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Abstract 
Let 𝑓𝑀  be an assignment of subsets of  𝑋  to the vertices of 
G such that  𝑓𝑀(𝑢) =  {𝑑(𝑢, 𝑣): 𝑣  ∈  𝑀 }  where,   𝑑(𝑢, 𝑣) is 
the usual distance between 𝑢   and  𝑣  .  We call 𝑓𝑀  an 𝑀 
−distance pattern colouring of   𝐺    if no two adjacent 

vertices have same 𝑓𝑀.   Define    𝑓𝑀
⊕of an edge   𝑒 ∈  𝐸(𝐺) 

as 𝑓𝑀
⊕(𝑒) =  𝑓𝑀(𝑢) ⊕ 𝑓𝑀(𝑣); 𝑒 =  𝑢𝑣 . A distance pattern 

distinguishing colouring of a graph 𝐺  is an 𝑀    distance 

pattern colouring of 𝐺 such that both 𝑓𝑀(𝐺) and  𝑓𝑀
⊕(𝐺) are 

injective. This paper is a study on distance pattern 
colouring and distance pattern distinguishing colouring of 
graphs. 
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1. Introduction 
For all terminology that are not defined in this paper, we refer the 
reader to F. Harary[8]. All graphs considered in this paper are finite, 
connected and simple.  

Let 𝑀 be a non-empty subset of vertices of a graph 𝐺 and 𝑢 ∈  𝑉 (𝐺).  
Then, the 𝑀 −distance pattern of 𝑢 is the set 𝑓𝑀(𝑢) =  {𝑑(𝑢, 𝑣): 𝑣 ∈
 𝑀 }.nIf no two vertices in V (G) have the same 𝑀−distance pattern, 
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then the set 𝑀 is said to be a distance pattern distinguishing set of 𝐺, 
and 𝐺  is called a distance pattern distinguishing graph. The least 
cardinality of the distance pattern distinguishing set in 𝐺 is called 
distance pattern distinguishing number of 𝐺, denoted by 𝜚(𝐺). 

The concept of distance pattern distinguishing sets of graphs was 
introduced by Dr. B D Acharya and a detailed study on the topic can 
be found in [3], [5], [6], [9]. It has lot of applications in the fields like 
site control, robot navigation, radio navigation, molecular graph 
theory, etc. Also, colourings of graphs that are required to satisfy 
certain conditions have often been motivated by their effectiveness 
in various applied fields and their intrinsic mathematical interest. 
An enormous amount of literature has built upon different types of 
graph colourings.  Motivated by the vast applications of the concept 
of     distance pattern distinguishing sets of graphs, this paper is an 
attempt at extending the concept of distance pattern of graphs to 
colouring. 

Definition 1.1. Given a connected (𝑝, 𝑞) −graph  𝐺 =  (𝑉, 𝐸)   of 
diameter   𝑑, ∅ ≠ 𝑀  ⊆  𝑉 (𝐺) and a nonempty set 𝑋 =  {0, 1, … , 𝑑} of 
colors of cardinality 𝑑 +  1 , let 𝑓𝑀 be an assignment of subsets of X 
to the  vertices  of  G  such  that  𝑓𝑀 (𝑢) =  {𝑑(𝑢, 𝑣): 𝑣 ∈ 𝑀 } where, 
𝑑(𝑢, 𝑣)  is the usual distance between u and v . We call 𝐺  an 𝑀 
−distance pattern colourable graph if no two adjacent vertices have 
same 𝑓𝑀. The minimum number of vertices in M that gives a distance 
pattern colouring to a graph is called the distance pattern colouring 
number of that graph and is denoted by 𝜒𝑑(𝐺). 

Theorem 1.2. [3] A cycle 𝐶𝑛 is a distance pattern distinguishing graph 
if and only if 𝑛 ≥ 7 and 𝜚(𝐶𝑛) = 3. 

