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Abstract  

In this paper, subbasis for different topologies on the 
vertex set of a simple graph without isolated vertices is 
introduced. Some properties of these topologies are 
investigated. The interior, closure, exterior, and boundary 
of a vertex induced subgraph were defined, and some basic 
properties were studied.                                           

 Keywords: subbasis for a topology, discrete topology, vertex 
induced subgraph, interior, closure, exterior, boundary                                                        
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1. Introduction 
A link between graph theory and topology can be made by defining 
a relation on the graph. Graphs can be regarded as a one-
dimensional topological space. While discussing connected graphs 
or homeomorphic graphs, the adjectives have the same meaning as 
in topology. So, graph theory can be regarded as a subset of the 
topology of, say, one-dimensional simplicial complexes. A 
connected graph has a natural distance function. So it can be viewed 
as a kind of discrete metric space. So graph theory can be regarded 
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as a subset of the topology of metric spaces. A topological space is 
defined by points and open sets. It could be constructed as a bipartite 
graph. The points are vertices in one partite set, the open sets are 
vertices in the other partite set, and each open set is joined by edges 
to its elements. In the strict definitional sense, it is probably possible 
to get all concepts of graph theory expressed in the language of 
topology. A relation on graph represents a key for bridging graph 
theory and topological structures. The relation induces new types of 
topological structures in the graph. In 1967, J.W. Evans et al. [7] 
showed that there is a one-to-one correspondence between the 
labeled transitive directed graph with n points and the labeled 
topologies on n points. In 1967, S.S. Anderson et al. [1] investigated 
the lattice-graph of the topologies of transitive directed graphs 
presented by J.W. Evans et al.[7]. In 2010, C. Marijuan [11] studied 
the relationship between directed graphs and finite topologies. In 
2013, M. Amiri et.al. [4] induced topology on the vertex set of an 
undirected graph. In 2018, Kilieman and Abdulkalex [10] associated 
incidence topology with vertex set of simple graphs without isolated 
vertices. In this paper, a different family of subbasis for topology is 
defined, and the type of topology generated by subbasis via some 
particular graphs is discussed. Also, some properties of interior, 
closure, exterior, and boundary of vertex induced subgraphs of a 
graph are explored. 

2. Preliminaries 
Fundamental definitions and preliminaries of graph theory and 
topological spaces can be found in the sources [5], [6], [9]. 

Shokry Nada et al.[12] defined a relation 𝑅 on 𝑉(𝐺) by 𝑅 = {((2𝑚𝑥 +
𝑛𝑥)𝑥, (2𝑚𝑦 + 𝑛𝑦)𝑦): 𝑥, 𝑦 ∈ 𝑉(𝐺)},where 𝑚𝑥 and 𝑚𝑦 are the number of 

loops of vertices 𝑥 and 𝑦, respectively and 𝑛𝑥 and 𝑛𝑦 are the number 

of multiple edges of vertices 𝑥 and 𝑦, respectively. Then he defined 
the post class for each 𝑣𝑖 as the open neighbourhood of 𝑣𝑖 in 𝑅 which 
is denoted as 𝑣𝑖𝑅 and constructed a subbase for a topology by 𝑆𝐺 =
∪ {𝑣𝑖𝑅: 𝑣𝑖 ∈ 𝑉(𝐺)}. In this paper, the relations adjacency, non-
adjacency, incidence, non-incidence on the vertex set of a graph are 
used to generate subbasis for topologies on the vertex set of graphs. 

Throughout the paper, the graph under discussion is the simple 
undirected graph which is not star graph.  
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Definition 2.1 Let 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) be a graph. For 𝑣 ∈ 𝑉(𝐺), the 
neighbourhood set 𝑁𝑣 of 𝑣 is defined as 𝑁𝑣 = {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝑋(𝐺)} 
and the non-neighbourhood set 𝑁𝐴𝑣 of 𝑣 as 𝑁𝐴𝑣 = {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∉
𝑋(𝐺)}. For 𝑒 ∈ 𝑋(𝐺), define 𝐼(𝑒) as the set of all vertices incident with 
𝑒 and 𝑁𝑖(𝑒) as the set of all vertices not incident with 𝑒.  

Definition 2.2 Let 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) be a graph without isolated 
vertices. Define 𝑆𝑁 as the family of 𝑁𝑣 for all 𝑣 ∈ 𝑉(𝐺), (i.e.) 𝑆𝑁 =
{𝑁𝑣: 𝑣 ∈ 𝑉(𝐺)}. Then 𝑆𝑁 forms a subbase for a topology 𝑇𝐴 on 𝑉(𝐺) 
and the pair (𝑉(𝐺), 𝑇𝐴) is called graph adjacency topological space. 
Define 𝑆𝐼 as the family of 𝐼(𝑒) for all 𝑒 ∈ 𝑋(𝐺), (i.e.) 𝑆𝐼 = {𝐼(𝑒): 𝑒 ∈
𝑋(𝐺)}. Then 𝑆𝐼 forms a subbase for a topology 𝑇𝐼 on 𝑉(𝐺). The pair 
(𝑉(𝐺), 𝑇𝐼) is called graph incidence topological space. For |𝑋(𝐺)| >
2, define 𝑆𝑁𝑖 as the family of 𝑁𝑖(𝑒) for all 𝑒 ∈ 𝑋(𝐺), (i.e.) 𝑆𝑁𝑖 =
{𝑁𝑖(𝑒): 𝑒 ∈ 𝑋(𝐺)}. Then 𝑆𝑁𝑖 forms a subbase for a topology 𝑇𝑁𝑖 on 
𝑉(𝐺). The pair (𝑉(𝐺), 𝑇𝑁𝑖) is called graph non-incidence topological 
space. If |𝑉(𝐺)| = 𝑛 and 0 ≤ 𝑑(𝑣) ≤ 𝑛 − 2 for all 𝑣 ∈ 𝑉(𝐺), define 𝑆𝑁𝐴 
as the family of 𝑁𝐴𝑣 for all 𝑣 ∈ 𝑉(𝐺), (i.e.) 𝑆𝑁𝐴 = {𝑁𝐴𝑣: 𝑣 ∈ 𝑉(𝐺)}. 
Then 𝑆𝑁𝐴 forms a subbase for a topology 𝑇𝑁𝐴 on 𝑉(𝐺) and the pair 
(𝑉(𝐺), 𝑇𝑁𝐴) is called graph non-adjacency topological space.  

