2

)5(

3


                                   (35) 

The total work done in building a spherical polytrope of radius R 
by adding an incremental mass dM(r) at a time to M(r) at a distance 
r is given by, 
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     (36a) 

We now rewrite the equation of hydrostatic equilibrium, equation 
(1) and show by using the polytropic equation of state equation (3) 
that 
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Then equation (32a) becomes, 
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since the resulting integrand in the partial integration has vanished.  

Now we note that )(4)( 2 rdVdrrrdM   is the corresponding 

volume of the shell and hence we have, 
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                                    (36c) 

The integral on the right side yields after a partial integration, (the 
integrand vanishes since at the centre V = 0 and at the surface P = 
0) and the use of equations (1) and (2), that, 
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Recognizing that the last integral is the GBE of the polytrope, we 
see that, 

      

R

rPdV
0

3

1
)(                                                      (37)  

This result also leads to an alternate proof of the virial theorem. We 
see from this expression that, 
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where we have used the fact that /P  is two-third the thermal 

energy density per unit mass of the nonrelativistic ideal gas, and 
hence the integral is two-third the total thermal (or, particle kinetic) 
energy K of the polytrope.  So, we get the classical virial theorem, 

02 K , which has implications for the mean temperature of 
the polytrope.                                                                                    

Hence using equation (32) in equation (31c) yields, 

                                       
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
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1 2 n
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This is simplified to the desired result for the GBE of a polytrope of 
index n:  
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R
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n

2
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
                                                (38) 

We notice that   increases steadily with n up to 4.9 and then 

rapidly increases to become infinite at n = 5 as shown in Table 1. 

The Internal Energy and the Total Energy of Polytropes  

If we assume that a polytrope contains an ideal gas at a 

temperature T and  Vc  is its specific heat at constant volume per 

unit mass then the internal energy of a mass dM(r) is  dU = Vc

TdM(r) so that its total internal energy is given by, 


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where we have used the ideal gas equation of state given by, 
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          (40) 

and also equation (37). The total energy E of the polytrope is then 
given by the sum of internal energy and GBE as, 
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In this equation we can replace the adiabatic exponent   by the 

polytropic exponent nn /)1(   and obtain  
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Any configuration is stable only when 0 together with 0E . 
This requirement restricts stable polytropes to n < 3 from equation 
(42). Thus an ideal gas polytrope of n = 1.5 or  =5/3 is stable with

2/E . But a polytrope with n = 3 or 3/4 is marginally 

unstable since E = 0 for any size. 
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Algorithm for Solving the Lane-Emden Equation 

The algorithm required to construct a computer programme may 
be formulated as follows: 

Input data to be supplied:  

The desired polytropic index, n. 

The step size    set at 0.01 (preferably). 

The mass M and radius R of the polytrope in solar units.  

Output data to be generated: 

Calculate, store and tabulate the four quantities )( , n , 1n ,  

 2  and then the mass fraction 
1

][][ 22


  up to the 

radius 1 .  

The number of lines in the table is large being equal to  d/1 1 . 

An interpolation of this data may be carried out to print pruned 

data corresponding to an exact step size of 100/)( 1 . Plot the 

four quantities )( , n , 1n and 
1

][][ 22


 against the 

radius fraction 1 to produce an all-in-one plot in linear form as 

well as in semilog form respectively. This is because the linear form 
of the graph displays the interior details well whereas the semilog 
form clearly shows the details of the polytropic envelope where the 

parameters  , n and 1n have very low values. It is also 

instructive to plot )( , n , 1n and the radius fraction 1   

against the interior mass fraction 
1

][][ 22


 . These may be 

referred to as all-in-one graphs of normalized parameters 
remembering that both the plot axes cover a range of values from 0 
to 1 only. 

Solution Algorithm 

Solve the Lane-Emden equation numerically and compute first the 
two quantities namely the Lane-Emden function and its slope given 

by )(  and  respectively up to the scaled radius 1 . Then 

compute the density fraction n , the pressure fraction 1n ,the mass 
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parameter product  2  and  the mass fraction
1

][][ 22




up to the radius 1 .Since the Lane-Emden equation is one of 

second order as was shown in equation (11) it has the form 

),,( yyxFy   where we can identify 

x , y ,  ddy / , 
22 /  ddy  and  

ny
x

y
yyxF 




2
),,(                        

The single step self-starting Runge-Kutta 4th order method with 

truncated  error proportional to the 5th power of the step size x is 
given by the   algorithm (chapter 8, page 273 in Smith [4]): 
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   where the k’s are calculated from, 

                            )(),(),(1 iyiyixxFk  , 

                           
























2
)(,

4
)(

2
)(,

2
)( 11

2

k
iy

k
iy

x
iy

x
ixxFk , 

                           
























2
)(,

4
)(

2
)(,

2
)( 21

3

k
iy

k
iy

x
iy

x
ixxFk , 

                           
















 3

3
4 )(,

2
)()(,)( kiy

k
iyxiyxixxFk . 