Remark 1.3. Since the M distance patterns of every vertex of a 
distance pattern distinguishing graph are distinct, every distance 
pattern distinguishing graph is distance pattern colourable. But the 
converse need not be true. For example, consider the cycle 𝐶4, which 
is distance pattern colourable by taking M as any two of its 
alternating vertices.  But  𝐶4 is not a distance pattern distinguishing 
graph by Theorem 1.2. Cycle 𝐶5  is neither a distance pattern 
distinguishing graph nor a distance pattern colourable graph as 
none of the subsets of 𝑉 (𝐶5) gives distance pattern colouring to 𝐶5. 
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Remark 1.4. For a graph 𝐺, 𝜒𝑑(𝐺) ≤  𝜚(𝐺) by the injective property 
of 𝑓𝑀 in distance pattern distinguishing graphs. The bound is sharp 
and attained for the graphs like paths, odd cycles, etc. 

Theorem 1.5. For a tree 𝑇, 𝜒𝑑(𝑇) = 1. 

Proof. Let 𝑇 be a tree and let 𝑀 =  {𝑣0} be the center vertex of 𝑇.  
Then for all 𝑣𝑖 ∈  𝑉 (𝑇 ),   𝑓𝑀(𝑣𝑖) =  {𝑑𝑖},  where  𝑑𝑖 =  𝑑(𝑣0, 𝑣𝑖).  Since 
T is acyclic, no two adjacent vertices of 𝑇 have same 𝑓𝑀and hence, 
trees are distance pattern colourable with 𝜒𝑑(𝑇) = 1. 

Theorem 1.6. Complete graphs are distance pattern colourable if 𝑛 =
2. 

Proof. K1 is distance pattern colourable since it has only one vertex. 
K2 is distance pattern colourable by taking M as any of its vertex.  
Consider a complete graph Kn, 𝑛 ≥ 3.  If 

|𝑀 | = 1, then 𝑓𝑀(𝑢) = 1 for all the vertices in V (G) \ M.  If |𝑀 | ≥ 2 
then 𝑓𝑀(𝑢) = 𝑓𝑀(𝑣) = {0, 1} ; 𝑢, 𝑣 ∈ 𝑀 .  Hence, Kn, 𝑛 ≥ 3  is not 
distance pattern colourable. 

Theorem 1.7. For a cycle Cn, 𝜒𝑑(𝐶𝑛) = 2  when 𝑛  is even and 
𝜒𝑑(𝐶𝑛) = 3 when 𝑛 ≥ 7 is odd. 

Proof. Let 𝐶𝑛 = 𝑣1, 𝑣2, … , 𝑣𝑛 be an even cycle with diameter d. 

Case 1: n is even 

Let M contain any two alternative vertices in Cn say, v1 and v3. Then, 
𝑓𝑀(𝑣1) = 𝑓𝑀(𝑣3) = {0, 2} , 𝑓𝑀(𝑣2) =  {1} , 𝑓𝑀(𝑣4) =  𝑓𝑀(𝑣𝑛) =  {1, 3} , 

𝑓𝑀(𝑣5) =  𝑓𝑀(𝑣𝑛−1) = {2,4}, … , 𝑓𝑀 (𝑣𝑛
2
+1) = {𝑑 − 2, 𝑑}   and 

𝑓𝑀(𝑣𝑛
2
))  =  {𝑑 –  1}.  

      As none of the adjacent vertices have same distance pattern, 𝑀 =
{𝑣1, 𝑣3} gives a        distance pattern colouring to 𝐶𝑛. 

Case 2: n is odd 

By Theorem1.6 and by Remark1.3, 𝜒𝑑(𝐶𝑛) = 3 when 𝑛 ≥ 7 

Theorem 1.8. Distance pattern colouring number of a bipartite graph 
and complete bipartite graph is 1. 
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Proof. Consider a bipartite graph 𝐵𝑚,𝑛with partition  𝑃1 and 𝑃2.  Let 
M be a set that contains a singleton vertex u of 𝐵𝑚,𝑛. Without loss of 
generality, let 𝑢 ∈  𝑃1 Then, 

 

𝑓𝑀(v) = 

{
 
 

 
 
{0}  𝑖𝑓  𝑢 =  𝑣

 {2} 𝑖𝑓  𝑣 ∈ 𝑃1\𝑀 

{0,2}  𝑖𝑓  𝑣 ∈ 𝑃2   𝑎𝑛𝑑   (𝑢, 𝑣) ∉  𝐸(𝐵𝑚,𝑛)   

{1} 𝑖𝑓   𝑣 ∈  𝑃2 𝑎𝑛𝑑  (𝑢, 𝑣) ∈  𝐸(𝐵𝑚,𝑛)

  

       

Then 𝐵𝑚,𝑛is distance pattern colourable with 𝜒𝑑(𝐵𝑚,𝑛) = 1 as none 

of the adjacent       have same distance pattern. 

