
Mapana – Journal of Sciences
2022, Vol. 21, No. 4, 99-118

ISSN 0975-3303/https://doi.org/10.12723/mjs.63.6

99

A Comprehensive Research Study on Low-

Interaction Secure Shell Honeypot

Sudesh Pahal* & PreityPriya†

Abstract

This paper details information acquired from a secure
shell honeypot, including plaintext login credentials and
comprehensive attack data. As the number of data
breaches and password leaks rises year after year, more
dictionaries of reverse-engineered hashed passwords
develop. Besides contributing to educational password
dictionaries, this article also attempts to provide
information about the geographical makeup of hackers
encountered, as well as favored protocols. Its goal is to
encourage developers to produce practical honeypot
solutions for organizations with limited resources for
their cyber-protection, as well as to encourage
organizations to implement such measures and study
their data. The low-interaction, user-friendly honeypot
created is capable of running without manual
intervention, and without interfering with parallelly
running processes. Besides collecting login credentials
used with SSH, in plaintext, its capabilities include
recording, analyzing, and sending notifications about
suspicious network traffic.

* Department of Electronics & Communication Engineering, Maharaja
Surajmal Institute of Technology (MSIT), Guru Gobind Singh
Indraprastha University, New Delhi, Delhi, India;
pahal.sudesh@gmail.com
† Department of Electronics & Communication Engineering, Maharaja
Surajmal Institute of Technology (MSIT), Guru Gobind Singh
Indraprastha University, New Delhi, Delhi, India;
w.preitypriya@gmail.com

Mapana – Journal of Sciences ISSN 0975-3303

100

Keywords: Honeypot, SSH logging, Network security, Deception
technology

1. Introduction
1.1. Background
A network is a set of devices that use communication protocols to
share resources. It establishes an architecture that allows a variety
of equipment types to organize, unify and control hardware and
software components of the network.
While networks have brought humanity closer than ever, their
improper implementation or inadequate security can have very
serious real-world consequences [1, 2], such as the remote
deployment of computer viruses and worms, or the launch of
Denial of Service (DoS) attacks.

Network security refers to the protection of data from
unauthorized access, damage and development, and the
implementation of policies and procedures for recovery from
breaches and data losses. It can be implemented via an offensive
approach, a defensive approach, or a hybrid approach. While
offensive security is realised by deploying a proactive approach to
security through the use of ethical hacking, defensive security uses
a reactive approach to security that focuses on prevention,
detection, and response to attacks.

Honeypots are emulated deceptive systems that can be used to
assess where hackers infiltrating a network are coming from, the
level of threat, their modus operandi, data of interest and the
effectiveness of the hosting party’s security stack. They are
designed to trick the attacker into thinking a genuine system has
been pawned, by purposely engaging them and identifying
malicious activities performed by them over the internet.
Honeypots are deliberately configured with known vulnerabilities
in place, to make attractive targets for attackers. Since no
interaction with a honeypot is authorized, all traffic is suspicious.
Honeypots can thus automatically and accurately detect, analyze,
and defend against zero-day and advanced attacks - providing
insight into malicious activity within networks using a preventive,
deceptive approach to security. The usage of tactics that rely on a
thorough understanding of the system environment and its
analysis to detect potential flaws influences the development and

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

101

deployment of preventive and protective measures that discourage
or eliminate cyberattacks to a large extent. Due to this reason,
honeypots are now being used in both, governmental and non-
governmental organisations such as banks, industrial control
systems, educational institutions, etc.

1.2. Related Work

As defined by Joshi and Sardana [3], a honeypot is “A program that
takes the appearance of an attractive service, set of services, an
entire operating system or even an entire network, but is in reality,
a tightly sealed compartment built to lure and contain an attacker”.
Covered by Tsikerdekis et al [4], most of the work available today
concentrates on the development of unique honeypots that
frequently target a specific feature, without offering a
comprehensive understanding of how they might be built to
prevent detection by attackers.

As summarised by Campbell et al [5], honeypots can be classified
as (i) low-interaction, medium-interaction or high-interaction, on
the basis of their functionality and supported services, (ii)
deception, intimidation or reconnaissance on the basis of their
mode of deployment, or (iii) production and research, on the basis
of their deployment category. By conducting a comprehensive
analysis of existing honeypot literature, they concluded that by the
early 21st century, developed countries such as the United States of
America and South Africa had provided far more insights into the
usage and significance of honeypots than other countries, possibly
due to their higher level of dependence on computing networks for
daily functioning in those times.

