

Recommender System (RS): Challenges, Issues & Extensions

Dheeraj Kumar Sahni*

Abstract

Recommendations are long chains followed from traditional life to today's life. In everyday life, the chain of recommendation augments the social process via some physical media and digital applications. The issues and challenges of recommendation are still in the infancy due to the growth of technology. This article identifies the uncovered areas of concern and links them to novel solutions. We also provide an extensive literature with different dimension for the newbie to work with the subject. We observed the study with different taxonomy provided by the prevalent researcher of the recommender system. This article gives the remedial solution of the recommendation problems

Keywords: Algorithms, Artificial Intelligence, Digital Challenges, Machine Learning, Recommender Systems, Deep Learning

1. Introduction

Recommender systems are the software algorithms which are widely used in digital systems to assist people. The journey of the recommender system is very long from the Tapestry to the modern world (Goldberg et al., 1992) [2]. On an individual stop of the journey, some improvements have been made from ethical challenges to real time problems of the recommender system. The recommendations explicitly collaborate with the nuances of the digital world. The recommendations are generally the inputs of

^{*} Department of Computer Science & Engineering, UIET, MDU, Rohtak, Haryana, India; Dheeraj.rs.uiet@mdurohtak.ac.in

individual or some specific groups which in turns the recommender aggregates and returns to the known recipient of the system (Paul et al., 1997) [1]. The recommendations suggested to the known recipient may be particularly interesting items, which are the aggregate evaluations of the recommender system to indicate those that should be filtered out. The various filtering convenient to put in the recommender system are such as "contentbased filtering", "collaborative filtering" etc. The phrase "collaborative filtering" suggested by the developer of first recommender system i.e., Tapestry (Goldberg et al., 1992) [2] that to handle the large volume of email documents and map the set of documents of interest to a known recipient. With the evolution of collaborative filtering the different versions of recommendations are presented in a few years i.e., used based, content based and hybrid model of recommendation.

Modern era is revolving around more personalized recommendations to earlier recommendations. In the 90's from the evolution of collaborative filtering in the recommendation the chief focus was on developing the recommender system mostly for business application to boost the revenue of the implemented model. Also, facts prove this phrase that as follows:

Two thirds of movie watched by Netflix customers are recommended movies 38% of click-through rates on Google news are recommended links 35 % of sales at Amazon arise from recommended products. Choice stream claims that 28% of people would like to buy more music, if they find what they like.

RS are ubiquitous and there is enough research present to direct the researcher or developers to know the development of efficient RS systems further. Also, in the last 20 years the several systematic literature reviews present various taxonomy of research problems in recommendation systems [4]. On the other side the concern of privacy and security became a hurdle to the providers of recommendation systems to bite the information that could comprise their user's information (Chen et al., 2009) [5].

2. Recommender System

In today's world the recommendation is the need of social as well as personal life. The modern world of recommendation process is forwarding toward the much-personalized recommendation with the evolution of relative newness in the technology. With the advancement of technology like deep neural network, artificial intelligence, the recommendation problems of finding good items could be achieved with the help of implicit feedback, or using a multi-criteria recommender system. However, the research questions of the recommender system are still in infancy.

RQ1: what the space option is present to match the taste of known to unknown user or item;

RQ2: Content of evaluation (Either Implicit or Explicit), Recommendation May be (anonymous, tagged with source identity or tagged with pseudonym);

RQ3: Factors evolved in performance evaluation of good recommendation;

Various researchers present the distinct level of abstraction taxonomy to address the recommendation problem (Batmaz et al., 2019) [45,46 & 47]. In the business model the space of options may be the individual unrated item, taxonomy item or grouped item, recommended item by the other group which turns in a purchase. For the evaluation of recommendation, one may use multiple criteria to match with actual behavior after recommendation is fed. In the domain of music, email, news several recommendation systems are available Ringo's, Tapestry and News Net respectively with their limitation and filtering technique. Click through rates as a proxy is a good way to evaluate the accuracy of the system recommendation for the news items. The technical prospect on the recommendation process is very wide. However, our concern is sparked by identifying the extension of existing literature and their challenges in the system. Further the scope of research in the field of machine learning algorithms, deep learning enable recommender systems are much wider.