The sets in the topologies are called open sets, and the complement 
of open sets is called closed sets.  

Example 2.3: In this example, topologies using the relations 

adjacency, incidence, and non-incidence are generated; but a 

topology using the relation non-adjacency cannot be generated.  
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𝑆𝑁 = {{2}, {1,3,4}, {2,4}, {2,3}}, 𝑩 = {𝜑, {2}, {1,3,4}, {2,4}, {2,3}, {4}, {3}} 

𝑇𝐴 = {𝜑, {2}, {1,3,4}, {2,4}, {2,3}, {4}, {3}, {3,4}, {2,3,4}, {1,2,3,4}} 

𝑆𝐼 = {{1,2}, {2,3}, {3,4}, {2,4}}, 𝑩 = {𝜑, {2}, {1,2}, {2,3}, {3,4}, {2,4}, {4}, {3}} 

𝑇𝐼 = {𝜑, {2}, {3}, {4}, {1,2}, {2,3}, {3,4}, {2,4}, {2,3,4}, {1,2,3}, {1,2,4}, {1,2,3,4}} 

𝑆𝑁𝑖 = {{1,2}, {3,4}, {1,4}, {1,3}},  

𝑩 = {𝜑, {1}, {1,2}, {1,3}, {1,4}, {3,4}, {4}, {3}} 

𝑇𝑁𝑖 = {𝜑, {1}, {3}, {4}, {1,2}, {1,3}, {1,4}, {3,4}, {1,2,4}, {1,3,4}, {1,2,3}, {1,2,3,4}}.  

Example 2.4 In this example, topology using the relation non-
adjacency is generated. 

                     

   

                              

 𝑆𝑁𝐴 = {{3,4}, {4}, {1}, {1,2}}, 𝐁 = {𝜑, {3,4}, {4}, {1}, {1,2}} 

𝑇𝑁𝐴 = {𝜑, {3,4}, {4}, {1}, {1,2}, {1,4}, {1,3,4}, {1,2,4}, {1,2,3,4}} 

3. Properties of Topologies on Vertex Set of a Graph 
  In this section, the nature, and properties of topologies generated 
by subbasis on vertex set of a graph are presented.  

Theorem 3.1 Let 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) be a graph without isolated 
vertices. 

(a) If |𝑋(𝐺)| > 1, then   

    1.  If 𝑣 ∈ 𝑉(𝐺) is an end vertex then {𝑣} ∉ 𝑇𝐴 and {𝑣} ∉ 𝑇𝐼.  

    2.  If 𝑑𝑒𝑔(𝑣) ≥ 2 for all 𝑣 ∈ 𝑉(𝐺), then 𝑇𝐼 is a discrete topology   
         on 𝑉(𝐺).  

(b) If |𝑋(𝐺)| > 2 and 𝑣 ∈ 𝑉(𝐺) is an end vertex then {𝑣} ∈ 𝑇𝑁𝑖.  

Proof: (a)1. If |𝑋(𝐺)| > 1 and 𝑣 ∈ 𝑉(𝐺) is an end vertex, then𝑣belongs 
to neighbourhood set of exactly one vertex and𝑣belongs to 𝐼𝑒 for 
exactly one edge in 𝐺. So {𝑣} ∉ 𝑇𝐴 and {𝑣} ∉ 𝑇𝐼.      
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 2. If |𝑋(𝐺)| > 1 and 𝑑𝑒𝑔(𝑣) ≥ 2 for all 𝑣 ∈ 𝑉(𝐺), then at least two 
distinct edges, say, 𝑒𝑖 and 𝑒𝑗, 𝑖 ≠ 𝑗, are incident with𝑣so that 𝐼(𝑒𝑖) ∩

𝐼(𝑒𝑗) = {𝑣}. Thus for all 𝑣 ∈ 𝑉(𝐺), {𝑣} belongs to the basis of 𝑇𝐼 so that 

𝑇𝐼 is a discrete topology on 𝑉(𝐺).  
(b) If |𝑋(𝐺)| > 2 and 𝑣 belongs to 𝑉(𝐺) is an end vertex, then only 
one edge, say 𝑒1 is incident with 𝑣. All other edges are not incident 
with 𝑣. Hence {𝑣} belongs to the basis of 𝑇𝑁𝑖 and {𝑣} ∈ 𝑇𝑁𝑖.  
Theorem 3.2 Let 𝑃𝑛 = 𝑣1𝑒1𝑣2𝑒2𝑣3. . . . . 𝑒𝑛−2𝑣𝑛−1𝑒𝑛−1𝑣𝑛 be a path of 
length 𝑛. Then {𝑣2} and {𝑣𝑛−1} do not belong to 𝑇𝑁𝑖.  
Proof:  In𝑃𝑛,𝑣2 ∉ 𝑁𝑖(𝑒1)and𝑁𝑖(𝑒2);𝑣𝑛−1 ∉ 𝑁𝑖(𝑒𝑛−2) and 𝑁𝑖(𝑒𝑛−1) and 
also 𝑣2 ∈ 𝑁𝑖(𝑒3), 𝑁𝑖(𝑒4), . . . . . 𝑁𝑖(𝑒𝑛−1) along with 𝑣𝑛. Thus {𝑣2} and 
{𝑣𝑛−1} do not belong to basis of 𝑇𝑁𝑖 and {𝑣2} and {𝑣𝑛−1} do not belong 
to 𝑇𝑁𝑖.  
From the proof of above theorems, the following observations can be 
made.   

