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Abstract: 

In this paper, the coupling distance of simple connected 
graphs is introduced. Different parameters of coupling 
distance like coupling eccentricity, coupling radius, 
coupling diameter, coupling center, and coupling 
periphery are defined. The coupling parameters for 
different standard graphs are obtained. 

Keywords: coupling distance, coupling eccentricity, coupling radius, 
coupling diameter. 

1. Introduction 
With the advent of connected networks, graph theory is no more 
limited only to showing interconnections between entities. 
Researchers have explored different possibilities with the study of 
different distance concepts. There are many types of distances in 
graphs, the eccentric distance being the shortest distance between 
any two vertices. Distance in graphs by F Buckley and F Harary[1] 
gives an insight into distance concepts in graphs. The distance 
concepts like superior distance[5], signal distance[6], detour 
distance[2], and D-distance[9] are the inspiration for this work. 
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In this paper, we introduce coupling distance in graphs and study 
some of its properties. The coupling distance between any two 
vertices is the summation of the length of the shortest path between 
every pair of vertices added to the total number of vertices present 
on the path. Theorems related to the relation between coupling 
distance parameters like coupling radius, coupling diameter, 
coupling center, and coupling periphery are stated and proved. In 
this paper, only non-trivial, finite, undirected simple, and connected 
graphs are considered. For undefined terminologies refer to the book 
Graph Theory by Harary[3]. 

2. Preliminaries 
Definition 2.1: A graph 𝐺 = (𝑉, 𝐸) consists of a set of objects 𝑉 =
{𝑣1, 𝑣2, 𝑣3 … 𝑣𝑛}  called vertices and another set 𝐸 = {𝑒1, 𝑒2, 𝑒3 … 𝑒𝑚} 
whose elements are called edges, such that each edge ′𝑒𝑘′  is 
associated with a pair of vertices (𝑣𝑖, 𝑣𝑗).  

Definition 2.2 [3]: The order and size of 𝐺 are given by |𝑉(𝐺)| = 𝑛 
and |𝐸(𝐺)| = 𝑚 respectively. 

Definition 2.3 [3]: The distance 𝑑(𝑢, 𝑣)  between vertices 𝑢 and 𝑣 is 
the minimum number of edges in a 𝑢 − 𝑣 path. 

Definition 2.4 [4]: The eccentricity of 𝑢 ∈ 𝑉(𝐺)  is 𝑒𝑐𝑐(𝑢) =
𝑚𝑎𝑥{𝑑(𝑢, 𝑣): 𝑣 ∈ 𝑉(𝐺)}. The radius of 𝐺 is 𝑟𝑎𝑑(𝐺) = 𝑚𝑖𝑛{𝑒𝑐𝑐(𝑢): 𝑢 ∈
𝑉(𝐺)} and the diameter of 𝐺 is 𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥{𝑒𝑐𝑐(𝑢): 𝑢 ∈ 𝑉(𝐺)}. 

Definition 2.5 [7,8]: The friendship graph 𝐹𝑛 can be constructed by 
joining 𝑛 copies of the cycle 𝐶3 with a common vertex. 𝐹𝑛 has 2𝑛 + 1 
vertices and 3𝑛 edges. 

3. Coupling Distance in Graphs 
In this section, coupling distance is introduced and its parameters 
like coupling eccentricity, coupling radius, and coupling diameter 
are also defined. 

Definition 3.1: The coupling distance between any two vertices in a 
graph is defined 

as ℭ𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑢,𝑣)  ,where 𝑑(𝑢, 𝑣) is the geodesic 

distance between 𝑢 and 𝑣 and 𝑃𝑑(𝑢, 𝑣) is the geodesic path between 
𝑢 and 𝑣. 
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Example 3.1: Consider the graph given in Figure-1 

 

 

The shortest distance between 𝑣1  and 𝑣2  is 1 and the number of 
vertices on the path is 2. Therefore, the coupling distance is 1 + 2 =
3 = ℭ𝑑(𝑣1, 𝑣2). There are two paths between 𝑣2 and 𝑣3, the first path 
is 𝑣2 − 𝑣1 − 𝑣3   and the second path is 𝑣2 − 𝑣5 − 𝑣6 − 𝑣3 . The first 
path is shorter than the second path. Therefore, the coupling distance 
between 𝑣2 and 𝑣3 is 2 + 3 = 5 = ℭ𝑑(𝑣2, 𝑣3). Similarly, ℭ𝑑(𝑣2, 𝑣4) =
7. Symbolically, ℭ𝑑(𝑣1, 𝑣2) = 𝑑(𝑣1, 𝑣2) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑣1,𝑣2) = 1 + 2 = 3. 