𝐾𝑚,𝑛is also distance pattern colourable with 𝜒𝑑(𝐾𝑚,𝑛) = 1 by taking 

M as in the case of bipartite graph and we get 

𝑓𝑀(v) = {

{0} 𝑖𝑓 𝑢 =  𝑣
{2}  𝑖𝑓 𝑣 ∈ 𝑃1\𝑀 
{1} 𝑖𝑓 𝑣 ∈  𝑃2 

    

Theorem 1.9. Wheel 𝑊𝑛, is distance pattern colourable only if n is odd 

and 𝜒𝑑(𝑊𝑛)  =
𝑛 – 1

2
. 

Proof.  Consider a wheel 𝑊𝑛, with vertex set {w1, w2, w3..., wn−1, 
wn} where, wn is the hub of the wheel. 

Case 1: n is odd 

Let 𝑀 =  {𝑤1, 𝑤3, 𝑤5, … , 𝑤𝑛−2} be the set of all alternating vertices.  

Then 𝑓𝑀 (𝑤𝑖) = {0, 2};  𝑤𝑖  ∈  𝑀 ,   𝑓𝑀(𝑤𝑗)  =   {1, 2},𝑤𝑗  ∉ 𝑀 and  

𝑓𝑀(𝑤𝑛)  =   1 .   Since no two adjacent vertices have same distance 
pattern, 𝑊𝑛 is distance pattern colourable. 

Case 2: n is even 

If any two adjacent vertices of {𝑤𝑛} contained in M, then they will 
have the same distance pattern as {0, 1, 2}. Similarly if any two of 
them are not in M then they will have the distance pattern as {1, 2}. 
Thus in both the cases distance pattern colouring is not possible. 
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2. Distance pattern distinguishing colouring of a graph 
A distance pattern distinguishing colouring of a graph G is an M − 

distance pattern colouring of   G   for which both   𝑓𝑀(𝐺)   and   𝑓𝑀
⊕(𝐺)   

are injective functions.   A graph is called a distance pattern 
distinguishing colourable graph if it admits a distance pattern 
distinguishing colouring. A distance pattern distinguishing 
colouring is called a sequential distance pattern distinguishing 

colouring if 𝑓(𝐺)  and 𝑓⊕(𝐺)are disjoint subsets of  𝑋  and, further 
form a partition of 𝑌 (𝑋). If G admits such a colouring, then G is a 
sequentially distance pattern distinguishing colourable graph. A 
distance pattern distinguishing colouring is called a graceful 

distance pattern distinguishing colouring if 𝑓⊕(𝐺) =  𝑌 (𝑋).  If G 
admits such a colouring then G is a gracefully distance pattern 
distinguishing colourable graph. 

 

Figure 1 

Remark 2.1. Since the distance patterns of each vertex in a distance 
pattern distinguishing colourable graph are distinct, distance 
pattern distinguishing colourable graphs are distance pattern 
distinguishing graphs. But the converse need not be true. For 
example, consider the graph            given in Figure 2.  Let  𝑀 =
{𝑎, 𝑐, 𝑑, 𝑔}  then 𝑓𝑀(𝑎) =  {0, 1, 2}, 𝑓𝑀(𝑏) =  {1, 2}, 𝑓𝑀(𝑐) = {0, 2, 3},
𝑓𝑀(𝑑) =  {0, 1, 2, 3}, 𝑓𝑀(𝑒) =  {1, 2, 3}, 𝑓𝑀 (𝑓 )  =  {1, 3}, 𝑓𝑀(𝑔)  =

 {0, 2}.  But both   𝑓𝑀
⊕ (𝑎𝑏) =  𝑓𝑀

⊕ (𝑑𝑒) =  {0} and hence, G   is not 
distance pattern distinguishing colourable. 
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 Figure 2: 

