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ABSTRACT 

The stability of fractional-order visco-elastically damped 
linear system Bagley Torvik equation is analyzed in this 
paper. The fundamental novelty of this paper is the 
application of Caputo derivative. Prevailing sufficient 
spectral conditions are considered to guarantee the stability 
of linear models. Laplace transform, and Mittag-Leffler 
functions are utilized to develop the results. Furthermore, 
asymptotical stability of linear fractional-order models are 
also achieved through spectral values of the characteristic 
polynomials. Numerical examples are given to display the 
effectiveness of suggested method. 
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INTRODUCTION 
Fractional Calculus (FC) performing an exceptionally significant role 
in mathematical modelling for a range of physical systems in various 
discipline particularly in thermal conduction, diffusion wave, 
population dynamics, predator-prey model[1], plankton–fish model 
[2], control theory, controller in air and ocean circulation [3], models 
that includes memory, delayed model [4-5] and etc. In recent times, 
FC used as a precise representation of the real-life phenomena. 
Viscosity in a liquid (Newtonian element) is inevitable in the practical 
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mechanical structures. It frequently affects stability, shifting of the 
control, performances and dynamic behaviours. Bagley Torvik 
equation [6] takes place in visco-elastically damped structures 
modeling, in which a plate (rigid) is fully submerged in a Newtonian 
fluid. Researchers made an attempt to describe Viscoelastic solids and 
its mechanical properties. Due to the lack of clear connection between 
the theoretical models, explaining the function of such elements and 
the relevant physical laws are still complex. To depict mechanical 
properties of these materials, the researcher has been forced to adopt 
empirical approaches. 

A complex constant as material modulus, numerical methods, and the 
standard linear viscoelastic model are the classical models. The 
negative aspect of this model is that the huge derivative terms 
performing on stress and strain. Several viscoelastic materials have to 
be analyzed, which signify the frequency and damping property. The 
stress relaxation phenomenon seems to be proportional to time raised 
to fractional powers, according to early measurements of the 
mechanical characteristics of viscoelastic materials. Additionally, it 
can be deduced from the experimental findings that several metals 
and glasses had genuine fractional derivative connections. This article 
proposes a broader model of fractional derivatives. It is crucial to 
remember that fractional derivative interactions come from the 
ground up. The viscoelastic media’s mechanical behavior can be 
established with the help of fractional model and its mathematical 
form. This model not only convinces second law of thermodynamics 
but also estimates elliptic stress-strain loops for the proposed 
viscoelastic materials.  

Autonomous fractional dynamical systems and its stability have been 
analyzed by various methods. One of the influential methods is 
stability theorem [7-8], in which the position of spectral values in the 
complex plane is utilized to guarantee the stability of the given 
system. Other well-known methods are Fractional Lyapunov direct 
method, Linear Matrix Inequality (LMI), Mittag-Leffler Stability, 
operational matrix method [10], finite time stability [11] etc. Although 
it has been investigated in earlier research, the stability problem for 
fractional nonlinear systems is still unresolved. Computational 
methods may be employed to solve nonlinear fractional systems. 
Many numerical techniques are suggested for approximating 



Priyadarshini S.          Stability analysis of visco-elastically damped… 

39 

 

solutions of the nonlinear system including wavelet Operational 
matrix method [12], Homotopy Perturbation Method [13-14], 
Variation Iteration Methods [15], Adomine decomposition method 
[16], Collocation method [17], Chebyshev Method [18], Euler 
algorithm [19], Argument condition [20]. Momani and Odobat’s 
Numerical approach specified in [21-22], to solving the linear 
fractional system has been utilized in this work. 

To model the viscoelastic material and calculate the structure’s 
response to general loading conditions, only a small number of 
empirical parameters are required. Certain issues must be resolved 
before a visco-elastically damped structure’s response can be 
determined successfully. For viscoelastic materials, it is necessary to 
construct stress-strain relationships based on the literature review. 
Fractional calculus is used to find closed-form solutions to the 
equations of motion for visco-elastically damped structures using 
these relationships. The organization of this paper is as follows. 
Section 2 consists of preliminary concepts and basic definitions. In 
section 3, the primary idea of investigating stability is summarized. 
Section 4 illustrates the considered theory through examples, in 
which graphical solutions are obtained through MATLAB. Finally, 
section 6 gives the conclusion. 

