

$b\mu_{ij}$ - Open Sets in Bigeneralized Topological Spaces

M.Anees Fathima*, R. Jamuna Rani†

Abstract

The purpose of this article is to discuss in detail about the $b\mu_{ij}$ -open sets in bigeneralized topological space. Also, we investigated some characterizations and properties.

Keywords: Bigeneralized Topological Space, $b\mu_{ij}$ -open set, $b\mu_{ij}$ -closed set, $b\mu_{ij}$ -interior, $b\mu_{ij}$ -closure.

1. Introduction

On 2002, A. Csaszar [5] was the first to investigate the generalized concepts of topological spaces. Later, C. Boonpak [3] extended the notion of generalized topological space into bigeneralized topological space (briefly BGTS) and defined some open sets. The characteristics of semi and pre-open sets in BGTS were studied by Anees Fathima and Jamuna Rani in [1] and [8]. This article discusses $b\mu_{ij}$ -open set in BGTS. We also examine its properties and provide some characterizations.

2. Preliminaries

Consider a non-empty set *X* and $\gamma \in \Gamma$. If $M \subset \gamma(M)$, then the subset *M* of *X* is said to be γ -open[4] and for any subset *M* of *X*, the function

^{*} PG and Research Department of Mathematics, Rani Anna Government College for Women, Thirunelveli-8, Affiliated to Manonmaiam Subdaranar University; Email: afiseyan09@gmail.com

[†] Department of Mathematics, Rani Anna Government College for Women, Thirunelveli-8, Affiliated to Manonmaiam Subdaranar University; Email: afiseyan09@gmail.com

 $\gamma^*: \wp(X) \to \wp(X)[4]$ can be defined as $\gamma^*(M) = X - \gamma(X - M)$. For any non empty set *X* and $\eta \in \wp(X)$, η is said to be GT [5] if $\phi \in \eta$ and η is closed under arbitrary union. A function $\gamma \in \Gamma$ is said to be μ friendly [6] if $\gamma(M) \cap L \subset \gamma(M \cap L)$ for any subset *M* of *X* and $L \in$ μ . If $\gamma \in \Gamma$ and $\mu = \{M \subset X/M \subset \gamma(M)\}$ is the collection of all γ open sets, then μ is called GT [5] and (X, μ) is a GTS. In [11], Γ_4 is denoted the collection of all μ -friendly functions and (X, μ) is referred ad the γ -space [7]. Also, by [7] the results established in [11] are valid for quasi-topological spaces.

For a non-empty set *X*, a triple (X, μ_1, μ_2) is said to be BGTS where μ_1, μ_2 are generalized topologies on *X*. For any non-empty subset *M* of *X*, $i_{\mu_n}(M)$ and $c_{\mu_n}(M)$ denotes the interior and closure of *M* with respect to μ_n respectively, for n = 1,2[3]. For the BGTS, a subset *M* is said to be μ_{pq} -semi open [1](resp. μ_{pq} -preopen [8]) if $M \subset c_{\mu_p}i_{\mu_q}(M)$ (resp. $M \subset i_{\mu_p}c_{\mu_q}(M)$) where p, q = 1,2 and $p \neq q$.

Theorem 2.1. [10] Consider a GTS (X, μ) . The following properties apply to the subsets *M* and *N* of *X*.

1. $i_{\mu}(X - M) = X - c_{\mu}(M)$ and $c_{\mu}(X - M) = X - i_{\mu}(M)$.

2. $i_{\mu}(M) = M$ for $M \in \mu$ and $c_{\mu}(M) = M$ for $X - M \in \mu$.

- 3. $i_{\mu}(M) \subseteq i_{\mu}(N)$ and $c_{\mu}(M) \subseteq c_{\mu}(N)$ for $M \subseteq N$.
- 4. $i_{\mu}(M) \subseteq M$ and $M \subseteq c_{\mu}(M)$.
- 5. $i_{\mu}(i_{\mu}(M)) = i_{\mu}(M)$ and $c_{\mu}(c_{\mu}(M)) = c_{\mu}(M)$.

Theorem **2.2** [9] For any γ -space (X, γ) , $L \cap c_{\gamma}(M) \subset c_{\gamma}(L \cap M)$, for any γ -open set L and for any subset M of X.

Theorem 2.3. For any quasi-topological space (X, μ) , the following apply to any subset *M*, *N* of *X*.

(1) $M \cap N$ is μ - open where M and N are μ - open [11].

(2) For all subsets *M* and *N* of *X*, $i_{\mu}(M \cap N) = i_{\mu}(M) \cap i_{\mu}(N)[7]$.