1. On the vertex set of 𝐾𝑛, for 𝑛 ≥ 3, 𝑇𝐼, 𝑇𝑁𝑖, 𝑇𝐴 are discrete 
topologies.  

2. On the vertex set of a non-trivial tree, 𝑇𝐴, 𝑇𝑁𝐴 and 𝑇𝐼 are not 
discrete topologies.  

3. On the vertex set of a connected Eulerian graph, 𝑇𝐼 is a 
discrete topology.  

4. On the vertex set of Cn, for 𝑛 ≥ 3, 𝑇𝐼, 𝑇𝑁𝑖, 𝑇𝑁𝐴 are discrete 
topologies.  

5. For a cutvertex v of a graph G, {𝑣} ∈ 𝑇𝐼 and {𝑣} ∉ 𝑇𝑁𝐴.  

6. On the vertex set of 𝐾𝑚,𝑛, for 𝑚, 𝑛 > 1, 𝑇𝑁𝑖 and 𝑇𝑁𝐴 are discrete 
topologies.  

7. If G1 = (V(G1),X(G1)) and G2 = (V(G2),X(G2))  are two graphs 
with 𝑆𝑁(𝐺1)(𝑆𝑁𝐴(𝐺1)𝑟𝑒𝑠𝑝𝑦. ) = {𝐵1, 𝐵2, . . . , 𝐵𝑛} and 
𝑆𝑁(𝐺2)(𝑆𝑁𝐴(𝐺2) = {𝐴1, 𝐴2, . . . , 𝐴𝑚} as a subbasis for 𝑇𝐴(𝐺1) 
(𝑇𝑁𝐴(𝐺1) and 𝑇𝐴(𝐺2) (𝑇𝑁𝐴(𝐺2)) respectively, then {𝐵1 ∪
𝑉(𝐺2), . . . . , 𝐵𝑛 ∪ 𝑉(𝐺2), 𝐴1 ∪ 𝑉(𝐺1), . . . . . , 𝐴𝑚 ∪ 𝑉(𝐺1)} is a 
subbasis for 𝑇𝐴 of G1+G2 (𝑇𝑁𝐴 of G1∪G2) and 
{𝐵1, 𝐵2, . . . , 𝐵𝑛, 𝐴1, 𝐴2, . . . , 𝐴𝑚} is a subbasis for 𝑇𝐴 of G1∪G2 
(𝑇𝑁𝐴 of G1+G2).  

If 𝐺 is a disconnected graph with components 𝐺1, 𝐺2, . . . . , 𝐺𝑘 and 
𝑆𝑁𝑖

, 𝑖 = 1,2, . . . 𝑘 is a subbasis for 𝑇𝐴 of 𝐺𝑖, and 𝑆𝐼𝑖
, 𝑖 = 1,2, . . . 𝑘 is a 
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subbasis for 𝑇𝐼 of 𝐺𝑖, then the family of all elements of all 𝑆𝑁𝑖
 forms a 

subbasis for 𝑇𝐴 of 𝐺 and the family of all elements of all 𝑆𝐼𝑖
 form a 

subbasis for 𝑇𝐼 of 𝐺  

Let 𝐺 be a disconnected graph with components 𝐺1, 𝐺2, . . . . , 𝐺𝑘. For 
𝑖 = 1,2, . . . . 𝑘, if {𝐵𝑖1, 𝐵𝑖2, . . . . , 𝐵𝑖𝑚} is a subbasis for 𝑇𝑁𝑖 (𝑇𝑁𝐴 respy.) of 
𝐺𝑖, then 

{𝐵11 ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), 

𝐵12 ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), ...., 

𝐵1𝑚 ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), 

. 

. 

. 

𝐵𝑖1 ∪ 𝑉(𝐺1) ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), 

𝐵𝑖2 ∪ 𝑉(𝐺1) ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), ...., 

𝐵𝑖𝑚 ∪ 𝑉(𝐺1) ∪ 𝑉(𝐺2) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘), 

. 

. 

𝐵𝑘1 ∪ 𝑉(𝐺1) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘−1), 

𝐵𝑘2 ∪ 𝑉(𝐺1) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘−1), ...., 

𝐵𝑘𝑚 ∪ 𝑉(𝐺1) ∪. . . .∪ 𝑉(𝐺𝑖−1) ∪ 𝑉(𝐺𝑖) ∪ 𝑉(𝐺𝑖+1) ∪. . . .∪ 𝑉(𝐺𝑘−1)} 

       is a subbasis for 𝑇𝑁𝑖(𝐺) (𝑇𝑁𝐴(𝐺)).  

1. If 𝐺1 = (𝑉(𝐺1), 𝑋(𝐺1)) and 𝐺2 = (𝑉(𝐺2), 𝑋(𝐺2)) are two 
graphs without isolated vertices and |𝑋(𝐺1)| > 2, |𝑋(𝐺2)| > 2 
with 𝑆𝑁𝑖(𝐺1) = {𝐵1, 𝐵2, . . . , 𝐵𝑛} and 𝑆𝑁𝑖(𝐺2) = {𝐴1, 𝐴2, . . . 𝐴𝑚} 
as subbasis for 𝑇𝑁𝑖(𝐺1) and 𝑇𝑁𝑖(𝐺2) respectively, then {𝐵1 ∪
𝑉(𝐺2), . . . . , 𝐵𝑛 ∪ 𝑉(𝐺2), 𝐴1 ∪ 𝑉(𝐺1), 𝐴2 ∪ 𝑉(𝐺1), . . . . . , 𝐴𝑚 ∪
𝑉(𝐺1)} is a subbasis for 𝑇𝑁𝑖(𝐺1 ∪ 𝐺2).  

2. If 𝑣 ∈ 𝑉(𝐺) is an end vertex then {𝑣} ∈ 𝑇𝑁𝐴.  

3. If Pn = v1e1v2e2v3….en-2vn-1en-1vn is a path of length n, then {𝑣2} 
and {vn-1} do not belong to 𝑇𝑁𝐴.  
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4. For any graph 𝐺 with 𝑑(𝑣) ≤ 𝑛 − 2 for all 𝑣 ∈ 𝑉(𝐺),𝑇𝐴 on 
𝑉(𝐺)=𝑇𝑁𝐴 on 𝑉(𝐺𝑐) and 𝑇𝐴 on 𝑉(𝐺𝑐)=𝑇𝑁𝐴 on V(G).  