ℭ𝑑(𝑣2, 𝑣3) = 𝑑(𝑣2, 𝑣3) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑣2,𝑣3) = 2 + 3 = 5. 

ℭ𝑑(𝑣2, 𝑣4) = 𝑑(𝑣2, 𝑣4) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑣2,𝑣4) = 3 + 4 = 7. 

Observation 3.1: 

(i) For any graph 𝐺 , let 𝑢, 𝑣 ∈ 𝑉(𝐺). If 𝑑(𝑢, 𝑣) = 𝑛  then ℭ𝑑(𝑢, 𝑣) = 
      2𝑛 + 1. 

(ii) For a connected graph 𝐺, ℭ𝑑(𝑢, 𝑣) > 𝑑(𝑢, 𝑣). 

(iii) For any graph 𝐺, ℭ𝑑(𝑢, 𝑣) ≥ 3, ∀ 𝑢, 𝑣 ∈ 𝑉(𝐺), 𝑢 ≠ 𝑣. 

(iv) For any two vertices in a complete graph 𝐾𝑛, ℭ𝑑(𝑢, 𝑣) = 3. 

(v) For any graph 𝐺, ℭ𝑑(𝑢, 𝑣) = 0 if 𝐺 is disconnected or if 𝑢 = 𝑣. 

(vi) For any two vertices 𝑢, 𝑣 ∈ 𝑉(𝐺)  with |𝑉(𝐺)| = 𝑝 , then 0 ≤ 
         𝑑(𝑢, 𝑣) < ℭ𝑑(𝑢, 𝑣). 
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4. Results on Coupling Distance in Graphs 

Observation 4.1: The coupling distance is symmetric, therefore 
ℭ𝑑(𝑢, 𝑣) = ℭ𝑑(𝑣, 𝑢). 

Theorem 4.2: Let 𝑃: 𝑢1, 𝑢2, … , 𝑢𝑛 be a shortest path in a graph 𝐺, then 
ℭ𝑑(𝑢1, 𝑢𝑛) = ℭ𝑑(𝑢1, 𝑢𝑚) + ℭ𝑑(𝑢𝑚, 𝑢𝑛) , where 1 < 𝑚 < 𝑛. 

Proof: Let 𝐺  be a connected graph. By the definition of coupling 
distance, we know that ℭ𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑢,𝑣)  . Let 

𝑢1, 𝑢2, … , 𝑢𝑛 be the vertices of graph 𝐺. Let 𝑢1 − 𝑢𝑚 and 𝑢𝑚 − 𝑢𝑛 be 
the shortest paths in 𝐺.  

ℭ𝑑(𝑢1, 𝑢𝑚) = 𝑑(𝑢1, 𝑢𝑚) + ∑ |𝑧| = (𝑚 − 1) + 𝑚 = 2𝑚 −𝑧 ∈ 𝑃𝑑(𝑢1,𝑢𝑚)

1 and  

ℭ𝑑(𝑢𝑚, 𝑢𝑛) = 𝑑(𝑢𝑚, 𝑢𝑛) + ∑ |𝑧| = (𝑛 − 𝑚) +𝑧 ∈ 𝑃𝑑(𝑢𝑚,𝑢𝑛)

∑ |𝑧| = (𝑛 − 𝑚) + (𝑛 − 𝑚 + 1)𝑧 ∈ 𝑃𝑑(𝑢𝑚,𝑢𝑛) = 2𝑛 − 2𝑚 + 1.  

ℭ𝑑(𝑢1, 𝑢𝑚) = ℭ𝑑(𝑢𝑚, 𝑢𝑛) = 2𝑚 − 1 + 2𝑛 − 2𝑚 + 1 =
2𝑛                                                  (1)                                    

ℭ𝑑(𝑢1, 𝑢𝑛) = 𝑑(𝑢1, 𝑢𝑛) + ∑ |𝑧| = (𝑛 − 1) + 𝑛 = 2𝑛 −𝑧 ∈ 𝑃𝑑(𝑢1,𝑢𝑛)

1                                   (2)  

From equation (1) and (2), we obtain ℭ𝑑(𝑢1, 𝑢𝑛) = ℭ𝑑(𝑢1, 𝑢𝑚) +
ℭ𝑑(𝑢𝑚, 𝑢𝑛). 