Dynamic Recommender System Model

Fig. 1: Recommendation system model [9]

A dynamic recommender system model is considered to map the challenges faced in the design and implementation of recommender system. The analysis of study may now categorize the issues cause by recommender systems in distinct dimensions.

- 1) How much a false recommendation impacts the utility of system?
- 2) Whether the false recommendation impact constitutes an immediate harm or the long-term impact will be there in recommendation to a particular item.

With the help of RS research question, we are now ready to review the contributions given in current literature.

3. Literature

Sr. No	Author	Proposed Work / Extension	Application/ Dataset
1	Paul Resnic [1] et al., 1997	Give a thought to implementation of business models with recommender systems to generate the good revenue for the maintenance of recommender systems. Moreover, suggested four models based on the taste of users to recommend the items and generate revenue to sustain in the world.	Group Lens Fab Referral Web PHOAKS Siteseer
2	David Goldberg [2] et al., 1992	Developer of the first recommender system is Tapestry who first uses collaborative filtering with Tapestry. Annotations are good for recommendation but the taste of the user changes every second so, it limits the system to recommend the items based on annotations only. Another concern is the security and design of the appraiser which can be extended to do the good recommendation of documents to the user.	General Net News
3	Charu C. Aggarwal [3] et al., 1999	Rating based collaborative filtering, horting and predictability as the new twin parameters suggested in the work. The approach used is based on directed graphs which are collections of edges and vertices. The ratings are stored with the edges for items rated by the user. The complexity of the system is increased due to storing the directed graph.	Like minds Firefly

4	Upendra	The system Ringo is developed	General
	Shardanand [6]	with the help of content-based	Ringo
	et al., 1995	filtering to recommend music to	
		the users based on the user	
		profiles. The two algorithms	
		suggested by the author	
		Constrained person r Algorithm	
		and artists artist algorithm shows	
		a good accuracy with the given	
		data set of RINGO. Moreover, the	
		author is silent about the	
		clustering used in the system to	
		compute similarity measure.	
5	Nathan N. Liul	Presented more complex models	General
	[7] et al., 2010	for the temporal dynamics of user	Group Lens
		feedback by incorporating more	Movie Lens
		advanced time series analysis and	
		modeling technique	
6	Mohammad	A similar approach can be applied	General
	[8] et al., 2010	to items. A recent research topic	Group lens
		where it can be extended is	Movie Lens
		recommendation to groups	
7	Karatzoglou [9]	Further investigating the use of	General
	et al., 2010	model to further explore temporal	Netflix
		dependencies in standard CF	/Yahoo
		settings while also dealing with	
		implicit feedback. We can also	
		plan on exploring how	
		multidimensional IF can be used	
		to model non contextual variable	
		such as those related to content	
0	D-1:1- [10] (and user.	Canan 1
ð	kobin [10] et	Further many collaborative	General
	ai., 2010	here here extensively evaluated	Group lens
		nave been extensively evaluated	wovie Lens
		statically; their dynamic properties	
1	1	are largely unknown.	

Recommender System: Challenges, Issues, & Extensions

0			
9	Adomavicius G	In this article Online collaborative	General
	[11] et al.,	filtering methods that can	Group lens
	2005	incorporate new data in real time	Movie Lens
		are advantageous in many	
		practical situations. However, this	
		problem has not been adequately	
		addressed Training was	
		addressed. Hanning was	
		comparatively slow, but still	
		manageable, and could be	
		improved by a straightforward	
		parallelization.	
10	Pessemier [12]	In further research, we can verify	General
	et al., 2010	our conclusion with other data sets	Group lens
		and an online evaluation.	Movie Lens
		Moreover, we will try to	
		generalize the conclusion for more	
		types of recommendation	
		algorithms Finally wo will	
		investigate the entirel time period	
		investigate the optimal time period	
		to log the consumption data for	
		recommendation purpose.	
11	Karagiannidis	More experiment to show the	General
	[13] et al., 2010	increase of accuracy by the current	Group lens
		VF methodology and further	Movie Lens
		expand hydra with the addition of	
		more modules for preprocessing of	
		datasets, insertion of more	
		algorithms into hydra's algorithms	
		pool, creation of more VF policies	
		and experimentation on other	
		datasets to find the most critical	
		data field and most offection	
		data field and most effective	
4.5	¥47 - 11 F- /3	algorithm for each application.	
12	Woerndl [14] et	In ongoing work, we intend to	General
	al.,	explore different fields of context-	Group lens
	2007	awareness, among other the effect	Movie Lens
		of the cost of items on context,	TV
		implicit context identification, and	
		context-aware evaluation.	