(3) For all subsets *M* and *N* of *X*, $c_{\mu}(M \cup N) = c_{\mu}(M) \cup c_{\mu}(N)[11]$.

Theorem 2.4. [2] For BGTS $(X, \mu_1, \mu_2), \mu_i \in \Gamma_4$ where i = 1, 2. Then the following properties hold for any subset M of X. (1) $i_{\pi_{ij}}(M) = M \cap i_{\mu_i} c_{\mu_j}(M)$. Fathima & Rani

$$(2) i_{\sigma_{ij}}(M) = M \cap c_{\mu_i} i_{\mu_j}(M).$$

$$(3) i_{\mu_i} \left(c_{\sigma_{ij}}(M) \right) = i_{\mu_i} c_{\mu_j}(M).$$

$$(4) i_{\mu_i} \left(c_{\pi_{ji}}(M) \right) = i_{\mu_i} c_{\mu_j} i_{\mu_i}(M).$$

$$(5) c_{\sigma_{ij}} \left(i_{\pi_{ji}}(M) \right) = i_{\pi_{ji}} \left(c_{\sigma_{ij}}(M) \right) = i_{\mu_i} c_{\mu_j}(M).$$

$$(6) i_{\pi_{ji}} \left(i_{\sigma_{ij}}(M) \right) = i_{\alpha_{ji}}(M).$$

$$(7) i_{\sigma_{ij}} \left(i_{\beta_{ij}}(M) \right) = i_{\sigma_{ij}}(M).$$

$$(8) i_{\pi_{ij}} \left(i_{\beta_{ji}}(M) \right) = i_{\pi_{ij}}(M).$$

3. $b\mu_{ij}$ - open sets

Definition 3.1. Any subset *A* of BGTS (X, μ_1, μ_2) is said to be $b\mu_{ij}$ open if $A \subset i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)$ where *i* is not equal to *j* and i, j = 1,2. Also $b_{ij}(\mu)$ denotes the collection of $b\mu_{ij}$ - open sets. By $i_{b_{ij}}(A)$, we mean the $b\mu_{ij}$ - interior of a subset *A* of *X* and it can be as the union of all $b\mu_{ij}$ - open sets contained in *A*.

Also, every μ_i -open set is $b\mu_{ij}$ -open. But the illustration below demonstrates that the converse need not be true. For let $X = \{1,2,3,4\}, \mu_1 = \{\emptyset,\{1\},\{3,4\},\{1,3,4\}\}, \mu_2 = \{\emptyset,\{2\},\{1,4\},\{2,4\},\{1,2,4\}\}$. Then the collection of all $b\mu_{ij}$ -open sets is $\{\emptyset,\{1\},\{3\},\{4\},\{1,3\},\{1,4\},\{3,4\},\{1,3,4\}\}$. Here $\{3\}$ is $b\mu_{12}$ -open but not μ_1 -open.

Theorem 3.2. For a BGTS (X, μ_1, μ_2) and $\mu_i \in \Gamma_4$ for i = 1, 2, the statements below are equivalent.

- (1) A is $b\mu_{ij}$ -open.
- $(2)A = i_{\pi_{ij}}(A) \cup i_{\sigma_{ji}}(A).$
- (3) $A \subset c_{\pi_{ji}}(i_{\pi_{ij}}(A))$.

Mapana - Journal of Sciences, Vol. 22, Special Issue 1

Proof. (i) \Rightarrow (ii) If A is $b\mu_{ij}$ -open, then $A \subset i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)$. Now by Theorem 2.4, $i_{\pi_{ij}}(A) \cup i_{\sigma_{ji}}(A) = \left(A \cap i_{\mu_i}c_{\mu_j}(A)\right) \cup \left(A \cap c_{\mu_j}i_{\mu_i}(A)\right) = A \cap \left(i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)\right) = A$.

(*ii*) \Rightarrow (*iii*) If $A = i_{\pi_{ij}}(A) \cup i_{\sigma_{ji}}(A)$, then $A = i_{\pi_{ij}}(A) \cup (A \cap c_{\mu_j}i_{\mu_i}(A)) \subset i_{\pi_{ij}}(A) \cup c_{\mu_j}i_{\mu_i}(A) = c_{\pi_{ji}}i_{\pi_{ij}}(A)$ by Theorem 2.4 which proves (c).

$$(iii) \Rightarrow (i) \quad \text{If} \quad \subset \ c_{\pi_{ji}}(i_{\pi_{ij}}(A)) \Rightarrow A \subset i_{\pi_{ij}}(A) \cup \ c_{\mu_j}i_{\mu_i}(A) = \left(A \cap i_{\mu_i}c_{\mu_j}(A)\right) \cup \ c_{\mu_j}i_{\mu_i}(A) = \left(A \cup c_{\mu_j}i_{\mu_i}(A)\right) \cap \left(i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)\right) \Rightarrow A \subset i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A) \ . \quad \text{Hence} \quad A \text{ is } b\mu_{ij} - c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{\mu_j}c_{\mu_j}c_{\mu_j}(A) = c_{\mu_j}c_{$$

open.