Their insights made it evident that most of the research in this field
took place when (i) internet usage started to grow in the absence of
security standards (2002-2003), and (ii) internet-supported devices
became commonplace, which led to its utilization for a diverse
range of activities such as business, banking, social networking and
the like (2006-2012). Themes such as new types of honeypots,
improving the accuracy in threat detection, lowering false positives
and avoiding detection appeared to be preferred over studies on
the ethics of honeypots, mainly by researchers motivated by
academic incentives that come with journal publication.

Mapana – Journal of Sciences ISSN 0975-3303

102

Further explained by Tsikerdekis et al [4] and summarized in Table
1, honeypots that follow the Secure Shell (SSH) protocol without
allowing much shell functionality and allow interactions for limited
periods of time can be classified as low-interaction honeypots,
usually placed in networks not being monitored by Intrusion
Detection Systems (IDS). They are prone to detection and are
configured as such. High-interaction honeypots, however, are
configured to avoid detection to discover zero-day attacks and the
modus operandi of hackers. For this reason, they emulate
legitimate systems very thoroughly. This functionality is
determined by the deployment category, i.e., research or
production. While the former is placed within the network’s
Demilitarized Zone [6] to gather a wide range of threat intelligence,
the latter maintains proximity to real assets for very specific
intelligence from both, internal and external threats.

Anti-detection
mechanism

Characteristic

Type
(Research/
Production)

Interaction
(Low/
High)

Scalability
(Low
cost/

High cost)

Implementation
(Software/Hard

ware)

Automatic
honeypot
redeployment

Either Low Low cost Software

Honeypot
delay
reduction

Either Either Low cost Software

Honeypot
process
transparency

Research High Low cost Software

Dedicated
hardware

Production Either High cost Hardware

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

103

Dynamic
intelligence on
honeypots

Research High High cost Software

Table 1. Analysis of related works

Depending on the type of implementation, i.e. (i) hardware -
regular computers or specialized Supervisory Control and Data
Acquisition (SCADA) systems, (ii) software-simulated hardware
using virtualization, or (iii) hybrid, the scalability of honeypots
becomes a notable factor, especially in the case of botnets, and/or
state-sponsored attacks.

Exploring the theme of avoiding honeypot detection, this study
laid out possible approaches that can be studied and implemented
for more realistic emulations. Proposing (i) automatic honeypot
redeployment - redeployment of the honeypot with an altered
configuration upon detection by an attacker, (ii) honeypot delay
reduction - minimization of delays caused by event logging - prone
to detection unless the latency of the virtual honeypot network is
lowered to match a physical network’s link latency, (iii) honeypot
process transparency - hiding unrealistic modified sequences of
events such as the forwarding of connections between a honeypot’s
frontend and backend, by emulating a three-way Transmission
Control Protocol (TCP) handshake while hiding the same, (iv)
dedicated hardware - using specific hardware components to
reduce software delays, increase system security, and enabling the
system to support honeynets; and (v) dynamic intelligence on
honeypots -the usage of machine learning and artificial intelligence
to disable unexpected programs, dynamically change directory
structures to increase attractiveness, and encourage attackers to
reveal their geo-cultural identities on the basis of their interactions;
the authors concluded that while a honeypot environment’s
alignment with an attacker’s expectation of legitimate systems
determines the chances of detection, constraints such as available
hardware, development and maintenance costs, and legal restraints
don’t enable developers to build extremely efficient honeypots.

While these studies explore past literature and future
implementation strategies in detail, the challenge of minimizing
detection also depends on a thorough understanding of the

Mapana – Journal of Sciences ISSN 0975-3303

104

challenges that require these solutions in the first place. Prior to the
study by Tsikerdekis et al [4], Du [7] conducted research on the
same, determining that honeypots mainly face issues in (i) hiding
capture tools while collecting as much data as possible, (ii)
capturing session data encrypted on the hacker’s side, and (iii)
collecting and transmitting data through secret channels. To
combat the same, they proposed the following solutions: (i)
Capture Tool Hiding via a) Module Hiding - deleting the pointer of
the capture module of any data capturing tool loaded to the Linux
kernel upon system initialization, and b) Process Hiding - changing
the system call used to query process information in a system using
the “ps” command, in order to stop programs using the system call
from accessing the file, thus hiding the process. This can be
effective as the program(s) within the honeypot would be executing
multiple system processes; (ii) Session Encryption Data Capture -
while the execution of Trojan shells upon logging in can be exposed
easily, changing the index of pointers of system calls such as read()
and write() can enable the implementation of the capture module’s
own functions, which would result in direct access to the data that
is part of such system calls, and (iii) Establishment of Hidden Data
Transmission Channel - hiding the transfer of logs to centralized
honeypot servers by configuring the capture module to transfer
data via User Datagram Protocol (UDP) streams after altering the
kernel on each endpoint such that data packets cannot be accessed.
This would require the capture module to match the preset
destination UDP port and magic number (a constant numerical
value used to identify different protocols) on the endpoints within
the Local Area Network (LAN) in order to make network sniffers
on the endpoints ignore the packets.