13	Lu [15] et al.,	Our Future work will focus on	General
	2009	better models for joint and	Group lens
		dynamical estimation of user	Movie Lens
		factors and item factors, including	ranoo
		bilinear filtering model based on	
		Sigma-point kalman filter, and	
		parameterized regression models	
14	Park [16] at al	as III.	Conoral
14	2000	compare with other existing	General Croup long
	2009	variants along the direction of	Group lens
		fosture based modeling on	NOVIE LEIIS
		ranking quality in cold start	
		situations.	
15	Gunawardana	Our models do not explicitly take	General
	[17] et al., 2009	temporal effects into account, even	Group lens
		though these effects can be	Movie Lens
		important in some domains.	Shopping
		Extending our models to take such	
		effects into account is left for	
		future work.	
	TT 1 5401	T 1 1 1 1	- ·
16	Hurley [18] et	In the next stage we can put more	General
16	Hurley [18] et al., 2011	In the next stage we can put more diversity problems from the	General Group lens
16	Hurley [18] et al., 2011	In the next stage we can put more diversity problems from the system perspective (Long Tail	General Group lens Movie Lens
16	Hurley [18] et al., 2011	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient	General Group lens Movie Lens
16	Hurley [18] et al., 2011	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed.	General Group lens Movie Lens
16 17	Hurley [18] et al., 2011 Carlos [19] et	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the	General Group lens Movie Lens Student,
16 17	Hurley [18] et al., 2011 Carlos [19] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set	General Group lens Movie Lens Student, Second Life,
16 17	Hurley [18] et al., 2011 Carlos [19] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for	General Group lens Movie Lens Student, Second Life, Railway.
16 17	Hurley [18] et al., 2011 Carlos [19] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence	General Group lens Movie Lens Student, Second Life, Railway.
16	Hurley [18] et al., 2011 Carlos [19] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN.	General Group lens Movie Lens Student, Second Life, Railway.
16 17 18	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al.,	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC	General Group lens Movie Lens Student, Second Life, Railway. PC data sets
16 17 18	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be	General Group lens Movie Lens Student, Second Life, Railway. PC data sets
16 17 18	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed	General Group lens Movie Lens Student, Second Life, Railway. PC data sets
16 17 18	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in	General Group lens Movie Lens Student, Second Life, Railway. PC data sets
16 17 18	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step.	General Group lens Movie Lens Student, Second Life, Railway. PC data sets
16 17 18 19	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009 Baltrunas [21]	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step. The method proposed here can be	General Group lens Movie Lens Student, Second Life, Railway. PC data sets Yahoo, Web
16 17 18 19	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009 Baltrunas [21] et al.,	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step. The method proposed here can be generalized in several ways. Split	General Group lens Movie Lens Student, Second Life, Railway. PC data sets PC data sets Yahoo, Web scope
16 17 18 19	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009 Baltrunas [21] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step. The method proposed here can be generalized in several ways. Split the users(not the items)according	General Group lens Movie Lens Student, Second Life, Railway. PC data sets Yahoo, Web scope
16 17 18 19	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009 Baltrunas [21] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step. The method proposed here can be generalized in several ways. Split the users(not the items)according to the context, or one can mix these	General Group lens Movie Lens Student, Second Life, Railway. PC data sets Yahoo, Web scope
16 17 18 19	Hurley [18] et al., 2011 Carlos [19] et al., 2009 Chen [20] et al., 2009 Baltrunas [21] et al., 2009	In the next stage we can put more diversity problems from the system perspective (Long Tail Problem). More efficient algorithms need to be developed. In future work we can explore the effectiveness of a much broader set of recommendation algorithms for use in online forums. Hence enhancement to standard KNN. RS is evaluated based on the PC dataset. A user study will be carefully designed and performed to justify the simulation studies in the next step. The method proposed here can be generalized in several ways. Split the users(not the items)according to the context, or one can mix these two approaches or search a better	General Group lens Movie Lens Student, Second Life, Railway. PC data sets Yahoo, Web scope