 
Theorem 4.3: For any graph 𝐺, and for any  𝑢 ≠ 𝑣, and ℭ𝑑(𝑢, 𝑣) = 3 
if and only if there exists atmost one edge between 𝑢 and 𝑣. 

Proof: If 𝑢, 𝑣 ∈ 𝑉(𝐺)  and (𝑢, 𝑣) ∈ 𝐸(𝐺)  then 𝑑(𝑢, 𝑣) = 1 . Therefore 
ℭ𝑑(𝑢, 𝑣) = 𝑑(𝑢, 𝑣) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑢,𝑣) = 1 + 2 = 3 . Conversely, by the 

definition of coupling distance we have 𝑑(𝑢, 𝑣) + ∑ |𝑤|𝑤∈𝑃𝑑(𝑢,𝑣) = 3. 

Every path contains two end points. Hence the value of 
∑ |𝑤|𝑤∈𝑃𝑑(𝑢,𝑣) = 2 and 𝑑(𝑢, 𝑣) = 1 is the only combination for which 

ℭ𝑑(𝑢, 𝑣) = 3. This implies there exists at most one edge between 𝑢 
and 𝑣. 

5. 𝕮-Eccentricity 
Definition 5.1: Let 𝑢  be the vertex in a connected graph 𝐺 . The 
coupling eccentricity or ℭ-eccentricity of 𝑢 is the coupling distance 
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to the vertex farthest from 𝑢. Thus ℭ𝑒(𝑢) = 𝑚𝑎𝑥{ℭ𝑑(𝑢, 𝑣): 𝑣 ∈ 𝑉}. A 
ℭ-eccentric vertex ℭ𝐸(𝑢) = {𝑣 ∈ 𝑉: ℭ𝑑(𝑢, 𝑣) = ℭ𝑒(𝑢)}. 

Definition 5.2: The ℭ -radius (coupling radius) and ℭ -diameter 
(coupling diameter) is defined by ℭ𝑟𝑎𝑑(𝐺) = 𝑚𝑖𝑛{ℭ𝑒(𝑢): 𝑢 ∈ 𝑉} and 
ℭ𝑑𝑖𝑎𝑚(𝐺) = 𝑚𝑎𝑥{ℭ𝑒(𝑢): 𝑢 ∈ 𝑉} respectively. 𝑢 is called a coupling 
central vertex if ℭ𝑒(𝑢) = ℭ𝑟𝑎𝑑(𝐺). 𝑣 is called a coupling peripheral 
vertex if ℭ𝑒(𝑣) = ℭ𝑑𝑖𝑎𝑚(𝐺). The coupling center of 𝐺 ℭ𝑅(𝐺) is the 
set of all coupling central vertices. The coupling periphery of 𝐺 
ℭ𝑃(𝐺) is the set of all coupling peripheral vertices. A graph 𝐺 is said 
to be coupling self-centered if and only if ℭ𝑟𝑎𝑑(𝐺) = ℭ𝑑𝑖𝑎𝑚(𝐺). 

Table 5.1: From the Figure-1, we tabulate ℭ-eccentricity and ℭ-eccentric vertex of 𝑣. 

Vertex 𝑣 ∈
𝑉(𝐺) 

ℭ -eccentricity ℭ𝑒(𝑣) ℭ -eccentric vertex 
ℭ𝐸(𝑣) 

𝑣1 5 {𝑣4, 𝑣5, 𝑣6} 

𝑣2 7 {𝑣4} 

𝑣3 5 {𝑣2, 𝑣5} 

𝑣4 7 {𝑣2, 𝑣5} 

𝑣5 7 {𝑣4} 

𝑣6 5 {𝑣1, 𝑣2, 𝑣4} 

ℭ𝑟𝑎𝑑(𝐺) = 5 , ℭ𝑑𝑖𝑎𝑚(𝐺) = 7 , ℭ𝑅(𝐺) = {𝑣1, 𝑣3, 𝑣6}  and ℭ𝑃(𝐺) =
{𝑣2, 𝑣4, 𝑣5}. 

Observation 5.1: 

(i) 𝑒𝑐𝑐(𝑢) < ℭ𝑒(𝑢) for any vertex 𝑢 ∈ 𝑉(𝐺). 

(ii) 𝑟𝑎𝑑(𝐺) < ℭ𝑟𝑎𝑑(𝐺). 

(iii) 𝑑𝑖𝑎𝑚(𝐺) < ℭ𝑑𝑖𝑎𝑚(𝐺). 

