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Abstract 
 For a given graph 𝐺 , the Grid Bandwidth Minimization 
Problem (GBMP) is to find an embedding of 𝐺 into a host 
graph 𝐻  such that the bandwidth over all edges is 
minimized. It is an NP-hard problem with applications in 
VLSI circuit design, numerical analysis, computational 
biology, graph theory and scheduling. In this paper, a 
Simulated Annealing (SA) algorithm is developed for 
GBMP in which initial solution is generated using two 
problem-specific construction heuristics. Four 
neighbourhood strategies are designed to explore the 
search space. Experiments conducted on benchmark 
instances achieve results which fall within the bounds 
whereas for grid graphs it attains optimal values. 

Keywords: Grid embedding, Bandwidth, Simulated Annealing 

1. Introduction 

An embedding of 𝐺 on 𝐻 is a one-to-one association of the vertices 
of a graph 𝐺  with vertices of a host graph 𝐻 [1]. If the If the host 
graph 𝐻 is a path, cycle and grid then the resultant embedding is 
known as linear, cyclic and grid embedding respectively. One of the 
measures associated with an embedding is dilation which can be 
defined as the maximum distance between adjacent vertices of 𝐺 on 
the host graph 𝐻. The problem of finding a linear (cyclic) embedding 
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of 𝐺 such that dilation over all edges is minimized is the well-known 
Bandwidth Minimization Problem (Cyclic Bandwidth Minimization 
Problem) [2]. For grid embeddings, the problem is termed as Two-
Dimensional Bandwidth Minimization Problem [3]. We will refer to 
this problem as Grid Bandwidth Minimization Problem (GBMP). 

In this paper we focus on GBMP. Formally, let 𝐺 be a graph with 
vertex set 𝑉(𝐺)  and edge set 𝐸(𝐺) ⊆ 𝑉(𝐺) × 𝑉(𝐺) with |𝑉(𝐺)| = 𝑛 . 
For 𝑣 ∈ 𝑉(𝐺), 𝑁(𝑣) = {𝑢 ∈ 𝑉(𝐺)|(𝑢, 𝑣) ∈ 𝐸(𝐺)} and degree of vertex 
𝑣, deg(𝑉) = |𝑁(𝑉)|. Let 𝐻 be a fixed host graph which is a grid of size 

2 × 𝑍, where 𝑍 = ⌈
𝑛

2
⌉.   The embedding of graph 𝐺 in 𝐻 is a one-one 

mapping 𝜋: 𝑉(𝐺) → 𝑉(𝐻) which assigns a row and a column number 
to each vertex that correspond to positions on the grid. Explicitly,  
𝜋(𝑥) = (𝑎, 𝑏) means that the vertex 𝑥 ∈ 𝑉(𝐺) is located in the grid at 
row 𝑎 and column 𝑏 and is denoted by 𝑥(𝑎, 𝑏) in 𝐻. 

Let 𝑥(𝑎, 𝑏), 𝑦(𝑎′, 𝑏′) ∈ 𝑉(𝐻) . Then the distance between 𝑥  and 𝑦 , 
defined by the 𝐿1 norm distance, is given by: 

                       𝑑𝐻(𝑥, 𝑦) = |𝑎 − 𝑎 𝑏 − 𝑏′|                            (1) 

The bandwidth of an embedding 𝜋 is defined as: 

        𝑏𝜋(𝐺) = max{𝑑𝐻(𝜋(𝑥), 𝜋(𝑦)): 𝑥𝑦 ∈ 𝐸(𝐺)}.                        (2) 

The bandwidth of the graph 𝐺, denoted by 𝑏(𝐺), is the minimum of 
𝑏𝜋(𝐺) over all embeddings 𝜋, i.e.; 

   𝑏(𝐺) = min {𝑏𝜋(𝐺): 𝜋 is an embedding of 𝐺 in 𝐻}.              (3) 

For an edge 𝑢𝑣 ∈ 𝐸(𝐺), 𝑑𝐻(𝑢, 𝑣) be the maximum over all edges of 
𝐸(𝐺), then 𝑏𝜋(𝐺) =  𝑑𝐻(𝑢, 𝑣) and the edge(𝑢, 𝑣) is known as a critical 
edge. Throughout, we will refer an embedding 𝜋 as a solution and 
𝑏𝜋(𝐺) as the 𝑐𝑜𝑠𝑡  of the solution. Neighbourhood of a solution 𝑠 , 
denoted by 𝑛𝑏𝑑(𝑠) , is the set of solutions obtained by small 
perturbations in the solution 𝑠. 

Figure 1 illustrates the embedding of an undirected graph (1(a)), into 
a 2 × 𝑍 grid (1(b)). The vertices are selected randomly and placed 
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beginning from the centre of the grid, that is from position (2, 2). The 
bandwidth of the resultant embedding 1(b) is 4. Since the number of 
vertices in the given graph are odd, one position on the grid will 
always remain freely available for easy movement of others which 
further aids in converging towards near optimal results. 