20	Kawamae [22]	More datasets to show that	General
	et al., 2009	temporal precedence in user	Netflix
		behavior is useful for	
		recommending items that match	
		the latest user preferences.	
21	Abbassi [23] et	Despite being a recognized	General
	al., 2009	problem, over-specialization is	Group lens
		addressed in an ad-hoc manner.	Movie Lens
		More research is needed in this	
		direction.	
22	Marius [24] et	In Future work we can deal with	Music
	al., 2009	some technical limitations of the	
		current approach and we will	
		perform new user studies with a	
		larger users population	
23	Nkechi [25] et	This work provides a greater	General
	al., 2009	insight into the effects of context	
		on recommender systems	
24	Asela [26] et al.,	It proposes three directions for	General
	2008	extending the ideas present in this	Group lens
		paper Extending BM	Movie Lens
25	Haoyuan [27]	In future we can apply PFP on the	General
	et al., 2008	query logs to support related	Dataset
		search for Google Search Engine	
26	Greg Linden	In this industry report the item-to-	General
	[28] et al., 2003	item collaborative filtering is	Amazon
		recommended over the traditional	
		collaborative filtering for the large	
		population or where the customer	
		data sets and product catalog are	
		very large. In future the retail	
		industry or e-commerce	
		application can use item to item	
		collaborative filtering for target	
		marketing, both online and offline.	
27	Mi Zhang [29]	In future work we can apply the	General
	et al., 2008	methodology presented here to	Group Lens
		other problems in information	Movie lens
		retrieval. We can also consider	
		other methods for enabling novel	
		but relevant recommendations.	

28	Young [30] et	In particular, the focus is on the	General
	al., 2008	challenge of selecting the training	Group Lens
		data for unknown rating	Movie lens
		predictions that can be solved to	
		some extent by rating variance.	
29	Erich [31] et al.,	It presents a high-level view of an	General
	2008	extended recommender	
		architecture which accounts both	
		for the incorporation of	
		psychological phenomenon as well	
		as for the debugging of MAUT	
		bases	
30	Sara Drenneret	In this we would like to expand	General
	[32] al.,	our focus beyond the entry	
	2008	process, seeking to shape user	
		behavior throughout the user	
		lifecycle by suggesting tasks for	
		users to perform.	
		Also we would like to develop a	
		unified metric for quantifying	
		different types of user contribution	
		to an online community	
31	Neal Lathia	The evolution of similarity	General
	[33] et al., 2008	between any pair of users is	Group Lens
		dominated by the method that is	Movie lens
		used to measure similarity, these	
		kinds of insights offer the potential	
		to improve KNN algorithm in a	
		number of ways	
32	Nima [34] et al.,	Take into account evidence from	Web traffic
	2007	other source of information, such	simulator
		as web content and structure	
33	Tavi [35] et al.,	We are seeking a more robust	General
	2007	method for determining similarity	Jester
		between items when data is very	
		sparse.	
		Doing so would introduce more	
		diversity among recommendations	
		and may further reduce portfolio	
		effects	

34	Jiyong Zhang [36] et al., 2007	Soundness of the proposed algorithm on a larger dataset and make it more efficient. We can also plan to apply an algorithm to the	General Group Lens Movie lens
		item-based CF approach to test its performance	
35	Vinod [37] et al., 2008	Indeed, comparing recommendations are more complex since there are no standard metrics to compare recommendations from two sources. Some recent and widely accepted metrics include trust, diversity, and serendipity.	General Group Lens Movie lens
36	Silvia Milano [38] et al., 2020	Discuss the different level of abstraction by the literature and corresponding performance of recommender systems in areas of concern like inappropriate content, privacy, opacity etc. in future the implementation can be extended to both sides of recommendations i.e. at receiver, stakeholder and feedback can be attached with evaluation.	General
37	Diego Monti [39] et al., 2020	In this the ninety-three studies are considered to identify the growth of multi criteria RS in a different era and answer the research question in the multi criteria- recommendation.	General Yahoo movie Trip-advisor In-House Movie-lens Synthetic
38	Markus [40] et al., 2007	A recommender system with a commercial context is used to test the recommender system in context of an actual world data-store named fine cigar.	Fine Cigar
39	Paul [41] et al., 1994	A platform to recommend the news articles according to the ratings given by explicit users from a huge stream of articles.	Netnews