(iv) The eccentric vertex 𝐸(𝑢)  is equal to the coupling eccentric 
vertex ℭ𝐸(𝑢) for any graph 𝐺. 
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Table 5.2: The coupling distance parameters of some standard graphs are given in the table below. 

Graph Figure rad(G) diam(G) R(G) P(G) 

Bull 
Graph 

 

5 7 {v3, v4, 

v5} 

{v1, v2} 

Butterfly 
Graph 

 

3 5 {v3} {v1, v2, 
v4, v5} 

Diamond 
Graph 

 

3 5 {v1, v4} {v2, v3} 

Durer 
Graph 

 

7 9 {v1, v2, 
v5, v8, 
v11, v12} 

{v3, v4, 
v6, v7, 
v9, v10} 

Bidiaskis 
cube 

 

7 7 {v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 

Chvatal 
Graph 

 

5 5 {v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 

Franklin 
Graph 

 

7 7 {v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10, 
v11, v12} 
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Graph Figure rad(G) diam(G) R(G) P(G) 

Frucht 
Graph 

 

7 9 {v1, v2, 
v3, v7, 
v8, v9, 
v10, v11, 
v12} 

{v4, v5, 
v6, v9} 

Golomb 
Graph 

 

5 7 {v2, v5, 
v6, v7} 

{v1, v3, 
v4, v8, 
v9, v10} 

Herschel 
Graph 

 

7 9 {v1, v2, 
v3, v4, 
v6, v8, 

v9, v10, 
v11} 

{v5, v7} 

Moser 
Spindle 
Graph 

 

5 5 {v1, v2, 
v3, v4, 
v5, v6, 
v7} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7} 

Wagner 
Graph 

 

5 5 {v1, v2, 
v3, v4, 
v5, v6, 
v7, v8} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7, v8} 

Petersen 
Graph 

 

5 5 {v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10} 

{v1, v2, 
v3, v4, 
v5, v6, 
v7, v8, 
v9, v10} 
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The following observations are made from Table 5.2. 

Observation 5.2:  

(i) The regular graph, Bidiakis cube, chvatal graph, franklin graph, 
moser spindle graph, wagner graph and petersen graph are all 
coupling self-centered graphs. 

(ii) The butterfly graph has a unique center ℭ𝑅(𝐺). 

(iii) In a chvatal graph ℭ𝑑(𝑢, 𝑣) = {
3, 𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸(𝐺)
5,            𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

(iv) The induced subgraph of coupling periphery of golomb graph is 
a null graph. 

(v) For any coupling self-centered graph ℭ𝑅(𝐺) = ℭ𝑃(𝐺) = 𝑉(𝐺). 

 

Theorem 5.1: For any graph 𝐺(𝑉, 𝐸), 𝑢 ∈ 𝑉, ℭ𝑒(𝑢) = 2 𝑒𝑐𝑐(𝑢) + 1. 

Proof: The proof follows from the definition of eccentricity of a 
vertex. The eccentricity 𝑒𝑐𝑐(𝑢) of a vertex 𝑢 is the length of the path 
between u and the farthest vertex 𝑣 from 𝑢 in the graph. Therefore, 
path length is equal to 𝑒𝑐𝑐(𝑢). Now let us consider a vertex 𝑢 and 𝑣 
if the length of path is 1. They are adjacent and ℭ𝑑(𝑢, 𝑣) = 3 as there 
are two vertices on the edge. Similarly, if the path length is 2 there 
will be three vertices on the path 𝑢, 𝑤, 𝑣 where 𝑤 is the intermediate 
vertex. Therefore ℭ𝑑(𝑢, 𝑣) = 5 for a path of length 2. Now for a path 
of length 𝑛 there will be 𝑛 + 1 vertices in the path. Therefore, the 
coupling eccentricity for a path of length n is given by 

ℭ𝑑(𝑢, 𝑣) = 𝑛 + 𝑛 + 1. 

ℭ𝑑(𝑢, 𝑣) = 𝑒𝑐𝑐(𝑢) + 𝑒𝑐𝑐(𝑢) + 1. 

ℭ𝑑(𝑢, 𝑣) = 2 𝑒𝑐𝑐(𝑢) + 1. 

ℭ𝑑(𝑢, 𝑣) = ℭ𝑒(𝑢). 

Theorem 5.2: If coupling eccentricity of any vertex of a graph 𝐺 is 
either 𝑟1 or 𝑟2 then ℭ𝑅(𝐺) = 𝑉(𝐺) − ℭ𝑃(𝐺). 