5. If 𝐺 is a k-regular graph with 𝑘 ≤ 𝑛 − 2, then 𝑇𝑁𝐴 on V(G) is 
discrete.  

4. Interior and Closure of Vertex Induced Subgraphs of a  
     Graph 
  In topology, the interior and closure of a set are dual notions, and 
the exterior of a set is the complement of the closure. The interior, 
boundary, and exterior of a subset together partition the whole space 
into three blocks. Shokry Nada et al.[14] defined closure and interior 
of vertex set of subgraph 𝐻of a graph 𝐺by 𝑐𝑙(𝑉(𝐻)) = 𝑉(𝐻) ∪ {𝑣 ∈
𝑉(𝐺) − 𝑉(𝐻): 𝑣ℎ ∈ 𝐸(𝐺) for all ℎ ∈ 𝑉(𝐻)} and 𝑖𝑛𝑡(𝑉(𝐻)) = 𝑉(𝐺) −
𝑐𝑙(𝑉(𝐺) − 𝑉(𝐻))  

In this section, interior, closure of vertex induced subgraphs of 
graphs in terms of adjacency and incidence relations are defined, and 
basic properties of interior and closure are studied.  

Definition 4.1 Let 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) be a graph without isolated 
vertices and (𝑉(𝐺), 𝑇𝐴) ((𝑉(𝐺), 𝑇𝐼) respy.) be a graph adjacency 
topological space (graph incidence topological space). Let 𝑊be a 
vertex induced subgraph of 𝐺. The closure of 𝑉(𝑊) is defined by 
𝑐𝑙(𝑉(𝑊)) = 𝑉(𝑊) ∪ {𝑣 ∈ 𝑉(𝐺): 𝑁𝑣 ∩ 𝑉(𝑊) ≠ 𝜑} 

(𝑐𝑙(𝑉(𝑊)) = 𝑉(𝑊) ∪ {𝑣 ∈ 𝑉(𝐺): 𝑣 ∈ (𝐼(𝑒)), 𝐼(𝑒) ∩ 𝑉(𝑊) ≠ 𝜑}) and 
interior of 𝑉(𝑊) is defined by 𝑖𝑛𝑡(𝑉(𝑊)) = {𝑣 ∈ 𝑉(𝐺): 𝑁𝑣 ⊆ 𝑉(𝑊)} 
(𝑖𝑛𝑡(𝑉(𝑊)) = {𝑣 ∈ 𝐼(𝑒): 𝐼(𝑒) ⊆ 𝑉(𝑊)}).  

 

Example 4.2 Consider the following graph 
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𝑆𝑁 = {{2,5,6}, {1,4}, {4}, {3,2,5}, {4,1,6}, {1,5}}. 

cl({1,4,3}) = {1.2,3,4,5,6},cl({3,6}) = {1,3,4,5,6}, int({1,4,3}) = {2,3}, 
int({1,6}) = ɸ 

              

𝑆𝐼 = {{1,2}, {2,4}, {3,4}, {4,5}, {5,6}, {6,1}, {1,5}}.  

 𝑐𝑙({1,4,3}) = {1,2,3,4,5,6}, 𝑖𝑛𝑡({1,4,3}) = {3,4}. 

Theorem 4.3 Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space. 
Let 𝑊1 and 𝑊2 be vertex induced subgraphs of 𝐺. Then (i) 𝑉(𝑊1) ⊆
𝑐𝑙(𝑉(𝑊1))                    

(ii) If V(W1)⊆V(W2), then cl(V(W1)) ⊆ cl(V(W2)) .                                                         

Proof: (i) The proof follows trivially from the definition of cl(V(W1)). 

(ii) Let v ∈ cl(V(W1)). Then v ∈ V(W1) or Nv ∩ V(W1) ≠ ∅. Since V(W1) 
⊆ V(W2), it follows that v ∈ V(W2) or Nv ∩V(W2) ≠ ∅.  

So v ∈ Cl(V(W2)). Thus cl(V(W1)) ⊆ cl(V(W2)). 

Theorem 4.4  
Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space. Let W1 and W2 
be vertex induced subgraphs of G. Then   

1. 𝑐𝑙(𝑉(𝑊1) ∪ 𝑉(𝑊2)) = 𝑐𝑙(𝑉(𝑊1)) ∪ 𝑐𝑙(𝑉(𝑊2)).  

2. 𝑐𝑙(𝑉(𝑊1) ∩ 𝑉(𝑊2)) ⊆ 𝑐𝑙(𝑉(𝑊1)) ∩ 𝑐𝑙(𝑉(𝑊2)).  

3. 𝑉(𝑊1) ⊆ 𝑉(𝑊2) ⇒ 𝑖𝑛𝑡(𝑉(𝑊1)) ⊆ 𝑖𝑛𝑡(𝑉(𝑊2)) . 

4. 𝑖𝑛𝑡(𝑉(𝑊1) ∩ 𝑉(𝑊2)) = 𝑖𝑛𝑡(𝑉(𝑊1)) ∩ 𝑖𝑛𝑡(𝑉(𝑊2)).  

5. 𝑖𝑛𝑡(𝑉(𝑊1)) ∪ 𝑖𝑛𝑡(𝑉(𝑊2)) ⊆ 𝑖𝑛𝑡(𝑉(𝑊1) ∪ 𝑉(𝑊2)).  