40	Gediminas [42] et al., 2005	Discuss the several extensions possible in the new generation towards the recommendation methods and the state of art for the personalized RS, hybrid RS with distinct techniques.	General
41	Linyuan Lü [43] et. al., 2012	Discuss the issues and challenges like accuracy, sparsity, and cold start problem of RS with different approaches of design and implementation using machine learning, deep learning.	Netflix
42	Batmaz [44] et al., 2019	Presents the literature on deep learning algorithms using a RS by focusing on three major parameters i.e. accuracy of predicted rating, sparsity with different CF algorithms	
43	F. Mansur [48] et al., 2017	The suggested shortcoming of recommender system through a survey is presented with the working of the popular technique used in recommender system.	General
44	Asemi A [49] et al., 2022	Presents the integrated model to test the big data application and design issues in the recommendation system. Ontology driven recommendations are suggested in article.	Bigdata, ontology
45	Tugba [50] et al., 2022	Proposed the novel top-n recommendation based on neighborhood similarity of multi criteria predication of items.	General
46	Sinha [51] et al., 2022	This article presents the study of 125 literatures prevalent in the domain of recommendation research.	General
47	Nguyen [52] et al., 2022	Discuss the latent factor model as a state of art in the subject of RS. The present study achieves good accuracy in recommendation of items using LF model.	General

48	N. Yi [53] et al., 2017	Proposed a novel implementation of movie recommender system coincides with traditional CF using a graph database.	Graph Database Matrix
49	Gupta [54] et al., 2020	A movie recommender system is studied using apache mahout machine learning-based technology to suggest movie recommendations.	Movie lens
50	Son [55] et al., 2014	Presents the distinct solution available to work with cold start problem of recommender system.	General

4. Discussion

Dheeraj

Based on the literature presented several researchers have found numerous recommendation problems of research. Some of them are fragmented into taxonomy that we display above. Starting from a space of option, the challenge coincides with information security individual user's rights violations. Several target to recommendation engines targeted to violate the privacy concern for recommending items such that the user personal autonomy and identity reviled unfairness type of immediate harm to the violation of the right. Moreover, the evaluation content plays a significant role in the recommendation system's future research. The evaluation criteria to measure the performance of recommendations are a big challenge in the study. On the other hand, the uncovered challenges of RS like sparsity, cold start problem, accuracy, and scalability are still a future research challenge for newbies in the recommender system. Some prevalent technologies like deep learning, restricted Boltzmann machines, deep belief networks, and auto encoders show the domain's good respone. A deep learning-based recommender system reflects an increasing graph of accuracy for recommendations and improves the other issues of RS

5. Conclusion

The article presents a link between the challenges, issues and possible extension of literature with their application domain. It

also sparks the gap in the studies given in last twenty years. The recommendation with relative newness in technology gives a big jump to challenges and extension for the next generation of recommendations. The recommendation challenges in artificial environment associated deep learning and neural network technology makes the state of the art. In future, personalized recommendation could become the challenging state of art for the recommendation researchers.