 

Fig 1. Embedding of an undirected graph of (a) into a 2 × 𝑍 grid in (b). 

The GBMP has been proved to be NP-complete [4]. A large number 
of problems in different domains can be formulated as graph 
embedding problems, including optimization of networks for 
parallel computer architectures, VLSI circuit design, information 
retrieval, numerical analysis, computational biology, graph theory, 
scheduling and archaeology [3, 5, 6]. In spite of having wide range 
of applications, the problem has not received much attention so far. 
Only a few bounds exist in literature for the problem. Lin [7] 
introduced the term two-dimensional bandwidth, denoted by 𝐵2(𝐺), 
and proved the following density lower bound: 

For any graph 𝐺 of 𝑛 vertices,  

𝐵2(𝐺) ≥ ⌈
√𝑛−1

𝐷(𝐺)
⌉,            

Lin [7] proved that for any graph 𝐺  with 𝑛 vertices and diameter 
𝐷(𝐺),  

        
𝛿(𝑛)

𝐷(𝐺)
≤ 𝐵2(𝐺) ≤ 𝛿(𝑛),  
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where 𝛿(𝑛) = 𝑚𝑖𝑛 {2 ⌈
√2𝑛−1−1 

2
⌉ , 2 ⌈√

𝑛

2
⌉ − 1}. It is also proved that for 

a k-level binary tree, denoted by 𝑇2,𝑘 , the two-dimensional 
bandwidth has an upper bound. Optimal results for certain classes 
of graphs are also obtained [7, 8]. It is worthy to mention here that 
the grid considered in [7] is an 𝑛 × 𝑛 grid. 

Metaheuristics have become an important tool to tackle hard 
combinatorial optimization problems. However, for GBMP only a 
few heuristic approaches are available in the literature. Rodriguez-
Garcia et al. [3] have presented a greedy construction heuristic and 
a local search procedure for 2D-bandwidth minimization problem. 
They further gave three Constraint Satisfaction problem models and 
a Basic Variable Neighbourhood Search Algorithm[2] with host 

graph as a √𝑛 × √𝑛 grid. In the literature surveyed by us so far, no 
other metaheuristic procedure has been proposed so far. 

In this paper we have developed a Simulated Annealing algorithm 
for the Grid Bandwidth Minimization Problem (SAGBMP) with size 
of the host graph being 2 × 𝑍. We have designed two construction 
heuristics which help generate high quality initial solutions to aid 
faster convergence. The first heuristic selects vertices randomly and 
places them on the grid using a systematic scheme. The second 
heuristic attempts to place adjacent vertices as close as possible in 
the embedding in order to reduce their contribution to the 
bandwidth. Four neighbourhood strategies are also developed that 
are required in the SA procedure which help in better exploration of 
the search space. In order to have best configuration of SA parameter 
tuning experiments are done. Final experiments are conducted to 
access the performance of SAGBMP. 

The rest of the paper is organised as follows. Section 2 contains the 
algorithm proposed for SAGBMP. Heuristics and neighbourhood 
strategies used in the algorithm are explained in Section 3 and 
Section 4 respectively. Section 5 discusses the preliminary 
experiments and final experiments conducted on particular classes 
of graphs using the proposed algorithm for GBMP. Section 5 
concludes the paper. 
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2. Simulated Annealing Algorithm for Bandwidth 
Minimization Problem of 𝟐 ×  𝒁 grid embedding 

Simulated Annealing (SA) is a single solution-based metaheuristic 
which was first introduced by Kirkpatrick et. al. [9] and originated 
from statistical mechanics. It is inspired from the metallurgical 
technique of annealing where a material is heated at high 
temperatures and cooled down gradually to obtain a well-ordered 
state with minimal energy. SA helps to transpose solutions of 
optimization problems by gradually minimizing the objective 
function, similar to annealing, by controlling parameters of the 
algorithm.  

The proposed SA algorithm for the Grid Bandwidth Minimization 
Problem (SAGBMP) begins with generating initial solutions using 
two heuristics and assigning an initial value to (i) the temperature 
parameter T, (ii) the cooling rate 𝛼 that reduces the temperature 𝑇 by 
a factor 𝛼  as execution proceeds, until the final temperature is 
reached, (iii) 𝑖𝑡𝑒𝑟 , that determines the number of iterations of 
SAGBMP for each instance, and (iv) 𝐿, that defines the number of 
iterations to be performed at the temperature 𝑇 at any given point of 
time. Further, at each iteration, the best solution among all solutions 
of 𝑛𝑏𝑑(𝑠) is stored in 𝑠’. 