Theorem 3.3. Let A_l be $b\mu_{ij}$ -open for all $l \in \Delta$ and $\mu_i \in \Gamma_4$ in a bigeneralized topological space (X, μ_1, μ_2) . Then $\cup \{A_l/l \in \Delta\}$ is $b\mu_{ij}$ -open.

Proof. Let $A = \bigcup \{A_l/l \in \Delta\}$. Then $A \subset \bigcup c_{\pi_{ji}}i_{\pi_{ij}}(A_l) \subset c_{\pi_{ji}}(\bigcup (i_{\pi_{ij}}(A_l))) \subset c_{\pi_{ji}}(i_{\pi_{ij}}(\bigcup A_l)) = c_{\pi_{ji}}i_{\pi_{ij}}(A)$. Therefore, $\bigcup \{A_l/l \in \Delta\}$ is $b\mu_{ij}$ -open.

Remark 3.4. The following example demonstrates that the intersection of any two $b\mu_{ij}$ -open sets does not have to be a $b\mu_{ij}$ -open.

Let $X = \{1,2,3,4\}, \ \mu_1 = \{\phi, \{3\}, \{1,4\}, \{1,3\}, \{3,4\}, \{1,3,4\}\}, \ \mu_2 = \{\phi, \{2,4\}, \{2,3,4\}\}.$

 $b\mu_{12} - O(X) = \{\phi, \{1\}, \{3\}, \{4\}, \{1,3\}, \{1,4\}, \{3,4\}, \{1,2,4\}, \{1,3,4\}, \{2,3,4\}, X\}$. Here $\{1,2,4\}$ and $\{2,3,4\}$ are $b\mu_{12}$ -o(X) but $\{1,2,4\} \cap \{2,3,4\} = \{2,4\}$ which is not $b\mu_{12}$ -open.

Theorem **3.5.** For BGTS (X, μ_1 , μ_2), then the statements below are true for any subset A of X.

(i) $i_{b_{ii}}(A)$ is the largest $b\mu_{ij}$ -open set contained in *A*.

(*ii*) *A* is $b\mu_{ij}$ -open if and only if $A = i_{b_{ij}}(A)$.

Fathima & Rani $b\mu_{ii}$ - Open Sets in Bigeneralized Topological Spaces

- (iii) $x \in i_{b_{ij}}(A)$ if and only if there is a $b\mu_{ij}$ -open set M containing x such that $M \subset A$.
- (iv) $i_{b_{ij}} \in \Gamma_{012-}$.

Definition 3.6. In a BGTS (X, μ_1, μ_2) , a subset *A* is $b\mu_{ij}$ -closed if its complement is $b\mu_{ij}$ -open. Clearly, *A* is $b\mu_{ij}$ -closed if and only if $c_{\mu_i} i_{\mu_j}(A) \cap i_{\mu_j} c_{\mu_i}(A) \subset A$. By $c_{b_{ij}}(A)$, we mean the $b\mu_{ij}$ -closure of a subset *A* of *X* and it can be defined as the intersection of all $b\mu_{ij}$ -closed sets containing *A*.

Theorem 3.7. For BGTS (X, μ_1 , μ_2), then the statements below are true for any subset *A* of *X*.

- (i) $c_{b_{ii}}(A)$ is the smallest $b\mu_{ij}$ -closed set containing A.
- (*ii*) *A* is $b\mu_{ij}$ -closed if and only if $A = c_{b_{ij}}(A)$.
- (iii) $x \in c_{b_{ij}}(A)$ if and only if for every $b\mu_{ij}$ -closed set M containing x such that $M \cap A \neq \phi$.
- (iv) $c_{b_{ii}} \in \Gamma_{012+}$.

Theorem 3.8. In a BGTS (X, μ_1 , μ_2), the following statements are true for any subset A of X.