Although this study was highly specific and dealt with issues
directly at the kernel level, the highlighted approaches have certain
drawbacks: (i) the capture module cannot be unloaded once it has
been loaded, and the root user cannot locate it, and (ii) if the
capture module contains a bug, the kernel may become unstable
and the system may crash. These issues may have an impact on the
normal operation of the honeypot, as well as the overall
performance of the honeynet. The lack of implementation of these

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

105

suggestions provides no insight into the feasibility of these
methods, especially in the long term.

Finally, recent comprehensive surveys [8,9, 10, 11] of the research
on honeypots and honeynets for Internet of Things (IoT), Industrial
Internet of Things (IIoT), and Cyber-Physical Systems (CPS) over
the period 2002-2020 dealt with the taxonomy and analysis, key
design factors, and open issues for future honeypots and honeynets
for IoT, IIoT, and CPS environments revealed that the key to the
design and implementation of competent honeypots lies in a good
understanding of its target application area, purpose, cost,
deployment location, intended level of interaction with the
attacker, resource level, services, simulation or emulation, realistic
service to the attacker, tools that will be used, the possibility of
fingerprinting and indexing, and the liability issues that may come
up.

To conclude, attackers have been able to detect honeypots and
identify ways to exploit them because of

• the lack of research and expertise in emerging domains such
as machine learning, unexplored protocols, anti-detection
mechanisms, optimized deployment location, and the
constant threat of insider attacks, and hardware
vulnerabilities

• to date, much of the research has been focused on the
creation of unique honeypots that typically focus on a single
component without offering a comprehensive knowledge of
how they could be structured to prevent detection by
attackers

• the data been collected with certain restrictions, such as
short time ranges, cultural biases, a narrow range of
tools/technologies tested, etc.

• the large majority of these honeypots are built on outdated
systems, with poor maintenance and irregular development
cycles. Accessible to both, security professionals and
attackers, they are predictable due to their limited
adaptability and poor deception [4].

Mapana – Journal of Sciences ISSN 0975-3303

106

The integration and expansion of these categories could provide a
clearer understanding of current issues, and the methods of
eradicating them.

Proposed solutions are either valid under very strict conditions - on
the basis of necessary hardware and software - or aren’t
comprehensive of the above-mentioned factors. Additionally, for a
honeypot to be feasible and effective, a certain degree of deception
is absolutely necessary, which isn’t provided by the default
configurations of most non-commercial honeypots.

2. Problem Statement

As mentioned earlier, the primary limitation of currently available
honeypots lies in their deception capabilities, and the level of
technical knowledge required for their efficient usage. In today’s
highly connected and extremely vulnerable digital space,
honeypots are a necessary defence mechanism not only for niche
research institutions and/or large organisations with a
considerable security-focused workforce but also for smaller
organisations dependent on the internet for any degree of daily
functioning - regardless of their technical expertise [9]. Thus, arises
the problem statement, and the proposed solution:

“The availability of open-source honeypots makes defensive
network security easier for organisations across industries.
However, the level of technical expertise required to customise
their configuration and improve their deception abilities is not
available to small organisations. This gap in requirement vs
availability means that the advancement in honeypot research has
not yet resulted in enough real-world implementation of proposed
deception solutions to make this technology feasible for the global
community. To minimise the need for small organisations to have
extreme familiarity with honeypots before using them, more open-
source honeypots should be built and deployed with advanced
deception capabilities in their base configuration. This way, a wider
range of individuals and organisations would be able to protect
their networks, or study new attack methods being leveraged by
hackers across the globe - without getting detected themselves.”

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

107

In order to study this solution’s feasibility, the creation of a low-
interaction honeypot has been carried out for network monitoring.