The neighbourhood strategies are designed to target the critical edge 
in order to improve the solution. The solution 𝑠′  is accepted if 
𝑐𝑜𝑠𝑡(𝑠′) ≤ 𝑐𝑜𝑠𝑡(𝑠), and it replaces 𝑠. On the other hand, if 𝑐𝑜𝑠𝑡(𝑠′) ≥
𝑐𝑜𝑠𝑡(𝑠)  then, 𝑠′  can be accepted with a probability 

𝑒−(𝑐𝑜𝑠𝑡(𝑠′)−𝑐𝑜𝑠𝑡(𝑠))/𝑇 . The global 𝑏𝑒𝑠𝑡 (Step 17) is then updated if 
𝑐𝑜𝑠𝑡(𝑠) < 𝑐𝑜𝑠𝑡(𝑏𝑒𝑠𝑡) . The SAGBMP algorithm is outlined in 
Algorithm 1.  

Step 1: Input- 𝑇𝑓 , 𝛼, 𝑖𝑡𝑒𝑟, 𝐿, 𝐿𝑓 

Step 2: 𝑇 ← 𝑇0 

Step 3: compute 𝛾 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

106 

 

Step 4: Generate solution 𝑠1 using 𝐻1 and 𝑠2 using 𝐻2 

Step 5: 𝑠 ← 𝑎𝑟𝑔𝑚𝑖𝑛(𝑐𝑜𝑠𝑡(𝑠1), 𝑐𝑜𝑠𝑡(𝑠2)) 

Step 6: 𝑏𝑒𝑠𝑡 ← 𝑠 

Step 7: while𝑇 > 𝑇𝑓  do 

Step 8:             𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← false 

Step 9:             for𝑖 ← 1 to 𝐿 do  

Step 10:                     𝑠′ ← 𝑠∗ when 𝑐𝑜𝑠𝑡(𝑠∗)is minimum among all solutions 
of 𝑛𝑏𝑑(𝑠) 

Step 11:                     ifcost(𝑠′) < 𝑐𝑜𝑠𝑡(𝑠) 

Step 12:                             𝑠 ← 𝑠′ 

Step 13:                   else if𝑟𝑎𝑛𝑑𝑜𝑚(0,1) < 𝑒−(𝑐𝑜𝑠𝑡(𝑠′)−𝑐𝑜𝑠𝑡(𝑠))/𝑇 

Step 14:                             𝑠 ← 𝑠′ 

Step 15:                   end 

Step 16:                   ifcost(𝑠) < 𝑐𝑜𝑠𝑡(𝑏𝑒𝑠𝑡) 

Step 17:                             𝑏𝑒𝑠𝑡 ← 𝑠 

Step 18:                             𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 ← true 

Step 19:                   end 

Step 20:            end 

Step 20:           if𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 = false 

Step 21:                   𝑇 ← 𝑇 ∗ 𝛼 

Step 22:                   𝐿 ← 𝐿 ∗ 𝛾 



Khandelwal et.al.`                      Girth Bandwidth Maximization Problem 

107 

 

Step 23:           end 

Step 24: end 

Step 25: return 𝑏𝑒𝑠𝑡 

Algorithm 1 

In algorithm 1, the purpose of 𝛾 at step 3 is to increment the number 
of iterations to be performed at a certain temperature to ensure that 
when temperature reaches its final value, the iterations also reach 

their final value. If 𝑟 =
log(𝑇𝑓)−log (𝑇0)

log (𝛼)
 , is the number of temperature 

reductions then 𝛾 = exp (
log(𝐿𝑓)−log (𝐿)

𝑟
) . The 𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑚𝑒𝑛𝑡 variable 

defined at step 8 keeps account of the improvement in solutions and 
ensures that 𝑇  and 𝐿 are modified if the global best solution is not 
improved. It remains noteworthy that feasibility of solution is 
ensured at each step. 

3. Heuristics for generating Initial Solution 
Heuristic methods are designed for generating feasible initial 
solutions for the problem that are of reasonable quality, requiring 
small computing time. In this section we describe two construction 
heuristics for generating the initial solution. The main idea behind 
both the heuristics is to ensure that feasible solutions are obtained by 
placing more and more vertices adjacent to each other.Note: A 
position (𝑎, 𝑏) is said to be 𝑓𝑟𝑒𝑒 if no vertex is assigned to it. 