Remark 2.2. Since all the nonempty subsets have to appear in any 
sequential distance pattern distinguishing colouring of a (𝑛,𝑚)− 
graph 𝐺 , a necessary condition for G to besequentially distance 

pattern distinguishing colourable is that 𝑛 +  𝑚 =  2𝑑+1 −  1 , where 
𝑑 is the diameter of 𝐺. This necessary condition yields that no cycle 
is sequentially distance pattern distinguishing colourable.  Also, the 
above condition is not sufficient for saying that a graph 𝐺  is 
sequentially distance pattern distinguishing colourable. For, 
consider the graph 𝐺 given in Figure 2,  for  which 𝑑 =  3 and 𝑀  =
 {𝑎, 𝑐, 𝑑, 𝑔}.  Here, 𝐺 satisfies the condition but one can verify that it 
is not sequentially distance pattern distinguishing colourable. 

Theorem 2.3. All paths are distance pattern distinguishing 
colourable. 

Proof. Let 𝑃𝑛 = 𝑣1, 𝑣2, … , 𝑣𝑛 be a path on 𝑛  vertices. Let 𝑀 = {𝑣1}. 

Then, 𝑓(𝑣𝑖) =  {𝑖 − 1} and hence, ( 𝑓⊕(𝑣𝑖, 𝑣𝑖+1)  =  {𝑖 −  1, 𝑖} for 1 ≤

 𝑖 ≤  𝑛 . Since both 𝑓(𝐺)  and 𝑓⊕(𝐺)  are injective, 𝑃𝑛  is distance 
pattern distinguishing colourable. 

Remark 2.4. Path 𝑃𝑛  satisfies the necessary condition for the 
sequential distance pattern distinguishing colouring given in 
Remarks 2.7 only if 𝑛 = 1, 2.  When  𝑛 = 1,  graph  is trivial, which is 
sequentially distance pattern distinguishing colourable. When 𝑛 = 2, 
𝑃2 is sequentially distance pattern distinguishing colourable by 
taking M as one of its vertices. Thus, path 𝑃𝑛 is sequentially distance 
pattern distinguishing colourable if and only if n ≤ 2. 

Theorem 2.5. Complete graph 𝐾𝑛  is sequentially distance pattern 
distinguishing col- orable if and only if 𝑛 = 2. 
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Proof. Let the complete graph 𝐾𝑛be sequentially distance pattern 
distinguishing col- orable. Since 𝐾𝑛 is sequentially distance pattern 
distinguishing colourable graph of diameter one, n+nC2 which 
implies that 𝑛 = 2. 𝐾2 is sequentially distance pattern distinguishing 
colourable by taking one of its pendant vertices. 

Theorem 2.6.   [3] For any graph 𝐺 , there exists no distance pattern 
distinguishing set 𝑀 of cardinality 2. 

Theorem 2.7. [5] Path is the only graph which possesses a distance 
pattern distinguishing set 𝑀 of cardinality 1. 

Theorem 2.8.  [6] 𝑃3  is the only distance pattern distinguishing graph 
of diameter two. 

Remark 2.9.  By Theorem 2.6,  there exists no distance pattern 
distinguishing colouring set M of cardinality 2. By Theorem 2.7, path 
is the only graph which possesses a distance pattern distinguishing 
colouring set M of cardinality 1 and by Theorem 2.8, 𝑃3 is the only 
distance pattern distinguishing colourable graph of diameter two. 

Theorem 2.10. [5] A uniform binary tree T is a distance pattern 
distinguishing tree if and only if 𝑂(𝑇 )  =  2𝑚  −  1  where 𝑚 =
 1, 2, 3 . 

      Theorem 2.11. A uniform binary tree T is distance pattern 
distinguishing colourable if and only if 𝑂(𝑇 )  =  2𝑚  −  1where m = 
1, 2, 3... 