PRELIMINARIES 
This section contains basic definitions and standard results. 

Definition 2.1: [23] (Riemann - Liouville Fractional Integral). 

Iαy(x) =
1

Γ{(α)}
∫ (x − s){α−1}y(s) ds

x

0

                                                        (1) 

where 𝑦 ∈  𝐿1(𝑅+), 𝛼 > 0. 

Definition 2.: [23] ((Riemann - Liouville Fractional Derivative). 

Dαy(x) = DnI{n−α}y(x) =
1

Γ(n−α)
(

d

dx
)

n

∫ (x − s){n−α−1}y(s)ds 
x

0
           (2) 

where 𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈  𝑁, 𝑦{𝑛−1}(𝑥) ∈ 𝐴𝐵(𝑅)+. 

Definition 2.3: [23] (Caputo Fractional Derivative). 

Dαy(x) = I{n−α }yn(x) =
1

Γ(n−α)
∫ (x − s){n−α−1}yn(s)ds

x

0F
c                     (3) 



Mapana - Journal of Sciences, Vol. 22, No.  2                                   ISSN 0975-3303 

40 

 

where  𝛼 > 0, 𝑛 − 1 < 𝛼 < 𝑛, 𝑛 ∈  𝑁, 𝑦𝑛−1(𝑥) ∈  𝐴𝐵(𝑅)+. 

 

 

 

 

In particular 

 Dαy(x) = I1−α y′(x) =
1

Γ(1−α)
∫ (x − s)−αy′(s)ds

x

0F
c                               (4) 

 

Definition 2.4: [23] Mittag-Leffler function. The Mittag-Leffler 
function can be defined in terms of two parameters 

𝔼𝛼,𝛽(𝑧) = ∑
𝑧𝑘

𝛤(𝛼𝑘+𝛽)
∞
𝑘=0 ,  (𝛼, 𝛽 > 0, 𝑧 ∈ ℂ).                                    (5) 

Definition 2.5: [23] Laplace transform. 

Dαy (x) =  sα(L(y))(s) −  y1s{α−1}, when 0 < α < 1                            (6)F
C  

Dαy (x)𝐹
𝐶 =  sα(L(y)(s) − y1s{α−1} + y2s

{α−1}
, when 1 < α < 2             (7) 

here y1 = y(0), y2 = y′(0). 

ℒ{𝑥𝛽−1𝐸𝛼,𝛽(𝜆𝑥𝛼)} =
𝑠𝛼−𝛽

𝑠𝛼 − 𝜆
,  (ℛ(𝑠) > |𝜆|

1
𝛼),                                    (8) 

where 𝑥 ≥   0, 𝜆 ∈ 𝑅. 

Definition 2.6: Linear Fractional Differential System 

Consider 

Dα y(x)  = P y(x),F
C                                                                                   (9) 

with initial value  𝑦(0) = 𝑦0 = (𝑦10, 𝑦20, … , 𝑦𝑛0)𝑇 where the above-
mentioned system (9) is said to be 

• stable if for any 𝑥0,  , there exists 𝜖 > 0  such that ||y(x)|| ≤ 𝜖 

for 𝑥 ≥ 0, 

• asymptotically stable if lim
𝑥→∞

||y(x)|| = 0. 

Theorem 2.7: Take the following system into consideration 

Dα y(x)F
C =  𝑃 𝑦(𝑥), 𝛼 ∈  (0,1) and initial condition 𝑦0 =  𝑦(0)     (10) 
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i) asymptotically stable if and only if  |𝑎𝑟𝑔(𝑠𝑝𝑒𝑐(𝑃))| >
𝛼𝜋

2
 

ii) stable if and only if either it is asymptotically stable, or those  

     critical spectral values satisfy |𝑎𝑟𝑔(𝑠𝑝𝑒𝑐(𝑃))| =
𝛼𝜋

2
 with  

     geometric multiplicity one. 