Heuristic𝐻1: 

Heuristic 𝐻1  is a random heuristic procedure which begins with 
selecting any random vertex and places it in the middle of the grid 

(the 𝑖𝑡ℎ row and 𝑗𝑡ℎcolumn of the grid will be denoted by 𝑔𝑟𝑖𝑑(𝑖, 𝑗)). 
From the remaining set of vertices, a vertex is randomly selected and 
placed on the nearest available position randomly. The process 
continues until all the vertices are placed on the grid. Pseudocode 
for this heuristic is presented in Algorithm 2.  
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Step 1: 𝑖 ← 1 

Step 2: select 𝑢 ∈ 𝑉 randomly 

Step 3: 𝑔𝑟𝑖𝑑(𝑎, 𝑏) ← 𝑢 where 𝑎 = 1 and 𝑏 = (
1

2
𝑍) 

Step 4: 𝑉 ← 𝑉/{𝑢} 

Step 5: repeat until 𝑉 ≠ ∅ 

Step 6:  select𝑢 ∈ 𝑉 randomly 

Step 7: 𝑥 ← (𝑏 − 𝑖) 

Step 8:          𝑦 ← (𝑏 + 𝑖) 

Step 9:        𝑗 ← 𝑥 or 𝑗 ← 𝑦whichever 𝑓𝑟𝑒𝑒 

Step 10:        else 

Step 11: 𝑖 ← 𝑖 + 1 

Step 12:        𝑔𝑟𝑖𝑑(𝑖, 𝑗) ← 𝑢 

Step 13:  𝑉 ← 𝑉/{𝑢}  

Step 14:    end 

Step 15: end  

Step 16: return 𝑔𝑟𝑖𝑑 

Algorithm 2 

For an illustration, consider the example graph of Fig 1(a). Let the 
randomly selected vertices are in the order 5, 4, 2, 6, 7, 1  and 3 . 
Vertex 5 is first placed at centre of the grid at (1, 2) (Step 3). The next 
available positions on the grid are (1, 1) and (1, 3) (Step 7 and Step 
8). Since both the positions are available, vertex 4 is placed at (1, 3). 
Similarly, the remaining vertices are placed by following the 
algorithm and the final embedding obtained from 𝐻1 is shown in 
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Figure 2. Since the number of vertices are odd it can be seen that one 
position on the grid remains available. 

 

Figure 2. Solution from H1 

Heuristic 𝐻2: 

Heuristic 𝐻2 is a greedy heuristic that involves degrees of vertices 
for placing them on the grid.  Let 𝐷 be the list of vertices sorted in 
descending order of their degrees. The heuristic begins with 
selecting the first vertex 𝑢 from the sorted list, i.e., the vertex with 
the highest degree and places it right in the middle of the grid at 

(1,
1

2
𝑍). Then the neighbors 𝑛𝑏𝑟 of the vertex are considered from 

the graph 𝐺 and are placed at nearest 𝑓𝑟𝑒𝑒 positions on the host grid 
graph 𝐻. The vertices that are placed on the grid are removed from 
𝐷. The next highest degree vertex remaining in 𝐷 is selected and 
placed on the first 𝑓𝑟𝑒𝑒 position encountered. Again, the neighbors 
of this vertex are assigned positions on the grid graph and the 
process continues until all vertices are placed. The heuristic is 
outlined in outlined in Algorithm 3. 

Step 1: Initialize 𝑔𝑟𝑖𝑑 (𝑎, 𝑏) = −1 ∀ 𝑎 ∈ {1, 2}and ∀ 𝑏 ∈ {1, … , 𝑍} 

Step 2:𝐷 ← list of vertices in descending order of degree 

Step 3: 𝑢 ← first vertex in 𝐷 

Step 4: 𝑔𝑟𝑖𝑑 (1,
1

2
𝑍) ← 𝑢 

Step 5: 𝐷 ← 𝐷\{𝑢} 
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Step 6:𝑄 ← {𝑢} 

Step 7: repeat until D≠ 𝜙 

Step 8:  𝑣 ←first vertex in 𝑄 

Step 9:  𝑄 ← 𝑄\{𝑣} 

Step 10:  𝑖 ← 1 

Step 11: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑁(𝑣) ∩ 𝐷 

Step 12:  𝑥1 ← (𝑎, 𝑏 − 𝑖) 

Step 13:  𝑥2 ← (𝑎, 𝑏 + 𝑖) 

Step 14:  𝑥3 ← ((𝑎 + 1), 𝑏 + (𝑖 − 1)) 

Step 15:  𝑥4 ← (𝑎 − 1, 𝑏 + (𝑖 − 1)) 

Step 16:                       repeat until 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ≠ 𝜙 

Step 15:       assign 𝑤 ∈ 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 to 𝑥1, 𝑥2, 𝑥3  or 𝑥4 whichever is 
𝑓𝑟𝑒𝑒 

Step 16:  if none is 𝑓𝑟𝑒𝑒 

Step 17:   𝑖 ← 𝑖 + 1 

Step 18: 𝑄 ← 𝑄 ∪ {𝑤} 

Step 19: 𝐷 ← 𝐷\{𝑤} 

Step 20: return 

Algorithm 3 

Figure 3. illustrates the initial solution obtained using 𝐻2 for the 
graph 𝐺  in Figure 1(a). The heuristic begins with a list of vertices 
sorted in descending order of their degrees given by 𝐷 =
(6, 2, 7, 1, 5, 4, 3). The vertices 2 and 7 have the same degree so they 
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are randomly permuted and placed in the set. Similarly, vertices 
1, 3, 4 and 5have the same degrees and are thus permuted randomly. 