Proof: Let ℭ𝑒(𝑣𝑛) = 𝑟1  or ℭ𝑒(𝑣𝑛) = 𝑟2 ∀ 𝑣𝑛 ∈ 𝑉(𝐺), where (𝑟1 < 𝑟2) 
then ℭ𝑟𝑎𝑑(𝐺) = 𝑟1 and ℭ𝑑𝑖𝑎𝑚(𝐺) = 𝑟2. Some of the vertices belongs 
to ℭ𝑅(𝐺) say 𝑠 vertices and some of the vertices belongs to ℭ𝑃(𝐺) 
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say 𝑡 vertices. Hence 𝑠 + 𝑡 = 𝑛 (number of vertices in 𝐺). Therefore 
ℭ𝑅(𝐺) + ℭ𝑃(𝐺) = 𝑉(𝐺). Hence the result. 

Theorem 5.3: For any graph 𝐺 which is not coupling self-centered, if 
ℭ𝑑𝑖𝑎𝑚(𝐺) = ℭ𝑟𝑎𝑑(𝐺) + 𝑡 then 𝑡 is a positive even integer. 

Proof: Let ℭ𝑑𝑖𝑎𝑚(𝐺) = 𝑡 = 2𝑡1 + 1 by Theorem 5.1. 

Let ℭ𝑟𝑎𝑑(𝐺) = 𝑟 = 2𝑟1 + 1. 

ℭ𝑑𝑖𝑎𝑚(𝐺) − ℭ𝑟𝑎𝑑(𝐺) = [2(𝑑1) + 1] − [2(𝑟1) + 1]  

ℭ𝑑𝑖𝑎𝑚(𝐺) − ℭ𝑟𝑎𝑑(𝐺) = 2(𝑑1 − 𝑟1)  

ℭ𝑑𝑖𝑎𝑚(𝐺) − ℭ𝑟𝑎𝑑(𝐺) = 𝑡 (where 𝑡 is an even positive integer). 

Therefore, ℭ𝑑𝑖𝑎𝑚(𝐺) = ℭ𝑟𝑎𝑑(𝐺) + 𝑟.  

Observation 5.3: The following statements are true for a complete 
graph 𝐾𝑛. 

(i) For any complete graph 𝐾𝑛 ∀ 𝑛 > 1, ℭ𝑟𝑎𝑑(𝐺) = ℭ𝑑𝑖𝑎𝑚(𝐺) = 3. 

(ii) 𝐾𝑛 is coupling self-centered. 
 

Theorem 5.4: The vertex set 𝑉(𝐺)  forms the coupling center and 
coupling periphery of 𝐾𝑛, where 𝑛 > 1. 

Proof: For a complete graph 𝐾𝑛, the coupling distance between any 
two vertices is 3. Since the degree of every vertex 𝑣 ∈ 𝑉(𝐺) is 𝑛 − 1. 
Therefore, the coupling eccentricity of every vertex 𝑣  is constant 
ℭ𝑒(𝑣) = 3 and all the vertices adjacent to 𝑣 are the coupling eccentric 
vertices of 𝑣 . Since we have deg(𝑣) = 𝑛 − 1  all the vertices are 
eccentric vertices and the coupling eccentricity of every 𝑣 ∈ 𝑉(𝐺) 
being constant. The coupling radius and coupling diameter of 𝐾𝑛 is 
same, hence Kn is self-centered. Therefore ℭ𝑅(𝐺) = ℭ𝑃(𝐺) = 𝑉(𝐺). 

 
Observation 5.4: For any Path 𝑃𝑛, 

(i) ℭ𝑅(𝑃𝑛) has unique couple center if 𝑛 is odd. 

(ii) ℭ𝑅(𝑃𝑛) contains a pair of coupling central vertices if 𝑛 is even. 

(iii) ℭ𝑃(𝑃𝑛) has only end vertices. 
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Theorem 5.5: For any path graph 𝑃𝑛, where 𝑛 ≥ 2 

ℭ𝑟𝑎𝑑(𝐺) = {
𝑛, 𝑖𝑓  𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 + 1,   𝑖𝑓𝑛  𝑖𝑠 𝑒𝑣𝑒𝑛
 

Proof: Case(i): If 𝑛 is odd. From the Observation-4.4(i) any odd path 
𝑃𝑛 contains a unique vertex which forms the coupling center of the 
graph. Then the pendant vertices 𝑣1  and 𝑣𝑛  from the coupling 
eccentric vertices of the unique vertex 𝑣𝑖, which forms the coupling 

center. The distance 𝑑(𝑣𝑖 , 𝑣1) = 𝑑(𝑣𝑖, 𝑣𝑛) =
𝑛−1

2
. Then from the 

Observation-3.1  

Case (i) :if 𝑑(𝑢, 𝑣) = 𝑛, then ℭ𝑑(𝑢, 𝑣) = 2𝑛 + 1.  

