Mapana - Journal of Sciences
2023, Vol. 22, Special Issue 1, 195-204
ISSN 0975-3303|https://doi.org/10.12723/mjs.sp1.16

$b \mu_{i j}$ - Open Sets in Bigeneralized Topological Spaces

M.Anees Fathima*, R. Jamuna Rani \dagger

Abstract

The purpose of this article is to discuss in detail about the $b \mu_{i j}$-open sets in bigeneralized topological space. Also, we investigated some characterizations and properties.

Keywords: Bigeneralized Topological Space, $b \mu_{i j}$-open set, $b \mu_{i j}$ closed set, $b \mu_{i j}$-interior, $b \mu_{i j}$-closure.

1. Introduction

On 2002, A. Csaszar [5] was the first to investigate the generalized concepts of topological spaces. Later, C. Boonpak [3] extended the notion of generalized topological space into bigeneralized topological space (briefly BGTS) and defined some open sets. The characteristics of semi and pre-open sets in BGTS were studied by Anees Fathima and Jamuna Rani in [1] and [8]. This article discusses $b \mu_{i j}$-open set in BGTS. We also examine its properties and provide some characterizations.

2. Preliminaries

Consider a non-empty set X and $\gamma \epsilon \Gamma$. If $M \subset \gamma(M)$, then the subset M of X is said to be γ-open[4] and for any subset M of X, the function

[^0]$\gamma^{*}: \wp(X) \rightarrow \wp(X)[4]$ can be defined as $\gamma^{*}(M)=X-\gamma(X-M)$. For any non empty set X and $\eta \in \wp(X), \eta$ is said to be GT [5] if $\phi \epsilon \eta$ and η is closed under arbitrary union. A function $\gamma \in \Gamma$ is said to be μ friendly [6] if $\gamma(M) \cap L \subset \gamma(M \cap L)$ for any subset M of X and $L \in$ μ. If $\gamma \in \Gamma$ and $\mu=\{M \subset X / M \subset \gamma(M)\}$ is the collection of all γ open sets, then μ is called GT [5] and (X, μ) is a GTS. In [11], Γ_{4} is denoted the collection of all μ-friendly functions and (X, μ) is referred ad the γ-space [7]. Also, by [7] the results established in [11] are valid for quasi-topological spaces.

For a non-empty set X, a triple $\left(X, \mu_{1}, \mu_{2}\right)$ is said to be BGTS where μ_{1}, μ_{2} are generalized topologies on X. For any non-empty subset M of $X, i_{\mu_{n}}(M)$ and $c_{\mu_{n}}(M)$ denotes the interior and closure of M with respect to μ_{n} respectively, for $n=1,2[3]$. For the BGTS, a subset M is said to be $\mu_{p q}$-semi open [1](resp. $\mu_{p q}$-preopen [8]) if $M \subset c_{\mu_{p}} i_{\mu_{q}}(M)\left(\right.$ resp. $\left.M \subset i_{\mu_{p}} c_{\mu_{q}}(M)\right)$ where $p, q=1,2$ and $p \neq q$.
Theorem 2.1. [10] Consider a GTS (X, μ). The following properties apply to the subsets M and N of X.

1. $i_{\mu}(X-M)=X-c_{\mu}(M)$ and $c_{\mu}(X-M)=X-i_{\mu}(M)$.
2. $i_{\mu}(M)=M$ for $M \in \mu$ and $c_{\mu}(M)=M$ for $X-M \in \mu$.
3. $i_{\mu}(M) \subseteq i_{\mu}(N)$ and $c_{\mu}(M) \subseteq c_{\mu}(N)$ for $M \subseteq N$.
4. $i_{\mu}(M) \subseteq M$ and $M \subseteq c_{\mu}(M)$.
5. $i_{\mu}\left(i_{\mu}(M)\right)=i_{\mu}(M)$ and $c_{\mu}\left(c_{\mu}(M)\right)=c_{\mu}(M)$.

Theorem 2.2 [9] For any γ-space $(X, \gamma), L \cap c_{\gamma}(M) \subset c_{\gamma}(L \cap M)$, for any γ-open set L and for any subset M of X.
Theorem 2.3. For any quasi-topological space (X, μ), the following apply to any subset M, N of X.
(1) $M \cap N$ is μ - open where M and N are μ - open [11].
(2) For all subsets M and N of $X, i_{\mu}(M \cap N)=i_{\mu}(M) \cap i_{\mu}(N)[7]$.
(3) For all subsets M and N of $X, c_{\mu}(M \cup N)=c_{\mu}(M) \cup c_{\mu}(N)[11]$.