Proof: 1. Let v ∈ cl(V(W1)∪V(W2)). Then v ∈ V(W1)∪V(W2) or Nv ∩ 
(V(W1) ∪V(W2)) ≠ ∅ which implies v ∈ V(W1) or v ∈ V(W2) or  
(Nv ∩ V(W1)) ∪ (Nv ∩ V(W2)) ≠ ∅.   Hence v ∈ V(W1) or Nv ∩ 𝑉(𝑊1) ≠
∅ or v ∈ V(W2) or Nv ∩ 𝑉(𝑊2) ≠ ∅. So v ∈ cl(V(W1)) or v ∈ cl(V(W2)). 
Thus v ∈ cl(V(W1)) ∪ cl(V(W2)) and 𝑐𝑙(𝑉(𝑊1) ∪ 𝑉(𝑊2)) ⊆
𝑐𝑙(𝑉(𝑊1)) ∪ 𝑐𝑙(𝑉(𝑊2)). By reversing the above steps, cl(V(W1))∪ 
cl(V(W2)) ⊆ cl(V(W1) ∪ cl(V(W2)) can be proved. Thus 𝑐𝑙(𝑉(𝑊1) ∪
𝑉(𝑊2)) = 𝑐𝑙(𝑉(𝑊1)) ∪ 𝑐𝑙(𝑉(𝑊2)).       
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2. Let v ∈ cl(V(W1) ∩ V(W2)). Then v ∈ V(W1) ∩V(W2) or Nv ∩  
    (V(W1) ∩ V(W2)) ≠ ∅ which implies v ∈ V(W1) and v ∈  
    V(W2)   

    or    

   (Nv ∩  𝑉(𝑊1)) ∩ (𝑁𝑣 ∩ 𝑉(𝑊2)) ≠ ∅. Hence v ∈ V(W1) or     
   Nv ∩     𝑉(𝑊1) ≠ ∅    

    and v ∈ V(W2) or Nv ∩ 𝑉(𝑊2) ≠ ∅. So v ∈ cl(V(W1)) and v ∈        
    cl(V(W2)).     

    Thus v ∈ cl(V(W1)) ∩ cl(V(W2)) and     
    𝑐𝑙(𝑉(𝑊1) ∩ 𝑉(𝑊2)) ⊆ 𝑐𝑙(𝑉(𝑊1)) ∩ 𝑐𝑙(𝑉(𝑊2)). 

3. Let v ∈ int(V(W1)). Then Nv ⊆ V(W1) ⊆ V(W2). So v ∈ int(V(W2))  
     and int(V(W1)) ⊆ int(V(W2)).c 

4. Let v ∈ int(V(W1) ∩ V(W2)). Then Nv ⊆ V(W1)∩V(W2). So Nv ⊆    
     V(W1) and Nv ⊆ V(W2). Hence v ∈ int(V(W1) and v ∈ intV(W2)).  
     Thus 𝑖𝑛𝑡(𝑉(𝑊1) ∩ 𝑉(𝑊2)) ⊆ 𝑖𝑛𝑡(𝑉(𝑊1)) ∩ 𝑖𝑛𝑡(𝑉(𝑊2)). By  
     reversing the above steps, int(V(W1))∩int(V(W2)) ⊆  
     int(V(W1)∩V(W2)). 

     Hence 𝑖𝑛𝑡(𝑉(𝑊1) ∩ 𝑉(𝑊2)) = 𝑖𝑛𝑡(𝑉(𝑊1)) ∩ 𝑖𝑛𝑡(𝑉(𝑊2)). 

5. Let v ∈ int(V(W1)) ∪ int(V(W2)). Then v ∈ int(V(W1)) or v ∈ 
int(V(W2)). So Nv ⊆ V(W1) or Nv ⊆ V(W2). Hence Nv ⊆ 
V(W1) ⋃ V(W2) and v ∈ int(V(W1)⋃V(W2)). Thus 𝑖𝑛𝑡(𝑉(𝑊1)) ∪
𝑖𝑛𝑡(𝑉(𝑊2)) ⊆ 𝑖𝑛𝑡(𝑉(𝑊1) ∪ 𝑉(𝑊2)).      

We note that, in general, 𝑖𝑛𝑡(𝑉(𝑊1) ∪ 𝑉(𝑊2)) ⊄ 𝑖𝑛𝑡(𝑉(𝑊1)) ∪
𝑖𝑛𝑡(𝑉(𝑊2)) and                 

𝑐𝑙(𝑉(𝑊1)) ∩ 𝑐𝑙(𝑉(𝑊2)) ⊄ 𝑐𝑙(𝑉(𝑊1) ∩ 𝑉(𝑊2)). 
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Example 4.5 Consider the following graph  

 

 

 

 

 

 

         

      

 

 

𝑆𝑁 = {{3}, {4}, {1,4}, {2,3,5}, {4}}. 

𝑖𝑛𝑡({1,2}) = 𝜑, 𝑖𝑛𝑡({2,3,4}) = {1,2,5}, 𝑖𝑛𝑡({1,2,3,4}) = {1,2,3,5}. 

𝑖𝑛𝑡({1,2}) ∪ 𝑖𝑛𝑡({2,3,4}) = {1,2,5}, 𝑖𝑛𝑡({1,2} ∪ {2,3,4})Ú𝑖𝑛𝑡({1,2}) ∪
𝑖𝑛𝑡({2,3,4}). 

𝑐𝑙({2,3}) = {1,2,3,4}, 𝑐𝑙({1,3,4}) = {1,2,3,4,5}.𝑐𝑙({3}) = {1,3,4}. 

𝑐𝑙({2,3}) ∩ 𝑐𝑙({1,3,4}) = {1,2,3,4}.𝑐𝑙({2,3}) ∩ 𝑐𝑙({1,3,4})Ú𝑐𝑙({2,3} ∩
{1,3,4}).  

Definition 4.6 In a graph adjacency topological space (𝑉(𝐺), 𝑇𝐴), a 
vertex induced subgraph 𝐻 of 𝐺is said to be a dense subgraph of 𝐺 
if 𝑐𝑙(𝑉(𝐻)) = 𝑉(𝐺).  

  

1 
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Example 4.7 Consider the following graph  

 

         

         

     

 

 

 

 

 

 

 

 

 

𝑆𝑁 = {{2}, {1,3,4}, {2}, {2,5,6}, {4,6}, {4,5}} 

𝑐𝑙({2,4}) = {1,2,3,4,5,6}.{2,4} is dense. 