The above scheme has the advantage of requiring only six 
calculations per integration step of a SODE whereas normally ten 
calculations are required per integration step of the two coupled 
first order differential equations into which a second order 
differential equation is converted while maintaining the same 
accuracy.  Begin the first step of the solution at the centre with this 
assignment: 
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    i = 1,   = 0,   = 1, 
n = 1, 

1n
= 1,  0' h  and z2h =  h2  = 0. 

Then the second step is completed by assignment or calculation as 
follows:    

Set  = d  and then compute for a small spherical core of this 

radius, 

                                
42

1206

1
1 

n
   

                                
3

303

1


n
h  ;          

                                 z2h = h2 .                            

Now, from the third step onward an iterative integration using the                
Runge-Kutta  4th order algorithm is begun under a while loop with 

the logic condition that > 0 which yields d  and dh  at each 
iteration. 

Now update the previous values of  ,  and h by adding their 

increments and then compute n , 1n  and  h2 .  This procedure is               

repeated until the surface is reached.  

However, the finite step size makes it impossible to stop the 

iteration exactly at  = 0 and hence   becomes negative. The while 
loop tests for this zero crossing event continuously at all 
intermediate steps in each iteration and once it is detected, exits to 
the previous values at  the start of that iteration. Since at this point 

we still have   < 1  and 0  we use the fact that 

)()0( 1 h  to extrapolate   to 1 (called zeta1 in 

the programme code) by, 

                                                 1 =   -  / h  

Similarly   'h  is extrapolated to  11 ' h  by using the               

following result deduced from equation (16b): 

                                                 1h = h  + ( 1 - ) 

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
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 (This is called hzeta1 in a programme code.) 

Now compute the following final parameters of the polytrope: 

                     z2h1 = 1

2h ; 

                     1/ Rn ;     (in units of Rsun) 

D_mean_sun = 1409.0; (mean density of the sun in SI). Mean 

density:  d_mean =  = D_mean_sun * M / R^3;     (in SI units) 

Central density:  
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     Pa (= 2/ mN ) 

Pc = 8.98e13 * M^2 / R ^ 4 / (n + 1) / hzeta1 ^ 2; 

Central Temperature: 

Composition:  ZYX 5.075.00.2/1  ; 
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Gravitational binding energy: 

GBE = 
R

M

n

2
41

5

3
108.3


            J 

Code to output the tabulated data and produce all-in-one graphs in 
both the linear form and in the semi log form is now prepared 
according to the syntax of the computational software package 
used. This program has been written in Python script (this can be 
obtained from the author upon request). Hellings describes a 
solution using the unavailable QBasic [5] whereas Timmes 
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(www.cococubed.com ) provides FORTRAN codes. The plots are 
discussed in the next section.                                                  

The all-in-one plot for the polytrope of index n = 5 can be directly 

produced by noting that,  cTT / , 5/  c and 6/ cPP  

where, 

                                       1
2 31



                                              (43) 

The mass fraction given by equation (28a) can also be included in 
the plot. This is done by a separate Python script that limits  to a 

large but finite value so that all parameter fractions can be plotted 
(see Fig. 7 and Fig. 8). 

Analysis of the all-in-one Graphs 

The radius dependent all-in-one plots and below each the 
corresponding mass dependent all-in-one plots are now presented 
as Fig. 1 for n = 1.5 to Fig. 8 for n = 5.0.  Again the first three radius 
dependent all-in-one plots in semilog form are then presented as 
Fig. 9 for n = 1.5 to Fig. 11 for n = 4.5 to show details close to the 
surface region. 

We can begin by taking a look at the curves representing 
normalized values of T,  , P and M(r)(or R(r))  in these figures. 

Since the curves represent , n  and 1n respectively in each 
figure, they start with a value of unity at the center and end with 
zero at the surface. In the middle region of the curves the 
separation between the curves of T /Tc and P/Pc increases as index 

n. In fact, the difference between the two parameters,  (1 – n ) for 

a given radius, increases with n, whereas the difference, n (1 – ) 

between c /  and P/Pc ,  decreases with n. This can be gauged in 

the graphs. We can also observe the increasing slope of the mass 
fraction curve given by equation (27) in these five figures which 
indicates increasing compression of matter closer to the center as n 
increases. These six graphs showing the pattern of alignment of the 
three curves as a function of the polytropic index may be used as 
standard reference for analyzing similar all-in-one graphs 
produced from computed modern stellar models. 

http://www.cococubed.com/
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Consider Fig. 1 which describes a wholly convective star (n = 1.5). 
It is observed that the three curves representing T,  and P start 

with a value unity at the center, proceed nearly equally spaced 
reaching a  maximum separation around 0.5R, and converge slowly 
again to vanish  at the surface. Both the density variation and the 
mass distribution are relaxed, that is, they change gradually toward 
the surface as the central density is just six times the mean density 
in the convective star. There is thus no pronounced tendency to 
push and compress matter into the inner parts of convective 
regions when convection prevails. The tabulated  model data of this 
polytrope indicate that 0.006M of mass is contained within a radius 
0.1R while 0.044M is contained within 0.2R.    