The first vertex 𝑣 = 6 ∈ 𝐷  is picked and placed at position (1, 2) 
(Step 2). Now 𝑁(6) = {2, 3, 5}. As given in the algorithm, nearest 
possible positions on the grid to (1, 2)  are (1, 1), (1, 3)  and (2, 2) 
(Steps 11-14). Vertices 2, 3  and 5 are randomly placed at 
(2, 2), (1, 1) and (1, 3)  respectively. Now 𝐷 = {7, 1, 4} , so the next 
vertex 7 is selected and is placed at an available position on the grid 
say (2, 4). 𝑁(7) = {1, 2} but 2 has already been placed. The possible 
positions for 1 are (1, 4) and (2, 3) hence it is randomly placed at, 
say, (1, 4). The only remaining vertex 4 is then placed at (2, 1). 

 

Figure 3. Solution generated by 𝐻2 

4. Neighbourhood Strategies 
SA requires perturbation of the current solution to explore the search 
space for new solutions. Four neighbourhood generation strategies 
are designed that work on the current solution to both intensify and 
diversify the solution. All the neighbourhood strategies move the 
vertices contributing to the bandwidth in order to minimize it. The 
first and second strategies cause a major change in the solution due 
to their exchanging nature whereas the third and fourth strategies 
change the solution by shifting vertices lying on the critical path. 
These strategies are described below. 

Throughout, vertices 𝑥 = 𝑔𝑟𝑖𝑑(𝑎, 𝑏)  and 𝑦 = 𝑔𝑟𝑖𝑑(𝑐, 𝑑)  are end 
points of a critical path of solution 𝑠. 

Neighbourhood Strategy 𝑁1 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

112 

 

The first neighbourhood function is an exchange operator that works 
over the solution 𝑠. It fixes the position of vertex 𝑦 and exchanges the 
vertex 𝑥 with the vertex on either the left or the right of 𝑦 randomly. 

This process ensures that 𝑑𝐻(𝑠(𝑥), 𝑠(𝑦)) = 1 and the bandwidth due 

to this edge is instantly reduced.  Figure 4 shows the state of the 
solution 𝑠  before and after the application of the neighbourhood 
strategy 𝑁1. The bandwidth of the solution in Figure  

(a) Initial Solution                                   (b) Solution after   exchange operator N1 

Figure 4: Representation of 𝑁1, where the exchanged vertices are highlighted. 

4(a)is 4 and it corresponds to the critical edge (1, 7). The position of 
vertex 1 is fixed and vertex 7 is exchanged with vertex 6 which is 
currently adjacent to vertex 1 . This process may result in the 
reduction of the bandwidth of the graph as the bandwidth due to 
this edge is reduced. 

Neighbourhood Strategy 𝑁2 

The second neighbourhood function is also an exchange operator, 
similar to 𝑁1, that works over the current solution 𝑠 . It fixes the 
position of vertex 𝑥 and exchanges the vertex 𝑦 with the vertex on 
either the left or the right of the fixed vertex. Figure 5 shows the state 
of the solution 𝑠  before and after the application of the 
neighbourhood strategy 𝑁2 .The position of vertex 7  is fixed and 
vertex 1 is shifted to the 𝑓𝑟𝑒𝑒 postion on the grid. In this illustration, 
no other vertex is moved since there is a 𝑓𝑟𝑒𝑒 space on the grid. This 
new solution 𝑠′ may result in the reduction of the bandwidth of the 
embedding occurring due to edge (1,7). If there is no 𝑓𝑟𝑒𝑒 position 
available then the usual exchange takes place. 
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       (a) Initial Solution                                           (b) Solution after exchange operator N2 

Figure 5: Representation of 𝑁2, where the exchanged vertices are highlighted. 

Neighbourhood Strategy 𝑁3 

The third neighbourhood strategy is an insertion cum shifting 
operator that increases the exploration of the search space. The 
position of vertex 𝑥 is fixed. The element to the right of this vertex is 
replaced with 𝑦. The other vertices are then shifted in anticlockwise 
direction to fill up the freshly vacated positions. The vertex that is 
replaced is repositioned to a newly available position post shifting. 
Figure 6 illustrates a solution obtained after 𝑁3  is applied to the 
current solution. The position of vertex 1 is fixed and vertex 7 is 

   (a) Initial Solution                                 (b) Solution after exchange operator N3 

Figure 6: Representation of 𝑁3, where the modified positions of vertices are highlighted. 

shifted right next to it. The vertices 6 and 3 are shifted to the right in 
anticlockwise direction and the resultant solution is obtained as 
shown in Figure 6(b). 