Note: Here spec(P) denotes the spectral values of the matrix. If the 

critical spectral values satisfying |𝑎𝑟𝑔(𝑠𝑝𝑒𝑐(𝑃))| =
𝛼𝜋

2
 and all non-

zero spectral values of  satisfying have the same algebraic and 
geometric multiplicities, and the zero spectral value of P has the same 
algebraic and geometric multiplicities, then the system’s zero solution 
is stable. As long as P matrix has a zero spectral value, this system’s 
zero solution is never asymptotically stable. 

3. STABILITY ANALYSIS OF LINEAR DIFFERENTIAL  
     SYSTEM 

Take the nonlinear system into consideration 

Dα y(x)F
C =  𝑃 𝑦(𝑥) + 𝑓(𝑥)                                                                    (11) 

where 𝛼 ∈  (0,1), 𝑓(𝑥) ∈  𝐶(𝑅 × 𝑅𝑛, 𝑅𝑛), 𝑓(𝑥) = 0 

With IC 𝑦(0) = 𝑦0 = (𝑦10, 𝑦20, … , 𝑦𝑛0)𝑇 , 𝑃 ∈ 𝑅𝑛×𝑛.  
 

Lemma 3.1: If all the spectral values of P meet the requirement 

|arg (𝑠𝑝𝑒𝑐(𝑃))| >
𝛼𝜋

2
                                                                             (12) 

then there exists a constant value K>0 such that, 

∫ ||ξα−1  
x

0
𝔼𝛼,α(𝑃ξα)||dξ ≤ K.                                                                (13) 

Theorem 3.2:  Suppose 𝑓(𝑥) ≤ M and all the spectral values of P meet 
the requirement (12). Then, the solution of system [11] is 
asymptotically stable. 

Proof. The solution of (11) can be represented as follows 

y(x) = Eα(P xα)y0 + ∫ (x − s)α−1  
x

0
𝔼𝛼,α(𝑃(x − s)α) f(s, y(s))ds     (14) 

From which it follows that, 
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||y(x)||  ≤≤ ||Eα(P xα)y0||

+ ∫ ||(x − s)α−1  
x

0

𝔼𝛼,α(𝑃(x − s)α)|| || f(s, y(s))||ds 

≤ ||Eα(P xα)y0|| + ∫ ||ξα−1  
x

0

𝔼𝛼,α(𝑃ξα)|| || f(x −  ξ, y(t − ξ))||dξ 

≤ ||Eα(P xα)y0|| + M ∫ ||ξα−1  
x

0

𝔼𝛼,α(𝑃ξα)||dξ 

From Gronwall Inequality, we have 

||y(x)|| ≤  ||Eα(P xα)y0||exp { M ∫ ||ξα−1  
x

0

𝔼𝛼,α(𝑃ξα)|| dξ}        (15) 

By using Lemma 3.1, we have 

exp{ M ∫ ||ξα−1  
x

0
𝔼𝛼,α(𝑃ξα)|| dξ}is bounded.                                   (16) 

Further, ||Eα(P xα)y0|| →  0 as  𝑥 → ∞ . Hence, we have lim
𝑥→∞

𝑦(x) → 0. 

Therefore, there exists an asymptotically stable solution.  

MAIN WORK - BAGLEY TORVIK EQUATION 
Internal friction or air induces the damping effect, which makes the 
vibration of system to stop after time. This dampening effect depends 
on the air resistance to the movement of mass, and the corresponding 
resistance is proportional to the velocity of the moving mass. Thereby, 
fractional form of the damping force occurs in rigid pate immersed in 
a Newtonian fluid model. This type of system is discussed in [24-25]. 

Considering the forces, we have 

𝑚𝑦″(𝑥) = 𝑚𝑓(𝑥) − 𝑘𝑦(𝑥) − 2𝑆𝜎(𝑥, 0) 

Using the relationships 

𝜎(𝑥, 𝑧) = √(𝜇𝜌)𝐷𝑥
1/2

𝑣(𝑠, 𝑧), 𝑣𝑝(𝑥, 0) = 𝑦′(𝑥) 

We get the below simplified form. 