Now consider the polytrope models shown in Fig. 3 (n = 3.0) to Fig. 
8  (n =  5). In Fig. 3, the curve for   has moved much closer to that 

of P and farther away from that of T. This shift becomes 
increasingly more pronounced in each figure with the curves of   

and P being mass fraction curve is also seen to be rapidly 
increasing which indicates increase of central density with the 
polytropic index. Similarly the remaining graphs can be analyzed 
bearing in mind that for a polytrope of index n the normalized 

temperature varies as cTT / , the normalized density varies as 
n

c  /
 
and the normalized pressure varies as 1/  n

cPP  .  

Conclusion 

The polytropic stellar models are useful in understanding the 
structure of real stars in a qualitative way to some extent since both 
polytropes and real stars share the first two equations of stellar 
structure dealing with hydrostatic equilibrium and mass 
conservation. However real stars have, in addition, the nuclear 
energy generation in their cores which starting with their zero age 
main sequence (ZAMS) stage begin to alter the core chemical 
composition by gradually increasing the amount of helium and 
cause stellar evolution at a rate determined by their starting mass 
and initial chemical composition. Thus real stars only at their 
ZAMS stage can be compared with polytropes in that they both 
have uniform chemical composition throughout. Even then the 
simple polytropic hydrostatic equilibrium has given way to the 
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existence of separate zones in convective and radiative 
equilibriums the extents and locations of which depend on the 
mass of the star. These regions will have different equivalent 
polytropic indices and hence single index polytrope models cannot 
be applied to real stars.  

However, an approximation to real stellar models can be 
constructed by combining or sequencing together polytrope 
sections of different selected indices. Two examples will be 
mentioned here. Beech and Mitalas [6], for example, have looked at 
the effect of varying the core and envelope composition in an n = 3, 

n = 3 double polytrope model. Eggleton et al. [7] have looked at an 
analytic double polytrope model with an n = 5 core and n = 1 
envelope, thus utilizing the analytic solution equations of the Lane-
Emden equation to describe the effects of having a composition 
discontinuity at the base of the hydrogen burning shell source. 
Hellings [5] describes the computation of a composite polytropic 
model suitable for massive stars (a Python program for doing this 
is available with the author). All these efforts have limited 
applicability and the only alternative is to numerically compute full 
scale evolutionary models which take all the four differential 
equations of stellar structure into account aided by up to date 
physics based sophisticated modules for needed constitutive 
relations and inexpensive but powerful computational power. 

Polytropes also continue to be models of first choice for 
investigating newer phenomena such as radial and transverse 
oscillations [8-9] and their role in solar and stellar seismology. 

Note on figures: The radius fraction dependent and the mass 
fraction dependent (below) all-in-one plots of parameter fractions 
are shown for selected polytropic  indices in Fig. 1 to 8.   Fig. 9 to 11 
show the semilog versions of radius fraction dependent  all-in-one 
plots (shown in Fig. 1, 3 and 5 except Fig. 7) in order  to highlight 
the low values of parameters near the surface of the polytropes. 
Please note that while the radius fraction has the maximum value 
of unity the actual value of radius is as given in Table 1. 
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Fig. 1. Radius Fraction : n = 1.5  

 

Fig. 2.  Mass Fraction:  n = 1.5 
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Fig. 3.  Radius Fraction:  n = 3.0 

 

Fig. 4.  Mass Fraction:  n = 3.0 
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Fig. 5.  Radius Fraction:  n = 4.5 

 

Fig. 6.  Mass Fraction:  n = 4.5 
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Fig. 7.  Radius Fraction (polytropic index n = 5, core part only) 

 

Fig. 8.  Mass Fraction (polytropic index n = 5, core part only) 
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Fig. 9.  Semilog Graph: n = 1.5 

 

Fig. 10.  Semilog Graph:  n = 3.0 
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Fig. 11.  Semilog Graph:  n = 4.5 

Appendix 

This is to draw the attention of the reader to the distinction between the 

polytropic exponent  and the adiabatic exponent  . A polytropic 

change has constdTTdSdTdQc  // . But an adiabatic change is a 

particular case with 0c  ant constant entropy so that one can show that 

                                       
 
 vp

pv

ccc

ccc

V

P









 

ln

ln
 

where the adiabatic exponent    vpS ccVP /ln/ln   for an ideal 

gas. In this case one has    vp cccc  . In the adiabatic case, 0c  

and   regardless of the value of  . 

Consider a star with non-degenerate gas of number density N 
(nuclei+electrons) responsible for gas pressure and also containing 

radiation pressure. If  
radgasgas PPP   is the gas pressure fraction of 

total pressure and is constant throughout the star then one can show that          
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T  where the 

local density is  ,   is the mean molecular weight and a is the radiation 
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pressure constant and hence here the polytropic index 3n . On the other 

hand for a star in convective equilibrium the entropy must be a constant 

and by ignoring any radiation pressure one has 2/3n  and   one can 

show that the entropy and gas pressure are given by

const
mT

N
s 
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
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


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