The fourth neighbourhood operator is also an insertion cum shifting 
operator similar to 𝑁3 . In this, the position of 𝑦  is fixed and the 
element to the left is replaced with 𝑥. The vertices are now shifted in 
clockwise direction repositioning all the vertices in the path and 
finally the replaced vertex is positioned at the new available position 
after shifting of vertices. Figure 7 shows the movement of vertices. 
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Figure 7 shows the movement of vertices with respect to N4. 
    

(a) Initial Solution                                   (b) Solution after exchange operator N3 

Figure 7: Representation of 𝑁4, where the modified positions of vertices are highlighted. 

5. Experiments and Results 
This section is devoted to experiments which are conducted in two 
phases to study the performance of the proposed algorithm. The test 
set consists of instances of Grid Graphs and graphs from the 
Harwell-Boeing Sparse Matrix Collection which are previously used 
in [10]. SAGBMP is implemented in C++ and experiments are 
conducted on Ubuntu 16.04 LTS machine with Intel (R) Core (TM) 
i5-2400 CPU @3.10_4 GHz and 7.7 GiB of RAM. Preliminary 
experiments are conducted on a representative set of 15 instances for 
tuning the parameters. 

5.1. Preliminary Experiments 
Preliminary experiments are conducted to set the parameters of 
SAGBMP i.e. temperature, cooling rate and number of iterations. 
These experiments are conducted on the representative set listed in 
Table 1. 

Instance Name |𝑽| |𝑬| 

ash85 85 219 

bcspwr03 118 179 
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Instance Name |𝑽| |𝑬| 

bcsstk01 48 176 

bcsstk05 153 1135 

bus494 494 586 

can24 24 68 

can73 73 152 

can715 715 2975 

dwt162 162 672 

dwt245 245 608 

ibm32 32 90 

R10_20 10 28 

R25_25 25 165 
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Instance Name |𝑽| |𝑬| 

R40_30 40 234 

R100_30 100 1485 

Table 1. Set of instances used for preliminary experiments. 

5.1.1. Comparison between Heuristics 
Prior to parameter tuning, experiments are conducted to compare 
the performance of heuristics 𝐻1  and 𝐻2  (Section 3).  These 
experiments are conducted on two sets of graphs, namely, Random 
graphs and Harwell Boeing graphs given in Table 1. For each 
heuristic and each graph instance 10 solutions are generated and 
their bandwidth is recorded over 30 trials. The mean bandwidth for 
each instance is computed and tested on the hypothesis that there is 
no difference in the mean for 𝐻1 and 𝐻2.  

 

Figure 8: Mean bandwidth of solutions generated using 𝐻1 and 𝐻2 

The null hypothesis is rejected using the results of t-test which means 
that the strategic heuristic 𝐻2  generates better solutions than the 
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random heuristic 𝐻1 as is also evident from Figure 8.But it can also 
be observed that sometimes𝐻1 produces better solutions for some 
instances and therefore both 𝐻1 and 𝐻2 are used to generate initial 
solution. 

5.1.2 Parameters Tuning Experiments: 
As described in Algorithm 1, SAGBMP requires the temperature 
parameter 𝑇, the cooling rate 𝛼, 𝑖𝑡𝑒𝑟, that determines the number of 
iterations of SAGBMP for each instance and 𝐿 , that defines the 
number of iterations to be performed at the temperature 𝑇 . A 
parameter tuning process helps to establish the values of these 
parameters to enhance the performance of SAGBMP. [10] 

1. Initial temperature (𝑻): Initial temperature is one of the most 
important parameters of SA procedure and requires tuning 
to aid better exploration during algorithm execution. An 
experiment is conducted by fixing 𝛼 = 0.95, 𝐿 = 1000 and 
𝑖𝑡𝑒𝑟 = 750 while varying 𝑇 for values 1000, 5000 and 10000. 
For each graph instance solutions are recorded over 30 trials. 
Two-way ANOVA with replication is applied for statistical 
comparison and no significant difference is found. However, 
it is observed that at 𝑇 = 10000 time taken is considerably 
high (Figure 9). Therefore, we choose 𝑇 = 5000 for further 
experimentation in the interest of performance. 

 

Figure 9: Execution Time for different value of T 
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2. Cooling Rate (𝜶): The initial temperatureis temperature is 
reduced after each iteration using a Geometric cooling 
schedule 𝑡 ← 𝑡 × 𝛼 , where 𝛼  is the cooling factor. To 
investigate the performance of the algorithm at different 
values of 𝛼, an experiment is conducted by fixing 𝑇 = 5000, 
𝐿 = 1000  and 𝑖𝑡𝑒𝑟 = 750  and varying 𝛼  for values 
0.80, 0.90, 0.95 and 0.99. For each graph instance solutions 
are recorded over 30 trials. Two-way ANOVA with 
replication is applied for statistical comparison and results 
shows that there is significant difference between the means. 
Tukey’s HSD test is then used to compare the means pairwise 
and it is found that there is significant pairwise difference 
between 𝛼 = 0.80, 0.95 and 𝛼 = 0.90, 0.99. Since the average 
objective value at 𝛼 = 0.90 is least, this value is used for final 
experiments. 