Theorem 2.4. [2] For BGTS $\left(X, \mu_{1}, \mu_{2}\right), \mu_{i} \in \Gamma_{4}$ where $i=1,2$. Then the following properties hold for any subset M of X. (1) $i_{\pi_{i j}}(M)=M \cap i_{\mu_{i}} c_{\mu_{j}}(M)$.
(2) $i_{\sigma_{i j}}(M)=M \cap c_{\mu_{i}} i_{\mu_{j}}(M)$.
(3) $i_{\mu_{i}}\left(c_{\sigma_{i j}}(M)\right)=i_{\mu_{i}} c_{\mu_{j}}(M)$.
(4) $i_{\mu_{i}}\left(c_{\pi_{j i}}(M)\right)=i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(M)$.
(5) $c_{\sigma_{i j}}\left(i_{\pi_{j i}}(M)\right)=i_{\pi_{j i}}\left(c_{\sigma_{i j}}(M)\right)=i_{\mu_{i}} c_{\mu_{j}}(M)$.
(6) $i_{\pi_{j i}}\left(i_{\sigma_{i j}}(M)\right)=i_{\alpha_{j i}}(M)$.
(7) $i_{\sigma_{i j}}\left(i_{\beta_{i j}}(M)\right)=i_{\sigma_{i j}}(M)$.
(8) $i_{\pi_{i j}}\left(i_{\beta_{j i}}(M)\right)=i_{\pi_{i j}}(M)$.

3. $b \mu_{i j}$ open sets

Definition 3.1. Any subset A of $\operatorname{BGTS}\left(X, \mu_{1}, \mu_{2}\right)$ is said to be $b \mu_{i j^{-}}$ open if $A \subset i_{\mu_{i}} c_{\mu_{j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)$ where i is not equal to j and $i, j=$ 1,2. Also $b_{i j}(\mu)$ denotes the collection of $b \mu_{i j}$ - open sets. By $i_{b_{i j}}(A)$, we mean the $b \mu_{i j}$ - interior of a subset A of X and it can be as the union of all $b \mu_{i j}$ - open sets contained in A.

Also, every μ_{i}-open set is $b \mu_{i j}$-open. But the illustration below demonstrates that the converse need not be true. For let $X=$ $\{1,2,3,4\}, \mu_{1}=\{\varnothing,\{1\},\{3,4\},\{1,3,4\}\}, \mu_{2}=\{\varnothing,\{2\},\{1,4\},\{2,4\},\{1,2,4\}\}$. Then the collection of all $b \mu_{i j}$-open sets is $\{\emptyset,\{1\},\{3\},\{4\},\{1,3\},\{1,4\},\{3,4\},\{1,3,4\}\}$. Here $\{3\}$ is $b \mu_{12}$-open but not μ_{1}-open.
Theorem 3.2. For a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$ and $\mu_{i} \in \Gamma_{4}$ for $i=1,2$, the statements below are equivalent.
(1) A is $b \mu_{i j}$-open.
(2) $A=i_{\pi_{i j}}(A) \cup i_{\sigma_{j i}}(A)$.
(3) $A \subset c_{\pi_{j i}}\left(i_{\pi_{i j}}(A)\right)$.

Proof. (i) \Rightarrow (ii) If A is $b \mu_{i j}$-open, then $A \subset i_{\mu_{i}} c_{\mu_{j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)$.
Now by Theorem 2.4, $i_{\pi_{i j}}(A) \cup i_{\sigma_{j i}}(A)=\left(A \cap i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cup(A \cap$ $\left.c_{\mu_{j}} i_{\mu_{i}}(A)\right)=A \cap\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)\right)=A$.
(ii) \Rightarrow (iii) If $A=i_{\pi_{i j}}(A) \cup i_{\sigma_{j i}}(A)$, then $A=i_{\pi_{i j}}(A) \cup(A \cap$ $\left.c_{\mu_{j}} i_{\mu_{i}}(A)\right) \subset i_{\pi_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)=c_{\pi_{j i}} i_{\pi_{i j}}(A)$ by Theorem 2.4 which proves (c).