3. Materials & Method

3.1. Architecture

 A basic low-interaction honeypot has been created, with
support for Hypertext Transfer Protocol (HTTP), Hypertext
Transfer Protocol Secure (HTTPS), Secure Shell (SSH) and File
Transfer Protocol (FTP) protocols. It is capable of logging all
network traffic on its interfaces, parsing them, and sending
summarised notifications on Slack Messenger - a messaging
application built for and used extensively by businesses. The
honeypot is capable of responding to attacker vulnerability probes
and appears open to SSH connections, enabling the collection of
login credentials being used from the attacker’s side, for further
analysis. As explained in Fig. (1), Python has been used as the
programming language to deploy this honeypot on a virtual
machine configured as a CentOS 8 x64 server, for minimal manual
intervention over a period of multiple weeks of log collection. The
honeypot system makes use of network monitoring tools on the
server for the collection of the above-mentioned logs.

Fig. (1). Summary of Targets, Tools, the System and the Platform in use

3.2. Methodology

The research technique used for this study involved carrying out a
comprehensive review of literature on honeypots. This required

Mapana – Journal of Sciences ISSN 0975-3303

108

gathering qualitative and quantitative data from a variety of
sources - including books, journal papers, conference proceedings,
and the Internet. Keywords such as “honeypot”, “SSH logging”,
“network security”, and “deception technology” were used for the
same.

Parameters such as honeypot detectability, type
(research/production), interaction (low/high), scalability (low
cost/high cost), and implementation (software/hardware) were
evaluated. After gathering this information, the sources were
examined to see if they were pertinent, and duplicate information
was eliminated. It was found that several sources featured more
than one theme while the data was being gathered. In these
situations, the prevailing subject matter was regarded as the
principal theme of that source.

Finally, the advantages and disadvantages of each
existing/proposed honeypot model were compared and combined
to create a user-friendly, low-interaction honeypot that addresses

• support for detection of multiple communication protocols

• support for logging SSH credentials used via
communicating with the system

• support for providing notifications of event summary via
business channels

as discussed in this paper.

3.2.1. Protocol Support Module

 In order to capture all TCP network traffic at the default
interface, Tshark - a network protocol analyzer - has been
employed for FTP, SSH, HTTP and HTTPS logging on ports 21, 22,
80 and 443. Scapy - a packet manipulation program - has been used
to check for FTP, SSH, HTTP and HTTPS SYN (synchronize)
requests from any source and log each request with the source IP
address, source port and destination port. Additionally, it replies
with custom SYN-ACK (synchronize-acknowledge) packets to
these requests - thus appearing vulnerable to insecure connections
from attackers.

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

109

Fig. (2). Iptables INPUT chain rules instructing the system to enable communication on ports 21, 22,

80 and 443

Fig. (3). Iptables OUTPUT chain rules instructing the system to enable communication on ports 21,

22, 80 and 443

These packets are created on the basis of certain firewall rules, as
seen in Fig. (2) and Fig. (3). If TCP packets from any source port on
the outgoing interface have the RST (reset) flag set, the packets are
dropped as RST indicates the need for connection termination. The
RST iptables rule is dropped when the script stops running.

3.2.2. SSH Credential Logging Module

By default, the SSH protocol logs SSH login attempts, regardless of
whether or not authentication is successful. However, since it uses
an encrypted tunnel for all communication, it isn’t possible to read
the data being sent and the local logs do not record the passwords
being used. Therefore, it isn’t possible to log the login credentials
being used via SSH with its default configuration. In order to
overcome this, the SSH configuration present on the server has
been altered as required.

The altered configuration has been achieved by executing the
following as the root user:

1) Uninstall the SSH server and download from the source.
2) Insert a logit() function in the SSH authentication file “auth-

passwd.c” at the location highlighted in Fig. (4).
3) Configure and install the SSH server as required.

Mapana – Journal of Sciences ISSN 0975-3303

110

Fig. (4). Credential logging function required in SSH server’s password authentication file ‘auth-

passwd.c’

3.2.3. Notification Module

The need for timely, concise and easily accessible updates about
possible attackers is extremely important for any organisation
hosting a honeypot. Without it, there would be complete reliability
in manually collecting traffic logs to detect and calculate all
attempted connections to the honeypot. This would be slow, and
prone to human errors. To accommodate this requirement, a Slack
notification module has been included in this honeypot system.
Slack is a messaging application used for team communications by
businesses. It handles messages, files, third-party integrations such
as Twitter, Dropbox, Google Docs, Trello, GitHub and dozens of
other services all in one place. From large companies such as
Pinterest, Airbnb and Shopify to smaller startups - all types of
businesses use Slack - making it the ideal choice for an attack
notification centre.