Therefore ℭ𝑑(𝑣𝑖, 𝑣1) = ℭ𝑑(𝑣𝑖, 𝑣𝑛) = 2 (
𝑛−1

2
) + 1 = 𝑛.  

Case (ii): If 𝑛 is even we know from the Observation-5.4(ii) that there 
is a pair of intermediate adjacent vertices which forms the coupling 
center of 𝑃𝑛. Let 𝑣𝑝 and 𝑣𝑞 be the intermediate adjacent vertices of 

the path ℭ𝑅(𝑃𝑛) = {𝑣𝑝, 𝑣𝑞}.  Then we have ℭ𝑒(𝑣𝑝) = ℭ𝑒(𝑣𝑞) . The 

coupling eccentric vertices of 𝑣𝑝  and 𝑣𝑞  are 𝑣𝑛  and 𝑣1  respectively. 

Since distance between the central vertices and the pendant vertices 

must be same, 𝑑(𝑣𝑝, 𝑣𝑛) = 𝑑(𝑣𝑞 , 𝑣1). Hence 𝑑(𝑣𝑝, 𝑣𝑛) = 𝑑(𝑣𝑞 , 𝑣1) =
𝑛

2
. 

But from the observation-3.1(i), if 𝑑(𝑢, 𝑣) = 𝑛 then ℭ𝑑(𝑢, 𝑣) = 2𝑛 + 1. 

Therefore if 𝑑(𝑣𝑝, 𝑣𝑛) = 𝑑(𝑣𝑞 , 𝑣1) =
𝑛

2
 then ℭ𝑑(𝑣𝑝, 𝑣𝑛) =

ℭ𝑑(𝑣𝑞 , 𝑣1) = 2 (
𝑛

2
) + 1. Hence ℭ𝑟𝑎𝑑(𝐺) = 𝑛 + 1. 

 
Theorem 5.6: For path graph 𝑃𝑛,  the coupling diameter is 
ℭ𝑑𝑖𝑎𝑚(𝑃𝑛) = 2𝑛 − 1. 

Proof: For any path 𝑃𝑛 the diameter is the distance between the end 
vertices of the path. A path is a trial in which vertices are not 
repeated and has 𝑛 vertices and 𝑛 − 1 edges. Therefore, the distance 
between the two end vertices 𝑣1 and 𝑣𝑛 is given by 𝑑(𝑣1, 𝑣𝑛) = 𝑛 − 1, 
which is equal to the total number of edges. Now, from the 
observation-3.1(i) if 𝑑(𝑣1, 𝑣𝑛) = 𝑛 − 1, then ℭ𝑑(𝑣1, 𝑣𝑛) = 2(𝑛 − 1) +
1 = 2𝑛 − 2 + 1 = 2𝑛 − 1. Hence ℭ𝑑𝑖𝑎𝑚(𝑃𝑛) = 2𝑛 − 1. 

Observation 5.5: For any wheel graph 𝑊𝑛 
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(i) 𝑊4 is coupling self-centered graph. 

(ii) When 𝑛 ≥ 5 there exist a unique coupling center |ℭ𝑅(𝑊𝑛)| = 1 
and |ℭ𝑃(𝑊𝑛)| = 𝑛 − 1. 

 
Theorem 5.7: For a wheel graph 𝑊𝑛,  where 𝑛 > 4  ℭ𝑟𝑎𝑑 = 3  and 
ℭ𝑑𝑖𝑎𝑚 = 5. 

Proof: Let 𝑊𝑛  be the wheel graph where 𝑉(𝑊𝑛) =
{𝑣1, 𝑣2, 𝑣3, … 𝑣𝑐 , … , 𝑣𝑖} . Let 𝑣𝑐  be the vertex adjacent to all other 
vertices of a graph. Therefore deg(𝑣𝑐) = 𝑛 − 1 and degree of all other 
vertices deg(𝑣𝑖) = 3 where 𝑣𝑖 ∈ 𝑉(𝑊𝑛) − {𝑣𝑐}. Since every vertex of 
𝑉(𝑊𝑛) − {𝑣𝑐} is incident on the vertex 𝑣𝑐  the distance 𝑑(𝑣𝑐 , 𝑣𝑖) = 1 
and ℭ𝑑(𝑣𝑐 , 𝑣𝑖) = 2(1) + 1 = 3  (From the Observation-3.1(i)). Now 
consider any two vertices 𝑣1  and 𝑣2  other than 𝑣𝑐  then shortest 
distance between them will be either path 𝑃1 or 𝑃2. 𝑃1 is given by 
𝑣1 − 𝑣2 if 𝑣1 and 𝑣2 are adjacent. 𝑃2 is given by 𝑣1 − 𝑣𝑐 − 𝑣2 if 𝑣1 and 
𝑣2 are not adjacent. 