𝑦′′(𝑥) +  𝐴 𝐷𝑥

{
3
2

}𝑦(𝑥)
+ 𝐵 𝑦(𝑥) = 𝑓(𝑥)(𝑥 > 0), 

𝐴 = (
2𝑆

𝑚
) √\𝑚𝑢 𝜌, 𝐵 =

𝑘

𝑚
.  
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A real, conventionally formulated physical system is described using 
the fractional derivative. For further details see [24]. 

 

Figure 1: Bagley-Torvik Equation 

Analytic Solution 
This equation can be represented as follows. 

𝐶𝐷2𝑦(𝑥) + 𝐴𝐶𝐷
3

2𝑦(𝑥) + 𝐵𝑦(𝑥) = 𝑓(𝑥).                                             (17) 

The system of fractional differential equation is given by 

𝐶𝐷
1

2𝑦1(𝑥) = 𝑦2(𝑥),

𝐶𝐷
1

2𝑦2(𝑥) = 𝑦3(𝑥),

𝐶𝐷
1

2𝑦3(𝑥) = 𝑦4(𝑥),

𝐶𝐷
1

2𝑦4(𝑥) = −𝐵𝑦1(𝑥) − 𝐴𝑥4(𝑥) + 𝑓(𝑥),

                                 (18) 

where 𝑦1(𝑥) = 𝑦(𝑥), with IC 𝑦1(0) = 𝑦2(0) = 𝑦3(0) = 𝑦4(0) = 0.  The 
standard form is given by 

𝐶𝐷𝛼𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥)                                                                       (19) 

and 𝐹(𝑥) = 𝑓(𝑥) = (0,0,0,15)𝑇/𝐴  0 < 𝑥 ≤ 1, where 

𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1

−𝐵 0 0 −𝐴

]                                                                           (20)                                                                                                
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Laplace transform Technique 

𝐶𝐷𝛼𝑦(𝑥) + 𝑃𝑦(𝑥) = 𝑓(𝑥)                                                                        (21) 

with  𝑦(0) = 0,0 < 𝛼 < 1 with the help of Laplace transform we reach, 

𝑠𝛼𝑌(𝑠) − 𝑦(0) + 𝑃𝑌(𝑠) =
1

𝑠
                                             (22)

𝑌(𝑠) =
1

𝑠(𝑠𝛼+𝑃)
                                                                    (23)

   

By taking inverse Laplace transform 

  𝑦(𝑥) = 𝐿−1 1

𝑠(𝑠𝛼+𝑃)
= 𝑥𝛼𝐸𝛼,𝛼−1(−𝑃𝑥𝛼)                                    (24) 

which is the required analytical solution. 

 

Stability Analysis 
The stability analysis depends on the characteristic functions and 
spectral values of the matrix. Characteristic equation is given by 

𝜆4 + 𝐴𝜆3 + 𝐵 = 0                                                                      (25) 

The spectral values of P are 

𝜆1 = −0.25𝐴 + 0.5√(𝐼1) + 0.5√(𝐼2)                            (26)

𝜆2 = −0.25𝐴 + 0.5√(𝐼1) − 0.5√(𝐼2)                            (27)

𝜆3 = −0.25𝐴 − 0.5√(𝐼1) + 0.5√(𝐼2)                            (28)

𝜆4 = −0.25𝐴 − 0.5√(𝐼1) − 0.5√(𝐼2)                           (29)

 

Where, 𝐼1 = 0.25𝐴2 +
3.4943𝐵

𝐼3
+ 0.3816𝐼3, 𝐼2 = 0.75𝐴2 − 𝐼1 −

0.25𝐴2

√𝐼1
, 𝐼3 =

(9𝐴2𝐵 + 1.732√(𝐼4))1/3, 𝐼4 = 27𝐴4𝐵2 − 256𝐵3. Next, different cases 
are analyzed, in which the cases satisfies  the |arg(𝑠𝑝𝑒𝑐(𝑃))|   >
𝜋

4
conditions are concentrated for the stability analysis. 

Case 1: 𝐼1 < 0, 𝐼2 < 0 

In this case the spectral values, the real part will be -0.25 A. In 
particular, if A>0, then all the spectral values have negative real part.  
Hence, there exists an asymptotically stable solution. If A<0, further 
investigation is required to guarantee the stability. 