Slack’s incoming webhook feature - a simple way to post messages
from Slack applications to any channel - has been used to send
updates about the number of connections attempted, to a Slack
channel being used by the administrator (organisation). This has
been achieved by reading all the source IP addresses from the
traffic logs gathered by the honeypot, counting unique IP addresses
found in the logs, and calculating which ones attempted the

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

111

maximum number of connections. Using the source IP addresses
and the number of times they sent connection requests (Top 1, Top
2 or Top 3), messages are created and sent to the Slack channel.

4. Observations

4.1. Results

The analysis of the gathered network traffic logs reveals
information such as the attackers’ geographical location, protocols
being used, timestamps of the attacks, etc. The success of this study
has been determined by the running of the honeypot, the level of
deception it provides, and the variety of data it successfully
collects. These results aim to encourage developers to work on
security solutions for all types and sizes of organisations,
supporting future research that would provide insights into the
current state of available solutions.

4.1.1. Traffic Logging

The honeypot was deployed for 240 hours, from 21 October 2021 to
31 October 2021. Using the logs collected during this period, the
following information was gathered:

Fig. (5). Logfile snippet

Mapana – Journal of Sciences ISSN 0975-3303

112

Fig. (6). Attack source (location) distribution

Fig. (7). Commonly exploited protocols

. Upon analysing the logs displayed in Fig. (5), it was observed that out of

a total of 1,81,674 attempted connections, a strikingly large amount of
traffic (71.1%) was generated from IP addresses mapped to the United
States of America, while India reached the 9.1% mark - standing behind is
Viet Nam at 5.8%. Other distinguishable locations included the United
Kingdom (3.8%), the Russian Federation (1.2%) and the others (<=1%).
Unidentifiable locations accounted for 4.7% of all traffic. While the
difference in the amount of traffic generated by certain geographic
locations may seem surprising in Fig. (6), factors such as technological
advancement, infrastructure holding capacity and the usage of spoofed IP
addresses or Virtual Private Networks must be kept in mind.

Overall, Fig. (7) shows a total of 1,43,285 TCP sessions, 2,13,323 SSHv2,
and 15,866 SSH sessions. Across these sessions, the most commonly

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

113

exploited protocol was HTTPS, with 1040 unique requests. HTTP was
used for 150 unique sessions, while other protocols were very rare.

4.1.2. SSH Credential Logging

Following the custom SSH server configuration, the SSH local log
file ‘/var/log/secure’ not only contains records of attempted
connections, but also the credentials used in those attempts - in
plaintext, as evident in Fig. (8).

Fig. (8). Filtered view of SSH server log file ‘/var/log/secure’

With over 315 unique usernames and 1233 unique passwords, the
highest frequency was calculated for the credentials (in any
combination) present in Table 2:

Usernames Passwords

user information

port remote

root admin

tracerlab pi

Mapana – Journal of Sciences ISSN 0975-3303

114

ftp oracle

rustserver sync

webmaster hyjx

mike aaron

db2inst2 amy

install m

reboot support1

matt Azureuser123

tmp web

ems carlos

dillon Guest123

printer bruce

ayden xbian

belkinstyle albaunio

paul ts3

epg alpha

pierre nobody

ghost youssra

new vanesa

full transformer

ts3 street1

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

115

guestuser saluttoi

coach romania

nobody qwerty7

12qwaszx superman

Table 2. Most frequently used usernames and passwords with SSH

4.1.3. Slack Notifications

 Useful in tracking down persistent attackers, the Slack
notification module works to calculate the total number of
connections attempted by IP addresses that interact with the
honeypot frequently. Based on the logs collected during the above-
mentioned duration, the top 3 IP addresses that interacted with the
honeypot made a total of 1,11,984 requests - as shown in Fig. (9),
and the required information was sent as a message to the
associated Slack channel.

Fig. (9). Slack notification for the specified duration

4.2. Analysis

Since SSH logs all attempted connections, the IP addresses
associated with failed connections have also been recorded, along
with the username. When required, this data may be analysed
separately. Additionally, the SSH protocol allows authentication
using keys, instead of passwords. Analysis of the log file shows
that 53 unique IP addresses attempted key-based authentication a
total of 2857 times, in addition to password-based authentication -
which has a total of 315 unique usernames with 1233 unique
passwords in various combinations.