Proof.  When  𝑚 =  1, 𝑇 ≅  𝐾1 ,  obviously distance pattern 
distinguishing colourable.  When 𝑚 =  2, 𝑇 ≅  𝑃3 ,  distance pattern 
distinguishing colourable by Theorem 2.3.  When  𝑚 =  3, let w be 
the central vertex of 𝑇, {𝑢, 𝑣} be the vertices adjacent to 𝑤  and let  
{𝑢1, 𝑢2 } and  {𝑣1 𝑣2} be the set of pendant vertices adjacent to  u  and  

v  respectively.  Let M = {u, u1, v2}.  Then, both 𝑓 (𝐺) and  𝑓⊕(𝐺) are 
injective and hence,  𝑇is distance patterndistinguishing colourable. 
Conversely, let 𝑇  be a distance pattern distinguishing colourable 
uniform binary tree. Then, by Theorem 2.10, 𝑇 is a distance pattern 
distinguishing tree, which implies that 𝑂(𝑇 )  =  2𝑚  −  1  where 
𝑚 =  1, 2, 3 . 

Theorem 2.12. There is no sequentially distance pattern 
distinguishing set colourable graph with diameter two. 
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Proof. By Theorem 2.8, 𝑃3  is the only distance pattern distinguishing 
graph of diameter two. But by Remark 2.4, 𝑃3  is not sequentially 
distance pattern distinguishing colourable. Hence, There is no 
sequentially distance pattern distinguishing set colourable graph of 
diameter 2. 

The closure (𝑀 ) of a set 𝑀 of vertices consists of the vertices in 𝑀 
together with all vertices on geodesics between any two vertices of 
𝑀. In [7], it is proved that if G ≇ Pn be a graph of diameter 3 with 
distance pattern distinguishing set M then the distance patterns of 
the vertices in 𝑀  are {0, 2}, {0, 1, 2}, {0, 2, 3} and {0, 1, 2, 3}  and the 
corresponding induced subgraph  < (𝑀 )  >   is one of the four 

graphs given in Figure 3.  But  𝑓⊕  is not injective for any of the 
graphs in Figure 3. Hence, the following theorem. 

Theorem 2.13. There is no sequentially distance pattern 
distinguishing colourable graph of diameter three. 

Theorem 2.14. A graph 𝐺  is sequentially distance pattern 
distinguishing colourable if and only if 𝐺 + 𝐾1  with 𝑉 (𝐾1 )  =  {𝑣} 
has a graceful distance pattern distinguishing colouring f ′ such that 
𝑓′(𝑣)  =  ∅. 

Proof. Let 𝑓  be a sequential distance pattern distinguishing 
colouring of 𝐺 . Then extend 𝑓    to the vertices of 𝐺 + 𝐾1    to a 
function 𝑓 ′ so that the restriction map 𝑓 ′|𝐺  of  𝑓 ′ to   𝑉 (𝐺)   is   𝑓   
and  𝑓′(𝑣)  =  ∅  .    Since   𝑓   is a sequential distance pattern 
distinguishing colouring of 𝐺, the edges of 𝐺 + 𝐾1 having the form 
𝑢𝑣  where 𝑢 ∈ 𝑉 (𝐺)  will receive 𝑓 (𝑢) . So 𝑓 ′  turns out to be a 
required graceful distance pattern distinguishing colouring         of 
𝐺 + 𝐾1 .  Conversely, if 𝐺 + 𝐾1 has a graceful distance pattern 
distinguishing colouring    f ′ with 𝑓′(𝑣)  =  ∅. Then the removal of 𝑣 
from 𝐺 + 𝐾1 results in a sequential distance pattern distinguishing 
colouring of 𝐺. 

Theorem 2.15. If a graph G with diameter 𝑑 has a sequential distance 
pattern distinguishing colouring f, there exists a partition of the 
vertex set  𝑉 in to two sets  𝑉1  and     𝑉2 such that the number of 

edges joining the vertices of 𝑉1 with those of  𝑉2 is exactly    2𝑑 − |𝑉2| 
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Figure 3 

Proof. Suppose that 𝐺 is sequentially distance pattern distinguishing 
colourable graph with diameter 𝑑 ≥  2 .  Then |𝑋| = 𝑑 +  1 .  
Consider a partition of 𝑉   in to two subsets 𝑉1and𝑉2 such that 𝑉2  =
{𝑢 ∈  𝑉 ∶  |𝑓 (𝑢)| 𝑖𝑠  𝑒𝑣𝑒𝑛} and 𝑉2 = {𝑣  ∈  𝑉 ∶  |𝑓 (𝑣)| 𝑖𝑠  𝑜𝑑𝑑}.   We 
can obtain other odd subsets of X which are not the distance patterns 
of the vertices, by taking the symmetric differences between the 

vertices of V1 with those of V2. Since there are exactly 2𝑑 subsets of 
each parity for a set X of cardinality 𝑑 +  1, we get the proof. 