References

- [1] Paul Resnick, Hal R. Varian (1997) Recommender Systems. Communication of ACM Vol. 40, No. 3
- [2] Goldberg, D., Nichols, D. A., Oki, B. M., & Terry, D.B. (1992). Using collaborative filtering to weave an information tapestry. Commun. ACM, 35, 61-70.
- [3] Aggarwal, Charu & Wolf, Joel & Wu, Kun-Lung & Yu, Philip. (2002). Horting Hatches an Egg: A New Graph-Theoretic Approach to Collaborative Filtering. 10.1145/312129.312230.
- [4] Milano, S., Taddeo, M. & Floridi, L. Recommender systems and their ethical challenges. AI & Soc 35, 957–967 (2020). https://doi.org/10.1007/s00146-020-00950-y
- [5] Paraschakis, Dimitris. (2018). Algorithmic and Ethical Aspects of Recommender Systems in e-Commerce. 10.24834/2043/24268.
- [6] Shardanand, U., & Maes, P. (1995). Social information filtering: algorithms for automating "word of mouth". CHI '95.
- [7] Liu, Nathan & Zhao, Min & Xiang, Evan & Yang, Qiang. (2010). Online evolutionary collaborative filtering. Rec Sys'10 -Proceedings of the 4th ACM Conference on Recommender Systems. 95-102. 10.1145/1864708.1864729.
- [8] Khoshneshin, Mohammad & Street, Nick. (2010). Collaborative filtering via Euclidean embedding. RecSys'10 - Proceedings of the 4th ACM Conference on Recommender Systems. 87-94. 10.1145/1864708.1864728.
- [9] Karatzoglou, Alexandros & Amatriain, Xavier & Baltrunas, Linas & Oliver, Nuria. (2010). Multiverse Recommendation: N-

dimensional Tensor Factorization for context-aware Collaborative Filtering. RecSys'10 - Proceedings of the 4th ACM Conference on Recommender Systems. 79-86. 10.1145/1864708.1864727.

- [10] Burke, R. (2010). Evaluating the dynamic properties of recommendation algorithms. RecSys '10.
- [11] Khoshneshin, Mohammad & Street, Nick. (2010). Incremental collaborative filtering via evolutionary co-clustering. 325-328. 10.1145/1864708.1864778.
- [12] Pessemier, T. D., Dooms, S., Deryckere, T., & Martens, L. (2010). Time dependency of data quality for collaborative filtering algorithms. RecSys '10.
- [13] Karagiannidis, S., Antaris, S., Zigkolis, C., & Vakali, A. (2010). Hydra: an open framework for virtual-fusion of recommendation filters. RecSys '10.
- [14] Woerndl, Wolfgang & Schueller, Christian & Wojtech, R.. (2007). A Hybrid Recommender System for Context-aware Recommendations of Mobile Applications. 871-878. 10.1109/ICDEW.2007.4401078.
- [15] Lu, Zhengdong & Agarwal, Deepak & Dhillon, Inderjit. (2009). A Spatio-Temporal Approach to Collaborative Filtering. 13-20. 10.1145/1639714.1639719.
- [16] Park, Seung-Taek & Chu, Wei. (2009). Pairwise preference regression for cold-start recommendation. 21-28. 10.1145/1639714.1639720.
- [17] Gunawardana, Asela & Meek, Christopher. (2009). A unified approach to building hybrid recommender systems. RecSys'09 Proceedings of the 3rd ACM Conference on Recommender Systems. 117-124. 10.1145/1639714.1639735.
- [18] Hurley, Neil & Zhang, Mi. (2011). Novelty and Diversity in Top-N Recommendation -- Analysis and Evaluation. ACM Trans. Internet Techn. 10. 14. 10.1145/1944339.1944341.
- [19] Carlos Castro-Herrera, Jane Cleland-Huang, Bamshad Mobasher: A recommender system for dynamically evolving online forums. RecSys 2009: 213-216