𝑐𝑙({3,4}) = {2,3,4,5,6}.{3,4} is not dense.  

We observe that in a regular graph, every vetex induced subgraph is 
dense and in a tree, centre with two adjacent vertices is dense. 

 

Example 4.8 In example 2.3, let 𝑉(𝑊) = {2}. Then int(V(W)) = {1}, 
V(G) – int(V(W)) = {2,3,4}, cl(V(G) – V(W)) = cl({1,3,4}) = {1,2,3,4}. 
Hence 𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)) ≠ 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊)). Also, int(V(G) – V(W)) 
= int({1,3,4} = {2}, cl(V(W)) = cl({2}) = {1,2,3,4}, V(G) – cl(V(W)) = ɸ. 
Hence 𝑖𝑛𝑡(𝑉(𝐺) − 𝑉(𝑊)) ≠ 𝑉(𝐺) − 𝑐𝑙(𝑉(𝑊)).  

If we define 𝑁𝑣 = {𝑣} ∪ {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝑋(𝐺)}, then it can be proved 
that 𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)) = 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊)) and 𝑖𝑛𝑡(𝑉(𝐺) − 𝑉(𝑊)) =
𝑉(𝐺) − 𝑐𝑙(𝑉(𝑊)).  

Theorem 4.9  Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space 
such that  

1 
3 

2 

4 

6 5 
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𝑁𝑣 = {𝑣} ∪ {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝑋(𝐺)}. Let W be a vertex induced 
subgraph of G. Then   

𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)) = 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊))  

𝑖𝑛𝑡(𝑉(𝐺) − 𝑉(𝑊)) = 𝑉(𝐺) − 𝑐𝑙(𝑉(𝑊))  

Proof:   

1. If v ∈ cl(V(G)-V(W)), then v ∈ V(G) and v ∉ V(W) or Nv ⊈ 

V(W). Hence     v ∈ V(G) and v ∉ int(V(W)) or v ∉ int(V(W)) 
and so v ∈ V(G) – int(V(W)) . Therefore cl(V(G)-V(W)) ⊆ V(G) 
– int(V(W)). 

             If 𝑣 ∈ 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊)) then 𝑣 ∈ 𝑉(𝐺) and 𝑁𝑣 ⊈ 𝑉(𝑊)             
             Hence 𝑣 ∈ 𝑉(𝐺) − 𝑉(𝑊) and 𝑁𝑣 ∩ (𝑉(𝐺) − 𝑉(𝑊)) ≠ 𝜑  
             and so 𝑣 ∈ 𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)).  

             Therefore 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊)) ⊆ 𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)) and      
             𝑐𝑙(𝑉(𝐺) − 𝑉(𝑊)) = 𝑉(𝐺) − 𝑖𝑛𝑡(𝑉(𝑊)).  

If v ∈  𝑖𝑛𝑡(V(G)-V(W)), then 𝑁𝑣 ⊆ 𝑉(𝐺) − 𝑉(𝑊). Hence 𝑁𝑣 ∩ 𝑉(𝑊) =
𝜑 and so v ∉ cl(V(W)). Therefore v ∈ V(G) – cl(V(W)). Reversing the 
steps proves 𝑖𝑛𝑡(𝑉(𝐺) − 𝑉(𝑊)) = 𝑉(𝐺) − 𝑐𝑙(𝑉(𝑊))                                                        

Some basic properties of the interior and closure of the vertex 
induced subgraphs of a graph in a graph incidence topological space 
can also be proved as earlier.  

Proposition 4.10 Let (𝑉(𝐺), 𝑇𝐼) be a graph incidence topological 
space.Let 𝑊1 and 𝑊2 be vertex induced subgraphs of 𝐺. Then   

1. V(W1) ⊆ cl(V(W1))  

2. V(W1) ⊆ V(W2) ⟹ cl(V(W1)) ⊆ cl(V(W2))  

3. cl(V(W1) ∪ V(W2)) = cl(V(W1)) ∪ cl(V(W2))  

4. cl(V(W1) ∩ V(W2)) ⊆ cl(V(W1)) ∩ cl(V(W2))  

5. V(W1) ⊆ V(W2) ⟹ int(V(W1)) ⊆ int(V(W2))  

6. int(V(W1) ∩ V(W2)) ≠ int(V(W1)) ∩ int(V(W2))  

7. int(V(W1)) ∪ int(V(W2)) ⊆ int(V(W1) ∪ V(W2)).  
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  5. Exterior and Boundary of Vertex Induced Subgraphs of a  
      Graph 
Taha H. Jasim et al. [15] defined the exterior and boundary of vertex 
set of subgraph 𝐻 of a graph 𝐺 as 𝑒𝑥𝑡(𝑉(𝐻)) = {𝑣 ∈ 𝑉(𝐺): 𝑣𝑅 ∩
𝑉(𝐻) = 𝜑} there 𝑣𝑅 is a post class of a relation 𝑅 on 𝑉(𝐺)) and 
𝑏𝑑(𝑉(𝐻)) = 𝑐𝑙(𝑉(𝐻)) − 𝑖𝑛𝑡(𝑉(𝐻)). In this section, exterior and 
boundary of vertex induced subgraphs of graphs in terms of 
adjacency are introduced and the basic properties of exterior and 
boundary are studied.  

Definition 5.1 Let 𝐺 = (𝑉(𝐺), 𝑋(𝐺)) be a graph without isolated 
vertices and (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space. Let 
𝑊 be a vertex induced subgraph of 𝐺. Then exterior of 𝑉(𝑊) is 
defined by 𝑒𝑥𝑡(𝑉(𝑊)) = {𝑣 ∈ 𝑉(𝐺): 𝑁𝑣 ∩ 𝑉(𝑊) = 𝜑} and boundary 
of 𝑉(𝑊) is defined by 𝑏𝑑(𝑉(𝑊)) = 𝑐𝑙(𝑉(𝑊)) − 𝑖𝑛𝑡(𝑉(𝑊)).  