$$
\begin{aligned}
(i i i) \Rightarrow & (i) \text { If } \subset c_{\pi_{j i}}\left(i_{\pi_{i j}}(A)\right) \Rightarrow A \subset i_{\pi_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)=(A \cap \\
& \left.i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cup c_{\mu_{j}} i_{\mu_{i}}(A)=\left(A \cup c_{\mu_{j}} i_{\mu_{i}}(A)\right) \cap\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cup\right. \\
& \left.c_{\mu_{j}} i_{\mu_{i}}(A)\right) \Rightarrow A \subset i_{\mu_{i}} c_{\mu_{j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A) \text {. Hence } A \text { is } b \mu_{i j}-
\end{aligned}
$$

open.
Theorem 3.3. Let A_{l} be $b \mu_{i j}$-open for all $l \in \Delta$ and $\mu_{i} \in \Gamma_{4}$ in a bigeneralized topological space $\left(X, \mu_{1}, \mu_{2}\right)$. Then $\cup\left\{A_{l} / l \in \Delta\right\}$ is $b \mu_{i j}$-open.
Proof. Let $A=\cup\left\{A_{l} / l \in \Delta\right\}$. Then $A \subset \cup c_{\pi_{j i}} i_{\pi_{i j}}\left(A_{l}\right) \subset c_{\pi_{j i}}(U$ $\left(i_{\pi_{i j}}\left(A_{l}\right)\right) \subset c_{\pi_{j i}}\left(i_{\pi_{i j}}\left(\cup A_{l}\right)=c_{\pi_{j i}} i_{\pi_{i j}}(A)\right.$. Therefore, $\cup\left\{A_{l} / l \in \Delta\right\}$ is $b \mu_{i j}$-open.
Remark 3.4. The following example demonstrates that the intersection of any two $b \mu_{i j}$-open sets does not have to be a $b \mu_{i j^{-}}$ open.
Let

$$
X=\{1,2,3,4\}, \mu_{1}=\{\phi,\{3\},\{1,4\},\{1,3\},\{3,4\},\{1,3,4\}\}, \mu_{2}=
$$ $\{\phi,\{2,4\},\{2,3,4\}\}$.

$b \mu_{12}-O(X)=\{\phi,\{1\},\{3\},\{4\},\{1,3\},\{1,4\},\{3,4\},\{1,2,4\},\{1,3,4\}$,
$\{2,3,4\}, X\}$. Here $\{1,2,4\}$ and $\{2,3,4\}$ are $b \mu_{12}-\mathrm{o}(X)$ but $\{1,2,4\} \cap$ $\{2,3,4\}=\{2,4\}$ which is not $b \mu_{12}$-open.
Theorem 3.5. For BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, then the statements below are true for any subset A of X.
(i) $i_{b_{i j}}(A)$ is the largest $b \mu_{i j}$-open set contained in A.
(ii) A is $b \mu_{i j}$-open if and only if $A=i_{b_{i j}}(A)$.

Fathima \& Rani $\quad \boldsymbol{b} \boldsymbol{\mu}_{\boldsymbol{i j}}$ - Open Sets in Bigeneralized Topological Spaces
(iii) $x \in i_{b_{i j}}(A)$ if and only if there is a $b \mu_{i j}$-open set M containing x such that $M \subset A$.
(iv) $i_{b_{i j}} \in \Gamma_{012-}$.

Definition 3.6. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, a subset A is $b \mu_{i j}$-closed if its complement is $b \mu_{i j}$-open. Clearly, A is $b \mu_{i j}$-closed if and only if $c_{\mu_{i}} i_{\mu_{j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}(A) \subset A$. By $c_{b_{i j}}(A)$, we mean the $b \mu_{i j}$-closure of a subset A of X and it can be defined as the intersection of all $b \mu_{i j}-$ closed sets containing A.

Theorem 3.7. For BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, then the statements below are true for any subset A of X.
(i) $c_{b_{i j}}(A)$ is the smallest $b \mu_{i j}$-closed set containing A.
(ii) A is $b \mu_{i j}$-closed if and only if $A=c_{b_{i j}}(A)$.
(iii) $x \in c_{b_{i j}}(A)$ if and only if for every $b \mu_{i j}$-closed set M containing x such that $M \cap A \neq \phi$.
(iv) $c_{b_{i j}} \in \Gamma_{012+}$.