Theorem 2.16. If a graph 𝐺(𝑝 > 2) has: 

   exactly one or two vertices of even degree or 

  exactly three vertices of even degree and any two of them are 
adjacent or 

exactly four vertices of even degree, say, v1, v2, v3, v4 such that v1v2 
and v3v4 are edges in G, then G is not sequentially distance pattern 
distinguishing colourable. 

Proof. Let G be a graph of diameter d with a sequential distance 
pattern distinguishing colouring f. Let 𝑣1, 𝑣2, … , 𝑣𝑝 be the vertices of 

𝐺 such that 𝑓 (𝑣𝑖)  =  𝐴𝑖 , 1 ≤  𝑖 ≤  𝑝,  and  𝐴𝑖  ∈  𝑌 (𝑋). Then 

𝑓(𝐺) ∪ 𝑓⊕(𝐺)  =  {𝐴1, 𝐴2, . . . , 𝐴𝑝}  ∪  {𝐴𝑖⊕ 𝐴𝑗 ∶  𝑣𝑖𝑣𝑗 ∈  𝐸}  =  𝑌 (𝑋).                     

(1) 
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 As the symmetric difference of all the nonempty subsets of any set 
is the empty set, the symmetric difference of all elements of  𝑓(𝐺) ∪

 𝑓⊕(𝐺) in equation (1) is ∅. 

If the degree of a vertex vi is even then the set Ai appears an odd 
number of times and the degree of a vertex 𝑣𝑗 is odd the the set Aj 

appears an even number of times in equation (1). 

Suppose that G has exactly one vertex of even degree, say, 𝑣1.  Then 
A1 appears an odd number of times and all other sets appear an even 
number of times in equation (1). Also, ⊕ is a commutative binary 
operator and hence, all the sets assigned to the vertices of odd  
degree  will  vanish  and  therefore,   A1  =  ∅,   a  contradiction  to  
the  definition  of sequentially distance pattern distinguishing 
colourable graph. Hence, G is not sequentially distance pattern 
distinguishing colourable if G has exactly one vertex of even degree. 
If G has exactly two vertices of even degree, say, 𝑣1 and 𝑣2 then, by 
the similar argument given above, we obtained that 𝐴1⊕𝐴2= ∅, 
which implies that 𝐴1  =𝐴2 , a contradiction to the injectivity of f.  
Hence, G is not sequentially distance pattern distinguishing 
colourable if    G has exactly two vertices of even degree. 

(ii) Suppose that G   has exactly three vertices, say, 𝑣1, 𝑣2, 𝑣3   of even 
degree such that 𝑣1𝑣2 ∈  𝐸(𝐺). Then by arguments similar to those 
for (i) and from (1) we get 𝐴1⊕𝐴2⊕𝐴3  = ∅.  That is, 𝐴1 = 𝐴2⊕
𝐴3    or 𝐴2  = 𝐴1⊕ 𝐴3    or  𝐴3 = 𝐴1⊕𝐴2 ,  a  contradiction to the 
definition of sequentially distance pattern distinguishing colourable 
graph. Hence, if G has exactly three vertices of even degree such that 
any two of them are adjacent then G is not sequentially distance 
pattern distinguishing colourable. 

(iii)Suppose that G has exactly four vertices of even degree, say, 𝑣1, 
𝑣2 , 𝑣3 , 𝑣4  such that 𝑣1𝑣2  and 𝑣3𝑣4  are edges in G.  Then by 
arguments similar to those for (i) and from (1) we get 𝐴1⊕𝐴2⊕
𝐴3⊕𝐴4   =  ∅.That is, 𝐴1⊕𝐴2 = 𝐴3⊕𝐴4   or  𝐴2⊕𝐴4 = 𝐴1⊕ 𝐴3    

or  𝐴2⊕𝐴3 = 𝐴1⊕ 𝐴4 , a contradiction to the injectivity of 𝑓⊕ .  
Hence, the proof. 
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