Cooling Rate (𝜶) 0.80 0.90 0.95 0.99 

Average objective 

value 

15.63 11.9 12.22 22.3 

Average deviation 

from best (%) 

4.88 2.32 5.32 6.89 

Average time (sec) 0.23595 0.355942 0.489558 0.904378 

Table 2. Experimental results for different values of 𝛼 

3. Number of iterations of SAGBMP (𝒊𝒕𝒆𝒓) : The algorithm 
needs to be terminated so that the process does not go on 
endlessly. We need to set some criterion for termination so 
that maximum exploration takes place in reasonable amount 
of time. An experiment is conducted to tune this parameter. 
The values of 𝑇 , 𝛼  and 𝐿  are fixed as 5000, 0.90  and 1000 
respectively and 𝑖𝑡𝑒𝑟 varies over 200, 500, 750 and 1000. For 
each graph instance results are recorded over 30 trials and 
statistical tests are conducted. Two-way ANOVA with 
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replication is used for comparison and no significant 
difference is found. However, it is observed that 
computational time taken for 𝑖𝑡𝑒𝑟 = 750  and 1000 is 
relatively high. The graph in Figure 10 shows the time 
elapsed increases considerably with the increase in number 
of iterations, but the difference in average objective value is 
not significant. Therefore, 𝑖𝑡𝑒𝑟  is taken as 500 for final 
experiments. 

 

(a) 

 

 

 

 

 

 

 

 

 

Figure 10. a) Average bandwidth and b) Time taken by instances for different values of 

𝑖𝑡𝑒𝑟. 
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4. Number of iterations at temperature 𝑻(𝑳):  The variable 𝐿 is 
used to fix the number of perturbations to be performed at a 
certain temperature each time the temperature is reduced by 
the cooling factor. An experiment is conducted with fixed 
values of 𝑇 = 5000, 𝛼 = 0.90 and 𝑖𝑡𝑒𝑟 = 500 and the value of 
𝐿 varies overthe set {500, 1000, 1500, 2000}. For each graphs 
instances results are recorded over 30 trials and statistical 
tests are conducted. Two-way ANOVA with replication is 
used for comparison. Again, no significant difference is 
found, but the algorithm takes longer to terminate at higher 
values of 𝐿. Therefore, we fix 𝐿 = 1000. 

5.2 Final Experiments 

This section is dedicated to final experiments to evaluate the performance of 

SAGBMP. On the basis of the preliminary experiments conducted the final values 

of the parameters are tuned for final experimentation as 𝑇 = 5000 , 𝛼 = 0.90 , 

𝑖𝑡𝑒𝑟 = 500 and 𝐿 = 1000. The test set consists of grid graphs and diverse graphs 

from the Harwell-Boeing Sparse Matrix Collection. The size of graphs varies from 

10 ≤ 𝑛 ≤ 1000.  Table 3 and 4 summarize the results obtained in the experiment 

of SAGBMP and the best objective value along with average time taken by the 

algorithm is reported.  

Graphs |V| Time(s) 

G2x4 8 10.40 

G2x8 16 18.33 

G2x16 32 32.00 

G2x33 66 80.91 

G2x51 102 95.87 
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Graphs |V| Time(s) 

G2x62 124 111.26 

G2x76 152 165.62 

G2x84 168 264.63 

G2x95 190 298.11 

G2x100 200 381.01 

Table 3: Results obtained by SAGBMP for Grid Graphs 

Graphs |𝑽| Objective 

Value 

Average 

Time(s) 

 Graphs 𝒏 Objective 

Value 

Average 

Time(s) 

can24 24 4 31.44  ash292 292 19 382.52 

pores_1 30 6 39.30  can_292 292 10 380.23 

ibm32 32 7 41.92  dwt_310 310 15 406.10 

bcspwr01 39 6 51.09  gre_343 343 14 449.33 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