Theorem 3.8. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A of X.
(i) $\left(i_{b_{i j}}\right)^{*}=c_{b_{i j}}$.
$(i i)\left(c_{b_{i j}}\right)^{*}=i_{b_{i j}}$.
(iii) $i_{b_{i j}}(X-A)=X-c_{b_{i j}}(A)$.
(iv) $c_{b_{i j}}(X-A)=X-i_{b_{i j}}(A)$.

Theorem 3.9. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A.
(i) $c_{b_{i j}}(A)=c_{\sigma_{i j}}(A) \cap c_{\pi_{j i}}(A)$.
(ii) $i_{b_{i j}}(A)=i_{\sigma_{i j}}(A) \cup i_{\pi_{j i}}(A)$.

Proof. (i) Since $c_{b_{i j}}(A) \subset c_{\sigma_{i j}}(A)$ and $c_{b_{i j}}(A) \subset c_{\pi_{j i}}(A)$, we have $c_{b_{i j}}(A) \subset c_{\sigma_{i j}}(A) \cap \quad c_{\pi_{j i}}(A) . \quad$ Also, $c_{\sigma_{i j}}(A) \cap c_{\pi_{j i}}(A)=(A \cup$ $\left.i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cap\left(A \cup c_{\mu_{j}} i_{\mu_{i}}(A)\right)=A \cup\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cap c_{\mu_{j}} i_{\mu_{i}}(A)\right) \subset A \cup$
$\left(i_{\mu_{i}} c_{\mu_{j}}\left(c_{b_{i j}}(A)\right) \cap c_{\mu_{j}} i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)\right) \subset A \cup c_{b_{i j}}(A)=c_{b_{i j}}(A)$,
Since $c_{b_{i j}}(A)$ is $b \mu_{i j}$ - closed. Therefore, $c_{b_{i j}}(A)=c_{\sigma_{i j}}(A) \cap c_{\pi_{j i}}(A)$.
(ii) can be proved in the same way that (i).

Theorem 3.10. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A.
(i) A is $b \mu_{i j}$ - open if and only if $\left.c_{\sigma_{i j}}(A) \cup c_{\pi_{j i}}(A)=i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cup$ $\left.c_{\mu_{j}} i_{\mu_{i}}(A)\right)$.
(ii) A is $b \mu_{i j}$ - closed if and only if $\left.i_{\sigma_{i j}}(A) \cap i_{\pi_{j i}}(A)=c_{\mu_{i}} i_{\mu_{j}}(A)\right) \cap$ $\left.i_{\mu_{j}} c_{\mu_{i}}(A)\right)$.
Proof. (i) By definition, $A \in b \mu_{i j}(A)$ if and only if $A \subset\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cap\right.$ $\left.c_{\mu_{j}} j_{\mu_{i}}(A)\right)$. Now, $c_{\sigma_{i j}}(A) \cup c_{\pi_{j i}}(A)=\left(A \cup i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cup(A \cup$ $\left.c_{\mu_{j}} i_{\mu_{i}}(A)\right)=A \cup\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)\right)$. Since $A \subset\left(i_{\mu_{i}} c_{\mu_{j}}(A) \cap\right.$
$c_{\mu_{j}} i_{\mu_{i}}(A)$), we have $\left.c_{\sigma_{i j}}(A) \cup c_{\pi_{j i}}(A)=i_{\mu_{i}} c_{\mu_{j}}(A)\right) \cup c_{\mu_{j}} i_{\mu_{i}}(A)$).
(ii) From (i), the proof follows.

The relationship between the $b \mu_{i j}$ - closure and $b \mu_{i j}$ - interior operators are proved by Theorem 3.11.
Theorem 3.11. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A.
(i) $i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}\left(i_{\mu_{i}}(A)\right)=i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)$.
(ii) $c_{\mu_{i}}\left(i_{b_{i j}}(A)\right)=i_{b_{i j}}\left(c_{\mu_{i}}(A)\right)=c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)$.
(iii) $i_{b_{i j}}\left(c_{\sigma_{j i}}(A)\right)=i_{\sigma_{i j}}\left(c_{\sigma_{j i}}(A)\right)$.
(iv) $c_{b_{i j}}\left(i_{\sigma j i}(A)\right)=c_{\sigma_{i j}}\left(i_{\sigma j i}(A)\right)$.
(v) $i_{\sigma_{j i}}\left(c_{b_{i j}}(A)\right)=c_{\sigma_{i j}}(A) \cap c_{\mu_{j}} i_{\mu_{i}}(A)$.
$(\mathrm{vi}) c_{\sigma_{j i}}\left(i_{b_{i j}}(A)\right)=i_{\sigma_{i j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}(A)$.