Example 5.2 Consider the following graph  

 

 

 

 

 

SN  = {{2}}, {1,3}, {2,4,6}, {3,6,5}, {4,6}, {3,4,5}}. 

cl({1,4,6}) = {1,2,3,4,5,6},int({1,4,6}) = {5}, ext({1,4,6}) = {1}, bd({1,4,6}) = 
{1,2,3,4,6} 

The following theorems describe the properties of different 
operators on vertex set of graphs. 

Theorem 5.3  Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space. 
Let 𝐻and 𝑊be vertex induced subgraphs of 𝐺. Then   

i. ext(V(H)) = int(V(G) – V(H))  

ii. If V(H) ⊆ V(W), then ext(V(W)) ⊆ ext (V(H))  

iii. ext(V(H)∪ V(W)) = ext(V(H)) ∩ ext(V(W))  

1 

6 

2 5 
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iv. bd(V(G)) = ∅  

v. cl(V(H)) = int(V(H)) ∪ bd(V(H))  

vi. bd(V(H)) ∩ int(V(H)) = ∅  

vii. bd(V(H)) ∩ ext(V(H)) = ∅  

viii. int(V(H)) ∩ ext(V(H)) = ∅ 

ix. int(V(H)) ∪ ext(V(H)) ∪ bd(V(H)) =V(G)  

Proof:  

If v ∈ ext(V(H)), then 𝑁𝑣 ∩ 𝑉(𝐻) = 𝜑. Hence 𝑁𝑣 ⊆ (𝑉(𝐺) − 𝑉(𝐻)) and 
so v ∈ int(V(G) – V(H)). Reversing the steps proves 𝑒𝑥𝑡(𝑉(𝐻)) =
𝑖𝑛𝑡(𝑉(𝐺) − 𝑉(𝐻))  

If v ∈ ext(V(W)), then 𝑁𝑣 ∩ 𝑉(𝑊) = 𝜑 and 𝑁𝑣 ∩ 𝑉(𝐻) = 𝜑. So          v 
∈ ext(V(H)) and ext(V(W)) ⊆ ext(V(H)).  

i) ext(V(H) ∪ V(W)) = int(V(G) – (V(H) ∪V(W))) = int((V(G) – 
V(H)) ∩ (V(G) – V(W))) = int(V(G) – V(H)) ∩ int(V(G) – V(W)) 
= ext(V(H)) ∩ ext(V(W)).                                                          

ii) Since cl(V(G)) = V(G) and int(V(G)) = V(G) , it follows that 
bd(V(G) = ∅.  

iii) int(V(H)) ∪ bd(V(H)) = int(V(H) ∪ (cl(V(H)) – int(V(H))) = 
(cl(V(H)) ∩ (V(G) – int(V(H)))) ∪ int(V(H)) = (cl(V(H)) ∪ 
int(V(H))) ∩ ((V(G) – int(V(H))) ∪ int(V(H))) = cl(V(H)) ∩ V(G) 
= cl(V(H)). 

iv) If v ∈ bd(V(H)), then v ∉ int(V(H)). So bd(V(H)) ∩ int(V(H)) = 
∅.  

v) If v ∈ ext(V(H)), then 𝑁𝑣 ∩ 𝑉(𝑊) = 𝜑 and v ∉cl(V(H)). So v ∉ 
bd(V(H)) and bd(V(H)) ∩ ext(V(H)) = ∅.  

vi) If v ∈ int(V(H)), then Nv ⊆ V(H). Hence Nv ∩ V(H) ≠         ∅  
       and 𝑣 ∉ 𝑒𝑥𝑡(𝑉(𝐻)). So 𝑖𝑛𝑡(𝑉(𝐻)) ∩ 𝑒𝑥𝑡(𝑉(𝐻)) = 𝜑.  

vii) By definition,  cl(V(H)) ∪ int(V(H)) ∪ bd(V(H)) = V(G).  

Theorem 5.4 Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space 
such that 𝑁𝑣 = {𝑣} ∪ {𝑢 ∈ 𝑉(𝐺): 𝑢𝑣 ∈ 𝑋(𝐺)}. Let 𝐻and 𝑊 be a vertex 
induced subgraph of 𝐺. Then   

i. ext(VH)) ∩ V(H) = ∅  
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ii. ext(V(H)) = V(G) – cl(V(H))  

iii. bd(V(H)) = cl(V(H)) ∩ cl(V(G) – V(H))  

iv. bd(V(H)) ⊆ bd(V(G) – V(H))  

v. bd(V(H) ∪ V(W)) ⊆ bd(V(H)) ∪ bd(V(W))  

Proof:   
1. If v ∈ ext(VH)), then Nv ⋂ V(H) = ∅. Since v ∈ Nv, v ∉ V(H). So 

𝑒𝑥𝑡(𝑉(𝐻)) ∩ 𝑉(𝐻) = 𝜑.  

2. ext(V(H)) = int(V(G) – V(H)) = V(G) – cl(V(H))..  

3. If v ∈ bd(V(H)), then v ∈ cl(V(H)) and v ∉ int(V(H)). Hence v ∈ 
cl(V(H)) and v ∈ V(G) – int(V(H)). So v ∈cl(V(H)) and v ∈ 
cl(V(G)-V(H)) which gives v ∈ cl(V(H)) ∩ cl(V(G)-V(H)). 
Reserving the steps proves 𝑏𝑑(𝑉(𝐻)) = 𝑐𝑙(𝑉(𝐻)) ∩
𝑐𝑙(𝑉(𝐺) − 𝑉(𝐻)).  

4. If v ∈ bd(V(H)), then v ∈ cl(V(H)) and v ∉ int(V(H)). Hence v ∈ 
cl(V(H)) and v ∈ V(G) – int(V(H)) and so v ∈ cl(V(H)) and v ∈ 
cl(V(G)-V(H)). So v ∈ (cl(V(G) – V(H))) ∩ (cl(V(H))) and v ∈ 
(cl(V(G) – V(H))) – (V(G) – cl(V(H))).. Therefore v ∈ (cl(V(G) – 
V(H))) – int(V(G) – V(H)) and so v ∈ bd(V(G) – V(H)).  