122 

 

bcsstk01 48 8 62.88  dwt_361 361 13 472.91 

bcspwr02 49 8 64.19  str_200 363 14 475.53 

curtis54 54 7 70.74  dwt_419 419 16 548.89 

will57 57 7 74.67  bcsstk06 420 18 550.20 

dwt_59 59 7 77.29  bcsstm07 420 17 551.00 

impcol_b 59 8 75.99  impcol_d 425 18 556.75 

can_61 61 5 79.91  bcspwr05 443 22 580.33 

bfw62a 62 9 81.22  can_445 445 17 582.95 

bfw62b 62 8 77.51  nos5 468 20 613.08 

can_62 62 5 66.69  west0479 479 19 627.49 

bcsstk02 66 6 86.46  bcsstk020 485 19 635.35 

dwt_66 66 6 87.15  mbeause 492 15 644.52 

dwt_72 72 8 94.32  bus494 494 21 647.14 



Khandelwal et.al.`                      Girth Bandwidth Maximization Problem 

123 

 

can_73 73 7 95.63  mbeacxc 496 19 649.76 

steam3 80 9 104.8  mbeaflw 496 18 652.10 

ash85 85 10 111.35  dwt_503 503 13 658.93 

dwt_87 87 6 113.97  lns_511 511 11 669.41 

can_96 96 11 125.76  gre_512 512 16 670.72 

nos4 100 8 131.01  pores_3 532 20 696.92 

gent113 113 9 148.03  fs_541_1 541 19 708.71 

gre_115 115 9 150.65  dwt_592 592 21 775.52 

bcspwr03 118 10 154.58  steam2 600 22 786.00 

arc130 130 12 170.30  west0655 655 19 858.05 

hor_131 131 11 171.61  bus662 662 25 867.22 

lns_131 131 13 175.02  shl_200 663 19 868.53 

bcsstk04 132 15 172.92  nnc666 666 19 872.46 
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west0132 132 11 172.11  fs_680_1 680 19 890.80 

impcol_c 137 11 179.47  bus685 685 20 897.35 

bcsstk22 138 9 180.78  can_715 715 20 936.65 

can_144 144 10 188.64  nos7 729 28 954.99 

bcsstk05 153 13 200.43  fs_760_1 760 23 995.6 

can_161 161 12 210.91  mcfe 765 32 1002.15 

dwt_162 162 15 212.22  bcsstk19 817 20 1070.27 

west0167 167 14 218.77  bp_0 822 18 1076.82 

mcca 180 16 235.80  bp_1000 822 22 1101.48 

fs_183_1 183 18 239.73  bp_1200 822 23 1099.00 

gre_185 185 9 242.35  bp_1400 822 24 1102.59 

can_187 187 10 244.97  bp_1600 822 25 1121.08 

dwt_193 193 10 252.83  bp_200 822 23 1085.04 
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will199 199 9 260.69  bp_400 822 23 1086.89 

impcol_a 207 9 271.17  bp_600 822 22 1093.26 

dwt_209 209 10 273.79  bp_800 822 20 1093.98 

gre_216a 216 9 282.96  can_838 838 21 1097.78 

dwt_221 221 10 289.51  dwt_878 878 36 1150.18 

impcol_e 225 9 294.75  orsirr_2 886 31 1160.66 

can_229 229 15 299.99  gr_30_30 900 25 1179.00 

dwt_234 234 13 306.54  dwt_918 918 27 1202.58 

nos1 237 11 310.47  jagmesh1 936 26 1226.16 

saylr1 238 11 311.78  nos2 957 29 1253.67 

steam1 240 20 314.40  nos3 960 30 1440.0 

dwt_245 245 16 320.95  west0989 989 29 1483.51 

can_256 256 15 335.36  jpwh_991 991 33 1486.5 
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nnc261 261 16 341.91  dwt_992 992 35 1488.08 

lshp265 265 14 347.15  saylr3 1000 25 1511.51 

can_268 268 14 351.08  sherman1 1000 27 1500.00 

bcspwr04 274 18 358.94  sherman4 1104 35 1656.01 

Table 4. Results obtained by SAGBMP for Harwell-Boeing instances 

The final experiments show that SAGBMP is capable of achieving 
satisfactory results on all instances that are tested. The optimal value 
for grid graphs is known to be one. The algorithm is tested for grid 
graphs and for all the graphs the optimal values is achieved (Table 
3). For Harwell Boeing graphs the objective values for all tested 
instances lie within bounds (Table 4). 

6. Conclusion 

In this paper, a simulated annealing algorithm is developed for the 
bandwidth of a two-dimensional embedding. Problem specific 
constructions are designed to obtain initial solutions and problem 
specific neighbourhood operators are designed as they are useful in 
satisfactory diversification in the search space. An experiment is 
conducted to compare the construction heuristics in which H2 
outperforms 𝐻1. The parameters of SA are tuned by performing 
preliminary experiments on a sample of 15. SAGBMP is able to 
obtain optimal results for embedding grids onto grids. Forinstances 
For instances in for which optimal results are not known the 
algorithm produces results that may not be optimal but lie well 
within bounds. For future work, other single solution based and 
population-based metaheuristics and problem specific heuristics can 
be developed. The work can also be extended for embedding the 
graphs on 𝑚 × 𝑛 grids. 
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