Proof. (i) $c_{b_{i j}}\left(i_{\mu_{i}}(A)\right)=c_{\sigma_{i j}}\left(i_{\mu_{i}}(A)\right) \cap c_{\pi_{j i}}\left(i_{\mu_{i}}(A)\right)=\left(i_{\mu_{i}}(A) \cup\right.$

$$
\begin{aligned}
& \left.i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)\right) \cap\left(i_{\mu_{i}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)\right)=\left(i_{\mu_{i}}(A) \cup\right. \\
& \left.i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)\right) \cap c_{\mu_{j}} i_{\mu_{i}}(A)=i_{\mu_{i}}(A) \cup i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)= \\
& i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A) .
\end{aligned}
$$

Also by theorem $2.4(3)$ and $2.4(4), \quad i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)=i_{\mu_{i}}\left(c_{\sigma_{i j}}(A) \cap\right.$ $\left.c_{\pi_{j i}}(A)\right)=i_{\mu_{i}}\left(c_{\sigma_{i j}}(A)\right) \cap i_{\mu_{i}}\left(c_{\pi_{j i}}(A)\right)=i_{\mu_{i}} c_{\mu_{j}}(A) \cap i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)=$ $i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)$.
(ii) From (i), the proof follows.
(iii) $i_{b_{i j}}\left(c_{\sigma_{j i}}(A)\right)=i_{\sigma_{i j}}\left(c_{\sigma_{j i}}(A)\right) \cup\left(i_{\pi_{j i}}\left(c_{\sigma_{j i}}(A)\right)\right.$. Now,
$i_{\pi_{j i}}\left(c_{\sigma_{j i}}(A)=c_{\sigma_{j i}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}\left(c_{\sigma_{j i}}(A)\right)=c_{\sigma_{j i}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}(A) \subset\right.$
$c_{\sigma_{j i}}(A) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)=\left(A \cup i_{\mu_{j}} c_{\mu_{i}}(A)\right) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)=$
$i_{\sigma_{i j}}\left(c_{\sigma_{j i}}(A)\right)$. Also from the definition $i_{b_{i j}}\left(c_{\sigma_{j i}}(A)\right) \subset$ $i_{\sigma_{i j}}\left(c_{\sigma_{j i}}(A)\right)$. Hence the result follows.
(iv) From (iii), the proof follows.

$$
\begin{aligned}
& \text { (v) } i_{\sigma_{j i}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cap c_{\mu_{j}} i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}(A) \cap \\
& c_{\mu_{j}} i_{\mu_{i}}\left(c_{\mu_{j}} i_{\mu_{i}}(A)\right) \text { by (i), } c_{b_{i j}}(A) \cap c_{\mu_{j}} i_{\mu_{i}}(A)=\left(c_{\sigma_{i j}}(A) \cap\right. \\
& \left.c_{\pi_{j i}}(A)\right) \cap c_{\mu_{j}} i_{\mu_{i}}(A)=c_{\sigma_{i j}}(A) \cap c_{\mu_{j}} i_{\mu_{i}}(A) .
\end{aligned}
$$

(vi) From (v), the proof follows.