5. If v ∈ bd(V(H) ∪ V(W)), then v ∈ cl(V(H) ∪ V(W)) and v ∉ 
int(V(H) ∪ V(W)). Hence v ∈ cl(V(H) ∪ cl(V(W)) and v ∈ 
cl(V(G) – ((V(H) ∪ V(W)))  and v ∈ cl(V(H)) ∪ cl(V(W)) and v 
∈cl((V(G) – V(H)) ∩ (V(G) – V(W))). So {v ∈ cl(V(H)) and v ∈ 
cl(V(G) – V(H))} or {v ∈ cl(V(W)) and v ∈ cl(V(G) – V(H))} and 
{v ∈ cl(V(H)) and v ∈ V(G) – int(V(H))} or {v ∈ cl(V(W)) and v 
∈ V(G) – int(V(H))}. Therefore {v ∈ cl(V(H)) and v ∉ int(V(H))} 
or {v ∈ cl(V(W)) and v ∉ int(V(H))} and v ∈ bd(V(H)) ∪ 
bd(V(W)).  

Theorem 5.5 Let (𝑉(𝐺), 𝑇𝐴) be a graph adjacency topological space. 
Let 𝐻 and 𝑊 be vertex induced subgraphs of 𝐺. If cl(V(H) ∩ cl(V(W)) 
= ∅, then int(V(H)) ∪ int(V(W)) = int(V(H) ∪ V(W)).  

Proof: By Theorem 4.4, 𝑖𝑛𝑡(𝑉(𝐻)) ∪ 𝑖𝑛𝑡(𝑉(𝑊)) ⊆ 𝑖𝑛𝑡(𝑉(𝐻) ∪ 𝑉(𝑊)).  

To prove the reverse inclusion, let 𝑣 ∉ 𝑖𝑛𝑡(𝑉(𝐻)) ∪ 𝑖𝑛𝑡(𝑉(𝑊)) and 
𝑣 ∈ 𝑖𝑛𝑡(𝑉(𝐻) ∪ 𝑉(𝑊)). Hence Nv ⊆ V(H) or Nv ⊆ V(W) or Nv ⊆ 
V(H) ∩ V(W). If 𝑁𝑣 ⊆ 𝑉(𝐻), then 𝑣 ∈ 𝑖𝑛𝑡(𝑉(𝐻)). So 𝑣 ∈ 𝑖𝑛𝑡(𝑉(𝐻)) ∪
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𝑖𝑛𝑡(𝑉(𝑊)), which is a contradiction. Similarly, if 𝑁𝑣 ⊆ 𝑉(𝑊), then 
𝑣 ∈ 𝑖𝑛𝑡(𝑉(𝑊)). So 𝑣 ∈ 𝑖𝑛𝑡(𝑉(𝐻)) ∪ 𝑖𝑛𝑡(𝑉(𝑊)), which is a 
contradiction. If 𝑁𝑣 ⊆ 𝑉(𝐻) ∩ 𝑉(𝑊), then 𝑁𝑣 ∩ 𝑉(𝑊) ≠ 𝜑 and 𝑁𝑣 ∩
𝑉(𝐻) ≠ 𝜑. So 𝑣 ∈ 𝑐𝑙(𝑉(𝐻)) ∩ 𝑐𝑙(𝑉(𝑊)) which is a contradiction. 
Hence 𝑣 ∉ 𝑖𝑛𝑡(𝑉(𝐻) ∪ 𝑉(𝑊)) and 𝑖𝑛𝑡(𝑉(𝐻) ∪ 𝑉(𝑊)) ⊆ 𝑖𝑛𝑡(𝑉(𝐻)) ∪
𝑖𝑛𝑡(𝑉(𝑊)).  

Applications 
Complex network theory plays a vital role in bio-chemical and bio-
medical fields. Such networks, electrical circuits, and information 
systems can be modeled using the graph theory notion by 
representing vertices and edges as the nature of the trend of study. 
The most important feature of the hydrogen bond is that it possesses 
direction and hence hydrogen bond networks along with co-
operativity and antico-operativity can be modeled as digraphs. 
Hydrogen bond networks can be represented by digraphs where 
vertices correspond to the donor and acceptor group, and edges 
correspond to hydrogen bonds from proton-donor to proton-
acceptor. Protein functioning can be shown graphically. Interactions 
between entities such as proteins, chemicals, or macromolecules can 
be represented using graphs and it can also be used to describe 
biological pathways. The most important issue in our biological 
system is the process of blood circulation and the functioning of 
kidneys. Medical tests play an important role in the life of rights to 
make sure that the retreat of diseases, perhaps the most prominent 
of those analyzes macroeconomic analysis functions. Through the 
medical application, the system can be modeled graphically. By 
considering the parts of the heart/kidney as vertices and the flow of 
blood/liquid between the parts as edges, the system can be modeled 
as graphs. The Interior and closure of induced subgraphs under the 
topology generated from the resulting graph of the system will be 
useful in detecting and predicting the diseases of the heart/kidney.      

Conclusion 
  A synthesis between graph theory and topology has been made. 
Subbasis for different topologies on vertex set of simple undirected 
graphs are introduced, and the nature of topology generated by 
vertex sets of some standard graphs are stated. Some basic properties 
of closure, interior, exterior, and boundary of vertex induced 
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subgraphs of a graph with respect to graph adjacency topology are 
studied. The results discussed in this paper will be helpful in further 
study of some other topological structures and its properties. Also, 
the results and properties discussed in this paper can be studied 
further with respect to graph non-adjacency topology,graph 
incidence topology, and graph non-incidence topology. There are 
many ways of generating topologies on an edge set of graphs. But 
there may arise a situation where the edge set of the graph can be 
empty; so that a topology on the edge set can not be generated. Also, 
while considering the way of generating topologies on the edge set 
of graphs, the incidence relation between the vertices and edges of a 
graph can also be taken into account. This way of generating 
topologies can be studied further.   
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