- [20] Chen, Li. (2009). Adaptive tradeoff explanations in conversational recommenders. 225-228. 10.1145/1639714.1639754.
- [21] Baltrunas, Linas & Ricci, Francesco. (2009). Context-based splitting of item ratings in collaborative filtering. Rec Sys'09 -Proceedings of the 3rd ACM Conference on Recommender Systems. 245-248. 10.1145/1639714.1639759.
- [22] Kawamae, N., Sakano, H., & Yamada, T. (2009). Personalized recommendation based on the personal innovator degree. Rec Sys '09.
- [23] Abbassi, Zeinab & Amer-Yahia, Sihem & Lakshmanan, Laks & Vassilvitskii, Sergei & Yu, Cong. (2009). Getting recommender systems to think outside the box. RecSys'09 - Proceedings of the 3rd ACM Conference on Recommender Systems. 285-288. 10.1145/1639714.1639769.
- [24] Marius Kaminskas. 2009. Matching information content with music. In Proceedings of the third ACM conference on Recommender systems (Rec Sys '09). Association for Computing Machinery, New York, NY, USA, 405–408. DOI: https://doi.org/10.1145/1639714.1639800
- [25] Nkechi J. Nnadi. 2009. Applying relevant set correlation clustering to multi-criteria recommender systems. In Proceedings of the third ACM conference on Recommender systems (Rec Sys '09). Association for Computing Machinery, New York, NY, USA, 401–404. DOI: https://doi.org/10.1145/1639714.1639799
- [26] Asela Gunawardana and Christopher Meek. 2008. Tied boltzmann machines for cold start recommendations. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 19-26. DOI: https://doi.org/10.1145/1454008.1454013
- [27] Haoyuan Li, Yi Wang, Dong Zhang, Ming Zhang, and Edward Y. Chang. 2008. Pfp: parallel fp-growth for query recommendation. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for

Computing Machinery, New York, NY, USA, 107–114. DOI:https://doi.org/10.1145/1454008.1454027

[28] Linden, G., Smith, B., & York, J. (2003). Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Comput., 7, 76-80.

- [29] Mi Zhang and Neil Hurley. 2008. Avoiding monotony: improving the diversity of recommendation lists. In Proceedings of the 2008 ACM conference on Recommender systems (RecSys '08). Association for Computing Machinery, New York, NY, USA, 123–130. DOI: https://doi.org/10.1145/1454008.1454030
- [30] Young Ok Kwon. 2008. Improving top-n recommendation techniques using rating variance. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 307–310. DOI: https://doi.org/10.1145/1454008.1454059
- [31] Erich Christian Teppan. 2008. Implications of psychological phenomenons for recommender systems. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 323–326. DOI: https://doi.org/10.1145/1454008.1454063
- [32] Sara Drenner, Shilad Sen, and Loren Terveen. 2008. Crafting the initial user experience to achieve community goals. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 187–194. DOI: https://doi.org/10.1145/1454008.1454039
- [33] Neal Lathia, Stephen Hailes, and Licia Capra. 2008. KNN CF: a temporal social network. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 227–234. DOI: https://doi.org/10.1145/1454008.1454044
- [34] Nima Taghipour, Ahmad Kardan, and Saeed Shiry Ghidary. 2007. Usage-based web recommendations: a reinforcement learning approach. In Proceedings of the 2007 ACM conference

on Recommender systems (Rec Sys '07). Association for Computing Machinery, New York, NY, USA, 113–120. DOI: https://doi.org/10.1145/1297231.1297250

- [35] Tavi Nathanson, Ephrat Bitton, and Ken Goldberg. 2007. Eigentaste 5.0: constant-time adaptability in a recommender system using item clustering. In Proceedings of the 2007 ACM conference on Recommender systems (Rec Sys '07). Association for Computing Machinery, New York, NY, USA, 149–152. DOI:https://doi.org/10.1145/1297231.1297258
- [36] Jiyong Zhang and Pearl Pu. 2007. A recursive prediction algorithm for collaborative filtering recommender systems. In Proceedings of the 2007 ACM conference on Recommender systems (RecSys '07). Association for Computing Machinery, New York, NY, USA, 57-64. DOI: https://doi.org/10.1145/1297231.1297241
- [37] Vinod Krishnan, Pradeep Kumar Narayanashetty, Mukesh Nathan, Richard T. Davies, and Joseph A. Konstan. 2008. Who predicts better? results from an online study comparing humans and an online recommender system. In Proceedings of the 2008 ACM conference on Recommender systems (Rec Sys '08). Association for Computing Machinery, New York, NY, USA, 211–218. DOI: https://doi.org/10.1145/1454008.1454042
- [38] Silvia Milano, Mariarosaria Taddeo, and Luciano Floridi. 2020. Recommender systems and their ethical challenges. AI Soc. 35, 4 (Dec 2020), 957–967. DOI: https://doi.org/10.1007/s00146-020-00950-y
- [39] Diego Monti, Giuseppe Rizzo, and Maurizio Morisio. 2021. A systematic literature review of multicriteria recommender systems. Artif. Intell. Rev. 54, 1 (Jan 2021), 427–468. DOI: https://doi.org/10.1007/s10462-020-09851-4
- [40] Zanker, M., Jessenitschnig, M., Jannach, D., & Gordea, S. (2007). Comparing Recommendation Strategies in a Commercial Context. IEEE Intelligent Systems, 22.
- [41] Paul Resnick, NeophytosIacovou, Mitesh Suchak, Peter Bergstrom, and John Riedl. 1994. Group Lens: an open