Theorem 3.12. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A.
(i) $i_{\mu_{j}} i_{b_{i j}}(A)=i_{b_{i j}} i_{\mu_{j}}(A)=i_{\mu_{j}}(A)$.
(ii) $c_{\mu_{j}} c_{b_{i j}}(A)=c_{b_{i j}} c_{\mu_{j}}(A)=c_{\mu_{j}}(A)$.
(iii) $i_{b_{i j}} i_{\beta_{i j}}(A)=i_{\beta_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A)$.
(iv) $c_{b_{i j}} c_{\beta_{i j}}(A)=c_{\beta_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A)$.
(v) $i_{b_{i j}} c_{\alpha_{i j}}(A)=c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)$.
(vi) $c_{b_{i j}} i_{\alpha_{i j}}(A)=i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)$.
(vii) $c_{\alpha_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cup c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)$.
(viii) $i_{\alpha_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cap i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)$.
(ix) $c_{\alpha_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}} c_{\mu_{j}}(A)$.
$(\mathrm{x}) i_{\alpha_{j i}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}} i_{\mu_{j}}(A)$.
$(\mathrm{xi}) c_{\sigma_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}}(A)$.
(xii) $i_{\sigma_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}}(A)$.
$(\mathrm{xiii}) c_{\pi_{j i}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A)$.
$($ xiv $) i_{\pi_{j i}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}(A)$.
$(\mathrm{xv}) c_{\beta_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)$.
$(\mathrm{xvi}) i_{\beta_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)$.
Proof. (i) Clearly $i_{\mu_{j}} i_{b_{i j}}(A) \subset i_{\mu_{j}}(A)$. Also, $i_{\mu_{j}} i_{b_{i j}}(A)=i_{\mu_{j}}\left(i_{\sigma_{i j}}(A) \cup\right.$ $\left.i_{\pi_{j i}}(A)\right) \supset i_{\mu_{j}}\left(i_{\sigma_{i j}}(A)\right)=i_{\mu_{j}}(A) \cup i_{\mu_{j}}(A)=i_{\mu_{j}}(A)$.

Also,$i_{b_{i j}}\left(i_{\mu_{j}}(A)\right)=i_{\sigma_{i j}}\left(i_{\mu_{j}}(A)\right) \cup i_{\pi_{j i}}\left(i_{\mu_{j}}(A)\right)=\left(i_{\mu_{j}}(A) \cap\right.$
$\left.c_{\mu_{i}} i_{\mu_{j}} i_{\mu_{j}}(A)\right) \cup\left(i_{\mu_{j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}} i_{\mu_{j}}(A)\right)=\left(i_{\mu_{j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}}(A)\right) \cup$
$\left(i_{\mu_{j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}} i_{\mu_{j}}(A)\right)=i_{\mu_{j}}(A) \cup i_{\mu_{j}}(A)=i_{\mu_{j}}(A)$.
(ii) From (i), the proof follows.
(iii) By theorem 2.4(7) and (8), $i_{b_{i j}} i_{\beta_{i j}}(A)=i_{\sigma_{i j}}\left(i_{\beta_{i j}}(A)\right) \cup$ $i_{\pi_{j i}}\left(i_{\beta_{j i}}(A)\right)=i_{\sigma_{i j}}(A) \cup i_{\pi_{j i}}(A)=i_{b_{i j}}(A)$.
Also, $i_{\beta_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}\left(i_{b_{i j}}(A)\right)=i_{b_{i j}}(A) \cap$
$c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)=i_{b_{i j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A) \supset i_{b_{i j}}(A)$. Clearly, $i_{\beta_{i j}} i_{b_{i j}}(A) \subset$ $i_{b_{i j}}(A)$. Hence proved.
(iv) From (iii), the proof follows.

$$
\begin{aligned}
& \text { (v) } i_{b_{i j}} c_{\alpha_{i j}}(A)=i_{\sigma_{i j}}\left(c_{\alpha_{i j}}(A)\right) \cup i_{\pi_{j i}}\left(c_{\alpha_{i j}}(A)\right)=\left(c_{\alpha_{i j}}(A) \cap\right. \\
& \left.c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)\right) \cup\left(c_{\alpha_{i j}}(A) \cap i_{\mu_{j}} c_{\mu_{i}}(A)\right)=c_{\alpha_{i j}}(A) \cap\left(c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A) \cup\right.
\end{aligned}
$$

Fathima \& Rani $\quad \boldsymbol{b} \boldsymbol{\mu}_{\boldsymbol{i j}}$ - Open Sets in Bigeneralized Topological Spaces

$$
\begin{aligned}
& i_{\mu_{j}} c_{\mu_{i}}(A)=c_{\alpha_{i j}}(A) \cap c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)=\left(A \cup c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)\right) \cap \\
& c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)=c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A) .
\end{aligned}
$$

(vi) From (v), the proof follows.