Case 2: 𝐼1 > 0, 𝐼2 < 0 
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In this case the spectral values are −0.25(𝐴 ± 2√(𝐼1)). In particular if 

𝐴 ± 2√(𝐼1) > 0, then all the spectral values have negative real part, 

and hence there exists an asymptotically stable solution. If 𝐴 ±

2√(𝐼1) < 0 further investigation is required to guarantee the stability. 

Case 3: 𝐼1 < 0, 𝐼2 > 0 

In this case the spectral values, whose real part will be −0.25(𝐴 ±

2√(𝐼2). In particular if 𝐴 ± 2√(𝐼2) > 0, then all the spectral values 

have negative real part, and hence there exists an asymptotically 

stable solution. If 𝐴 ± 2√(𝐼2) < 0, further investigation is required to 

guarantee the stability. 

Case 4: 𝐼1 > 0, 𝐼2 > 0 
In this case the real part of the spectral values will be −0.25(𝐴 ±

2√(𝐼1)  . In particular, if (𝐴 ± 2√(𝐼1) ± 2√(𝐼2)) > 0  , then all the 

spectral values have negative real part, hence there exists an 
asymptotically stable solution.  

If any one of the root satisfies condition (𝐴 ± 2√(𝐼1) ± 2√(𝐼2) < 0,   

then the spectral values would not have negative real root. In this 
case the argument condition is not satisfied. Thereby, the given 
system is not stable. 

Case 5: 𝐵 = 0 
In this case the spectral values are given by 0  with multiplicity three 
and -A . In this case the given system is stable for the positive value of 
A and zeros must have same geometric and algebraic multiplicity. 
Otherwise, it is not stable.  

Case 6: 𝐴 = 0 

In this case the spectral values are given by(−𝐵)1/4  . For 𝐵 > 0 , 
spectral values are given by 0.7071 ± 0.7071𝑖  , which satisfies the 
condition |𝑎𝑟𝑔(𝜆)| = 𝜋/4 = 𝛼𝜋/2  . In this case  the given system is 
stable but not asymptotically stable. For 𝐵 < 0, spectral values are 
real and this fails to satisfy the condition|𝑎𝑟𝑔(𝜆)| > 𝛼𝜋/2.  . In this 
case the given system is not stable. 

5. EXAMPLES 
Example 5.1 (Bagley-Torvik equation) 
Take the following fractional system into consideration  
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 𝐶𝐷2𝑦(𝑥) + 𝐴 𝐶𝐷3/2𝑦(𝑥) + 𝐵𝑦(𝑥) = 𝑓(𝑥),                  (30) 

where A, 𝐵 ∈ ℝ and  𝛼 =
3

2
with IC 𝑦(0) = 𝑦′(0) = 0, 

𝑓(𝑥) = {
15,  0 < 𝑥 ≤ 1,
0 otherwise.

 

The stability of Bagley-Torvik equation depends on the 
parameters and it can be seen from the following. 
If  𝐴 = 𝐵 = 1,  the standard form is given by 𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) +

𝐹(𝑥)  and , where 𝐹(𝑥) = (0,0,0,15)𝑇  0 < 𝑥 ≤ 1, 

               𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 −1

]                                                        (31) 

The spectral values of P are −1.0189 ± 0.6026𝑖, 0.5189 ± 0.6666𝑖, 

which satisfies |arg(𝑠𝑝𝑒𝑐(𝑃))|   >
𝜋

4
..  It meets all the requirements of 

Theorem 3.2. Hence, there exists an asymptotically stable solution of 
(30) see [Fig 2]. 