Case(i): Consider  𝑃1 , 𝑑(𝑣1, 𝑣2) = 1  and ℭ𝑑(𝑣1, 𝑣2) = 2(1) + 1 = 3 
(by Observation- 3.1(i)).  

Case(ii): Consider 𝑃2 , 𝑑(𝑣1, 𝑣2) = 2   and ℭ𝑑(𝑣1, 𝑣2) = 2(2) + 1 =
5(by Observation- 3.1(i)). Now the coupling eccentric values of any 
vertex 𝑣𝑖 ∈ 𝑉(𝑊𝑛) is given by ℭ𝑒(𝑣𝑖) = 3 or 5. Therefore ℭ𝑟𝑎𝑑(𝑊𝑛) =
3  and ℭ𝑑𝑖𝑎𝑚(𝑊𝑛) = 5 . 

 

Theorem 5.8: For a star graph 𝑆𝑛 where 𝑛 ≥ 3 

(i) |ℭ𝑅(𝑆𝑛)| = 1. 

(ii) 𝑣𝑖 ∈ ℭ𝑃(𝑆𝑛) where 𝑣𝑖 belongs to the set of all pendant vertices of 
𝑆𝑛 and |ℭ𝑃(𝑆𝑛)| = 𝑛 − 1. 

Proof: Case(i): Every star graph 𝑆𝑛, where 𝑛 ≥ 3 contains a central 
vertex and 𝑛 − 1 pendant vertices. The degree of the central vertex is 
𝑛 − 1 and the degree of pendant vertices is one. Now the distance 
between the central vertex 𝑣𝑐  and pendant vertex 𝑣𝑖  given by 
𝑑(𝑣𝑐 , 𝑣𝑖) = 1. Therefore ℭ(𝑣𝑐 , 𝑣𝑖) = 3. The shortest distance between 
any two pair of pendant vertices is given by 𝑑(𝑣1, 𝑣2) = 2. Therefore 
ℭ𝑑(𝑣1, 𝑣2) = 2(2) + 1 = 5 . ℭ𝑒(𝑣𝑐) = 3  being the smallest eccentric 
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value of 𝑆𝑛, 𝑣𝑐  becomes a vertex with a unique coupling eccentric 
value. Hence |ℭ𝑅(𝑆𝑛)| = 1. 

Case(ii): In case(i) we see that |ℭ𝑅(𝑆𝑛)| = 1. 𝑣𝑐 is the unique vertex 
with the least eccentric value and all the other remaining pendant 
vertices 𝑣𝑖 ∈ 𝑉(𝑆𝑛) − {𝑣𝑐}  have the same coupling eccentricity 
ℭ𝑒(𝑣𝑖) = 5. Then ℭ𝑑𝑖𝑎𝑚(𝑆𝑛) = 5 and ℭ𝑟𝑎𝑑(𝑆𝑛) = 3. Therefore, the 
set of all end vertices of 𝑆𝑛 form the coupling periphery of 𝑆𝑛. 

Observation 5.6: For any cycle 𝐶𝑛 

(i) 𝐶𝑛 is coupling self-centered. 

(ii) |ℭ𝑅(𝐺)| = |ℭ𝑃(𝐺)| = 𝑛 for any cycle 𝐶𝑛. 

(iii) 𝑉(𝐶𝑛) ∈ ℭ𝑅(𝐺), 𝑉(𝐶𝑛) ∈ ℭ𝑃(𝐺), 𝑉(𝐶𝑛) = ℭ𝑅(𝐶𝑛) = ℭ𝑃(𝐶𝑛). 

Theorem 5.9: For any cycle 𝐶𝑛 

ℭ𝑟𝑎𝑑(𝐶𝑛) = ℭ𝑑𝑖𝑎𝑚(𝐶𝑛) = {
𝑛, 𝑖𝑓 𝑛 𝑖𝑠 𝑜𝑑𝑑

𝑛 + 1, 𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛 
 

Proof: Case(i): Let 𝐶𝑛  be a cycle graph where 𝑛 is odd. For every 

vertex 𝑣𝑖 ∈ 𝑉(𝐶𝑛) the farthest vertex lies at a distance of 
𝑛−1

2
 from it. 