architecture for collaborative filtering of netnews. In Proceedings of the 1994 ACM conference on Computer supported cooperative work (CSCW '94). Association for Computing Machinery, New York, NY, USA, 175–186. DOI: https://doi.org/10.1145/192844.192905

- [42] Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734– 749. https://doi.org/10.1109/TKDE.2005.99
- [43] Linyuan Lü, Matúš Medo, Chi Ho Yeung, Yi-Cheng Zhangb, Zi-Ke Zhang, Tao Zhou (2012) Recommender systems, physic report, doi: 10.1016/j.physrep.2012.02.006
- [44] Batmaz, Zeynep, Yurekli, Ali, Bilge, Alper, Kaleli, Cihan, 2019. A review on deep learning for recommender systems: challenges and remedies https://doi.org/10.1007/s10462-018-9654-y
- [45] Floridi, Luciano. (2008). The Method of Levels of Abstraction. Minds & Machines. 18. 303-329. 10.1007/s11023-008-9113-7.
- [46] Jannach, Dietmar & Zanker, Markus & Ge, Mouzhi & Gröning, Marian. (2012). Recommender Systems in Computer Science and Information Systems – A Landscape of Research. Lecture Notes in Business Information Processing. 123. 10.1007/978-3-642-32273-0_7.
- [47] Abdollahpouri, Himan & Burke, Robin & Mobasher, Bamshad.
 (2017). Recommender Systems as Multistakeholder Environments. 347-348. 10.1145/3079628.3079657.
- [48] F. Mansur, V. Patel and M. Patel, "A review on recommender systems," 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017, pp. 1-6, doi: 10.1109/ICIIECS.2017.8276182.
- [49] Asemi A., Asemi A., Ko A., Alibeigi, A. An integrated model for evaluation of big data challenges and analytical methods in recommender systems, (2022) Journal of Big Data, 9 (1), art. no. 13

- [50] Tugba Kaya, Cihan Kaleli, "A novel top-n recommendation method for multi-criteria collaborative filtering", Expert Systems with Applications, Volume 198, 2022, 116695, ISSN 0957 4174, https://doi.org/10.1016/j.eswa.2022.116695.
- [51] Sinha, Bam Bahadur (57203901959); Dhanalakshmi, Evolution of recommender paradigm optimization over time(2022) Journal of King Saud University - Computer and Information Sciences, 34 (4), pp. 1047 - 1059, Cited 1 times.DOI: 10.1016/j.jksuci.2019.06.008
- [52] Nguyen Hoai Nam, "Incorporating textual reviews in the learning of latent factors for recommender systems", (2022) Electronic Commerce Research and Applications, 52, art. no. 101133, DOI: 10.1016/j.elerap.2022.101133
- [53] N. Yi, C. Li, X. Feng and M. Shi, "Design and Implementation of Movie Recommender System Based on Graph Database," 2017 14th Web Information Systems and Applications Conference (WISA), 2017, pp. 132-135, doi: 10.1109/WISA.2017.34.
- [54] M. Gupta, A. Thakkar, Aashish, V. Gupta and D. P. S. Rathore, "Movie Recommender System Using Collaborative Filtering," 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), 2020, pp. 415-420, doi: 10.1109/ICESC48915.2020.9155879.
- [55] Son, Le. (2014). Dealing with the new user cold-start problem in recommender systems: A comparative review. Information Systems. 58. 10.1016/j.is.2014.10.001.