If 𝐴 = −1, 𝐵 = 1, the standard form is 𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥) and  
where 𝐹(𝑥) = (0,0,0,15)𝑇  0 < 𝑥 ≤ 1  

            𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1

−1 0 0 1

]                                                     (32) 

The spectral values of P are  1.0189 ± 0.6026𝑖, −0.5189 ± 0.6666𝑖, 

which fails to satisfy the spectral condition |arg(𝑠𝑝𝑒𝑐(𝑃))| >
𝜋

4
.  It does 

not meet the allthe requirement of the Theorem 3.2. Hence, there 
exists a non-stable solution of (30) see [Fig 3]. 
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Figure 2: StaFble  

Figure 2: Stable systems 

 

Figure 3: Unstable system 

Example 5.2.  (Without Dampening effect) 
Now take the following system into consideration 

 𝐶𝐷2𝑦(𝑥) + 𝐵𝑦(𝑥) = 𝑓(𝑥),                                 (33) 

where 𝐵 ∈ ℝ  with IC 𝑦(0) = 𝑦′(0) = 0 

𝑓(𝑥) = {
15,  0 < 𝑥 ≤ 1,
0 otherwise.

 

In this case, Bagley-Torvik becomes an ordinary differential equation 
due to the absence of dampening effect and its stability completely 
depends on the values of B.  

It can be seen from the following. 

If B=4, it can be represented by  𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥)and 𝐹(𝑥) =
(0,0,0,15)𝑇 , where 

𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1

−4 0 0 0

] .                                          (34) 
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The spectral values of P are 1 ± 𝑖, −1 ± 𝑖, which meet the requirement 

of spectral condition |arg(𝑠𝑝𝑒𝑐(𝑃))| =
𝜋

4
.  Hence, there exists an 

asymptotically stable solution of (33) see [Fig 4]. 

 
Figure 4: Stable system 

If B=-4, it can be represented by 𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥) and  
𝐹(𝑥) = (0,0,0,15)𝑇  0 < 𝑥 ≤ 1, where 

𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1
4 0 0 0

]                                           (35) 

The spectral values of P are  ±1.4141,1.4142, ±1.4142𝑖, which fails to 
satisfy hence the given system (33) does not meet all the requirement 
of Theorem 3.2. Hence, there exists an asymptotically stable solution 
(33) see [Fig 5]. 
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Figure 5: Unstable system 

Example 5.3 (Bagley-Torvik Equation) 
Now, take the following system into consideration 

 𝐶𝐷2𝑦(𝑥) + 𝐴 𝐶𝐷𝛼𝑦(𝑥) = 𝑓(𝑥)                             (36), 

where  𝐴 ∈ ℝ, and 𝛼 = 3/2, and with IC  𝑦(0) = 𝑦′(0) = 0, 

𝑓(𝑥) = {
15,  0 < 𝑥 ≤ 1,
0 otherwise.

 

The stability of Bagley-Torvik equation depends on the parameters of 
A. It can be seen from the following. 

If A=9 it can be represented by 𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥), and 𝐹(𝑥) =
(0,0,0,15)𝑇  0 < 𝑥 ≤ 1 and, where 

              𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 −9

]                                     (37) 

The spectral values of P are 0 with multiplicity three and -9 with one. 

It can be noticed that every spectral value satisfies |arg(𝑠𝑝𝑒𝑐(𝑃))|   >
𝜋

4
. Hence, the given system (36) meets all the requirement of Theorem 

3.2. Hence, there exists a stable solution of (36) See [Fig 6]. 
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Figure 6: Stable system 

If A=-9, it can be represented by  𝐶𝐷1/2𝑦(𝑥) = 𝑃𝑦(𝑥) + 𝐹(𝑥) and 
F(𝑥) = (0,0,0,15)𝑇  0 < 𝑥 ≤ 1, where 

𝑃 = [

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 9

] .                                               (38) 

The spectral values of P are 0 with multiplicity three and 9 with one. 

It fails to meet the spectral condition|arg(𝑠𝑝𝑒𝑐(𝑃))| >
𝜋

4
.  Hence, there 

exists an unstable solution of (36). See [Fig 7].  

 
Figure 7: Unstable system 
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6. CONCLUSION 
In this work, a few fascinating linear fractional differential systems 
emerging in visco-flexibly damped structure have been settled 
utilizing the Bagley-Torvik condition. The approximate stability 
argument condition is investigated using spectral values for linear 
fractional system. The required results are deduced using prevailing 
properties of the Mittag-Leffler functions. Examples are analytically 
solved using traditional Laplace Transform technique. Numerical 
methods and Matlab were utilized to plot the corresponding solutions. 
Examples provided demonstrate the efficacy of the concepts 
presented. 
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