Therefore 𝑒(𝑣𝑖) =
𝑛−1

2
. Therefore, coupling eccentricity of every 

vertex of 𝐶𝑛 is given by ℭ𝑒(𝑣𝑖) = 2 (
𝑛−1

2
) + 1 = 𝑛. Therefore, for an 

odd cycle which is also self-centered. ℭ𝑟𝑎𝑑(𝐶𝑛) = ℭ𝑑𝑖𝑎𝑚(𝐶𝑛) = 𝑛. 

Case(ii): For an even cycle 𝐶𝑛, where 𝑣𝑖 ∈ 𝑉(𝐶𝑛) the vertex farthest 

from 𝑣𝑖 lies at a distance of 
𝑛

2
 from it. Therefore 𝑒(𝑣𝑖) =

𝑛

2
. Now the 

coupling eccentricity of every vertex of 𝐶𝑛  is given by ℭ𝑒(𝑣𝑖) =

2 (
𝑛

2
)+1=n+1. Hence for an even cycle which is also self-centered, 

ℭ𝑟𝑎𝑑(𝐶𝑛) = ℭ𝑑𝑖𝑎𝑚(𝐶𝑛) = 𝑛 + 1. 

 

Observation 5.7: For a friendship graph 𝐹𝑛 

(i) |ℭ𝑅(𝐹𝑛)| = 1. 

(ii) |ℭ𝑃(𝐹𝑛)| = 𝑛 − 1. 

(iii) 𝑣𝑖 ∈ ℭ𝑃(𝐹𝑛) where deg(𝑣𝑖) = 1 and 𝑣𝑖 ∈ 𝐹𝑛. 
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Theorem 5.10: For any friendship graph 𝐹𝑛 , ℭ𝑟𝑎𝑑(𝐹𝑛) = 3  and 
ℭ𝑑𝑖𝑎𝑚(𝐹𝑛) = 5. 

Proof: We can obtain 𝐹𝑛  by joining ′𝑛′   𝐶3  cycle graph with a 
common vertex. The ′𝑛′ in 𝐹𝑛 denotes the number of 𝐶3 cycles in 𝐹𝑛. 
There are 2𝑛 + 1 vertices and 3𝑛 edges in 𝐹𝑛. The graph 𝐹1 is copy of 
cycle 𝐶3 . The friendship graph 𝐹2  is obtained by joining two 𝐶3 
cycles with a common vertex. Let 𝑣𝑐 ∈ 𝑉(𝐹𝑛) be the vertex common 
for every cycle 𝐶3  in 𝐹𝑛 . Then deg(𝑣𝑐) = 2𝑛. Since 𝑣𝑐  is adjacent to 
every vertex 𝑣𝑖 ∈ 𝑉(𝐹𝑛) − 𝑣𝑐, 𝑑(𝑣𝑐 , 𝑣𝑖) = 1 and ℭ𝑑(𝑣𝑐 , 𝑣𝑖) = 3. Let vi, 

vj ∈ 𝑉(𝐹n) - {vc} be the adjacent vertices. Therefore 𝑑(𝑣1, 𝑣2) = 1, 

ℭ𝑑(𝑣1, 𝑣2) = 3, 𝑣1, 𝑣2 ≠ 𝑣𝑐 and (𝑣1, 𝑣2) ∈ 𝐸(𝐹𝑛). The other possibility 
being (𝑣1, 𝑣2) ∉ 𝐸(𝐹𝑛). Then the distance between 𝑣1 and 𝑣2 is given 
by the path 𝑣1 − 𝑣𝑐 − 𝑣2 since 𝑣𝑐 is adjacent to all vertices of 𝐹𝑛. Now 
𝑑(𝑣1, 𝑣2) = 2 and ℭ𝑑(𝑣1, 𝑣2) = 5 where (𝑣1, 𝑣2) ∉ 𝐸(𝐹𝑛) and 𝑣1, 𝑣2 ≠
𝑣𝑐 . Hence, we have ℭ𝑒(𝑣) = 3  or 5 where 𝑣 ∈ 𝑉(𝐹𝑛) . Therefore 
ℭ𝑟𝑎𝑑(𝐹𝑛) = 3 and ℭ𝑑𝑖𝑎𝑚(𝐹𝑛) = 5. 
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