Mapana – Journal of Sciences ISSN 0975-3303

116

5. Conclusion
In this paper, we presented a user-friendly low-interaction
honeypot. The honeypot is capable of running without manual
intervention - once it has been deployed - and keeps track of each
deployment session, without interfering with parallelly running
processes (if any). The honeypot is capable of recording and
analysing suspicious network traffic, as well as notifying the
hosting organisation about the same. Additionally, it can collect
login credentials used with SSH in plaintext, for a deeper insight
into vulnerable keywords that may be blacklisted for increased
security.

Challenges Faced

1) A large majority of currently available honeypots is built on
outdated systems, with poor maintenance and irregular
development cycles. They are predictable due to their
limited adaptability and poor deception. Due to this,
analysis of theory regarding fully functional honeypots that
are user friendly enough to require minimal configuration,
while being low interaction was difficult. However, by
understanding the desirable aspects of multiple open-
source honeypots, it was possible to integrate all the
required functionality into one tool - while narrowing down
on the exact architecture and tools needed for smooth
functioning.

2) Default SSH logging of authentication attempts, while
helpful, does not record passwords being used. Although
this is a secure practice, it made the custom configuration of
the SSH server on the honeypot a time-taking task. Taking
inspiration from independent security researchers’ attempts
at implementing this idea [12], it was possible to create a
solution that works with CentOS 8 x64 servers.

Future Scope

In order to make the honeypot more comprehensive, support
modules for analysing network requests captured with the traffic
could be added. Doing so would allow researchers to get notified

Pahal & Priya Research Study on Low-Interaction Secure Shell Honeypot

117

about possible attack attempts such as HTTP-enabled backdoor
installation. Additionally, platform support for a wider range of
operating systems and environments could be added to reach a
wider userbase.

References

[1] M. Kumar, “Security Issues and Privacy Concerns in the
Implementation of Wireless Body Area Network” in 2014
International Conference on Information Technology, 2014.

[2] Khanum, S., Pahal, S., Makkad, A., Panwar, A., & Panwar, A.
(2018). Securing Onion Routing Against Correlation Attacks.
Advances in Intelligent Systems and Computing, 573–580.
https://doi.org/10.1007/978-981-13-1819-1_54

[3] R. C. Joshi and A. Sardana, “Honeypots: A New Paradigm to
Information Security”, 1st ed., Science Publishers, 2011.

[4] M. Tsikerdekis, S. Zeadally, A. Schlesener, and N. Sklavos,
“Approaches for Preventing Honeypot Detection and
Compromise” in Global Information Infrastructure and Networking
Symposium (GIIS), 2018.

[5] R. M. Campbell, K. Padayachee, and T. Masombuka, “A survey
of honeypot research: Trends and opportunities” in 10th
International Conference for Internet Technology and Secured
Transactions (ICITST), 2015.

[6] What Is a DMZ and Why Would You Use It? Fortinet.
“Reference: Available from:
https://www.fortinet.com/resources/cyberglossary/what-is-
dmz” (Accessed 28 August 2021).

[7] G. E. J. Du, “A Study on Cyber Defense Honeynet Technology
and Configuration Examples” in International Journal of
Simulation: Systems, Science & Technology, 2016.

[8] J. Franco, A. Aris, B. Canberk, and A. S. Uluagac, “A Survey of
Honeypots and Honeynets for Internet of Things, Industrial
Internet of Things, and Cyber-Physical Systems” in IEEE
Communications Surveys & Tutorials, 2021.

Mapana – Journal of Sciences ISSN 0975-3303

118

[9] Turpitka, D. (2020, January 28). When You Can’t Stop Every
Cyberattack, Try Honeypots. Forbes. “Reference: Available
from:
https://www.forbes.com/sites/forbestechcouncil/2020/01/28
/when-you-cant-stop-every-cyberattack-try-honeypot”
(Accessed 28 August 2021).

[10] M. Sharma, S. Pant, D. Kumar Sharma, K. Datta Gupta, V.
Vashishth, & A. Chhabra. “Enabling security for the Industrial
Internet of Things using deep learning, blockchain, and coalitions.
Transactions on Emerging Telecommunications Technologies”.
2020. – 8

[11] Pahal, Sudesh, NeeruRathee, and Brahmjit Singh. "A Deep
Learning-Based Model for Link Quality Estimation in
Vehicular Networks." IETE Journal of Research (2021): 1-10.

[12] Cole, J. (2011, December 3). SSH Password Logging.
“Reference: Available from:
https://www.jessecole.org/2011/12/03/ssh-password-
logging/” (Accessed 19 October 2021).