$$
\begin{gathered}
(\operatorname{vii}) c_{\alpha_{i j}} i_{b_{i j}}(A)=i_{b_{i j}}(A) \cup c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}\left(i_{b_{i j}}(A)\right)=i_{b_{i j}}(A) \cup \\
c_{\mu_{i}} i_{\mu_{j}}\left(c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)\right)=i_{b_{i j}}(A) \cup c_{\mu_{i}} i_{\mu_{j}} c_{\mu_{i}}(A)
\end{gathered}
$$

(viii) From (vii), the proof follows.
(ix) $c_{\alpha_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}} c_{\mu_{j}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}(A) \cup$
$c_{\mu_{j}} i_{\mu_{i}} c_{\mu_{j}}(A)$ by (ii).
(x) From (ix), the proof follows.
$(\mathrm{xi}) c_{\sigma_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}}(A)$ by (ii).
(xii) From (xi), the proof follows.

$$
\begin{aligned}
& \text { (xiii) } c_{\pi_{j i}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}(A) \cup \\
& c_{\mu_{j}} i_{\mu_{i}} i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)=c_{b_{i j}}(A) \cup c_{\mu_{j}} i_{\mu_{i}}(A) .
\end{aligned}
$$

(xiv) From (xiii), the proof follows.

$$
\begin{aligned}
& (\mathrm{xv}) c_{\beta_{i j}} c_{b_{i j}}(A)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}\left(c_{b_{i j}}(A)\right)=c_{b_{i j}}(A) \cup \\
& i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)=c_{b_{i j}}(A) \cup i_{\mu_{i}} c_{\mu_{j}} i_{\mu_{i}}(A)
\end{aligned}
$$

(xvi) From (xv), the proof follows.

Theorem 3.12. In a BGTS $\left(X, \mu_{1}, \mu_{2}\right)$, the following statements are true for any subset A.
(i) A is $b \mu_{i j}$ - open if and only if $i_{b_{i j}} i_{\beta_{i j}}(A)=A$.
(ii) A is $b \mu_{i j}$ - closed if and only if $c_{b_{i j}} c_{\beta_{i j}}(A)=A$.

Proof. (i) By theorem 3.12(vii), the result follows.
(ii) The proof of (ii) follows from (i).

References

[1] M. Anees Fathima and R. Jamuna Rani, $\mu_{i j}$ - semiopen sets in bigeneralized topological spaces, Malaya Journal of Mathematik, Vol.S., No.1, 12-16, 2019.
[2] M. Anees Fathima and R. Jamuna Rani, Remarks on interiors and closures of weak open sets in bigeneralized topological spaces, Ratio Mathematica, Vol.44, 75-85, 2022.
[3] C. Boonpak, Weakly open functions on bigeneralized topological spaces, Int. J. of Math. Analysis, 15(5)(2010),891-897.
[4] A. Csaszar, Generalized open sets, Acta. Math. Hungar,75(1997),65-87.
[5] A. Csaszar, Generalized Topology, Generalized Continuity, Acta. Math. Hungar, 96(2002), 351-357.
[6] A.csaszar, Further remarks on the formula for γ-interior , Acta. Math. Hungar, 113(4)(2006),325-332.
[7] A.Csaazar, Remarks on quasi-topologies, Acta. Math. Hungar, 119(2007),197-200.
[8] R. Jamuna Rani and M. Anees Fathima, $\mu_{i j}$ - preopen sets in bigeneralized topological spaces, Advances in Mathematics: Scientific Journal, 9(2020), No.5, 2459-2466.
[9] R. Jamuna Rani, P.Jeyanthi and D. Sivaraj, More on γ-interior, Bull. Allahabad Math.Soc., 25(2010), 1-12.
[10] W.K. Min, Almost continuity on generalized topological spaces, Acta. Math. Hungar, 25(2009), 121-125.
[11] P.Sivagami, Remarks on γ-interior, Acta. Math. Hungar., 119(2008), 81-94.

[^0]: * PG and Research Department of Mathematics, Rani Anna Government College for Women, Thirunelveli-8, Affiliated to Manonmaiam Subdaranar University; Email: afiseyan09@gmail.com
 † Department of Mathematics, Rani Anna Government College for Women, Thirunelveli-8, Affiliated to Manonmaiam Subdaranar University; Email: afiseyan09@gmail.com