(i)
$$(i_{b_{ij}})^* = c_{b_{ij}}$$
.
(*ii*) $(c_{b_{ij}})^* = i_{b_{ij}}$.
(iii) $i_{b_{ij}}(X - A) = X - c_{b_{ij}}(A)$.
(iv) $c_{b_{ij}}(X - A) = X - i_{b_{ij}}(A)$.

Theorem **3.9.** In a BGTS (X, μ_1, μ_2), the following statements are true for any subset *A*.

(i)
$$c_{b_{ij}}(A) = c_{\sigma_{ij}}(A) \cap c_{\pi_{ji}}(A)$$
.

(ii)
$$i_{b_{ij}}(A) = i_{\sigma_{ij}}(A) \cup i_{\pi_{ji}}(A)$$
.

Proof. (i) Since $c_{b_{ij}}(A) \subset c_{\sigma_{ij}}(A)$ and $c_{b_{ij}}(A) \subset c_{\pi_{ji}}(A)$, we have $c_{b_{ij}}(A) \subset c_{\sigma_{ij}}(A) \cap c_{\pi_{ji}}(A)$. Also, $c_{\sigma_{ij}}(A) \cap c_{\pi_{ji}}(A) = (A \cup i_{\mu_i}c_{\mu_j}(A)) \cap (A \cup c_{\mu_j}i_{\mu_i}(A)) = A \cup (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_i}(A)) \subset A \cup (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_i}(A)) \cap (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_j}(A)) \cap (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_j}(A)) \cap (i_{\mu_i}c_{$

Mapana - Journal of Sciences, Vol. 22, Special Issue 1

$$\left(i_{\mu_i} c_{\mu_j} \left(c_{b_{ij}} \left(A \right) \right) \cap c_{\mu_j} i_{\mu_i} \left(c_{b_{ij}} \left(A \right) \right) \right) \subset A \cup c_{b_{ij}}(A) = c_{b_{ij}}(A),$$

Since $c_{b_{ij}}(A)$ is $b\mu_{ij}$ - closed. Therefore, $c_{b_{ij}}(A) = c_{\sigma_{ij}}(A) \cap c_{\pi_{ji}}(A).$

(ii) can be proved in the same way that (i).

Theorem **3.10**. In a BGTS (X, μ_1 , μ_2), the following statements are true for any subset A.

- (i) *A* is $b\mu_{ij}$ open if and only if $c_{\sigma_{ij}}(A) \cup c_{\pi_{ji}}(A) = i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)$.
- (ii) *A* is $b\mu_{ij}$ closed if and only if $i_{\sigma_{ij}}(A) \cap i_{\pi_{ji}}(A) = c_{\mu_i}i_{\mu_j}(A) \cap i_{\mu_i}c_{\mu_i}(A)$.

Proof. (i) By definition, $A \in b\mu_{ij}(A)$ if and only if $A \subset (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_i}(A))$. Now, $c_{\sigma_{ij}}(A) \cup c_{\pi_{ji}}(A) = (A \cup i_{\mu_i}c_{\mu_j}(A)) \cup (A \cup c_{\mu_j}i_{\mu_i}(A)) = A \cup (i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A))$. Since $A \subset (i_{\mu_i}c_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_i}(A))$, we have $c_{\sigma_{ij}}(A) \cup c_{\pi_{ji}}(A) = i_{\mu_i}c_{\mu_j}(A) \cup c_{\mu_j}i_{\mu_i}(A)$.

(ii) From (i), the proof follows.

The relationship between the $b\mu_{ij}$ - closure and $b\mu_{ij}$ - interior operators are proved by Theorem 3.11.

Theorem **3.11.** In a BGTS (X, μ_1 , μ_2), the following statements are true for any subset *A*.

(i)
$$i_{\mu_i} \left(c_{b_{ij}}(A) \right) = c_{b_{ij}} (i_{\mu_i}(A)) = i_{\mu_i} c_{\mu_j} i_{\mu_i}(A).$$

(ii) $c_{\mu_i} \left(i_{b_{ij}}(A) \right) = i_{b_{ij}} (c_{\mu_i}(A)) = c_{\mu_i} i_{\mu_j} c_{\mu_i}(A).$
(iii) $i_{b_{ij}} (c_{\sigma_{ji}}(A)) = i_{\sigma_{ij}} (c_{\sigma_{ji}}(A)) .$
(iv) $c_{b_{ij}} (i_{\sigma_{ji}}(A)) = c_{\sigma_{ij}} (i_{\sigma_{ji}}(A)).$
(v) $i_{\sigma_{ji}} (c_{b_{ij}}(A)) = c_{\sigma_{ij}}(A) \cap c_{\mu_j} i_{\mu_i}(A).$
(vi) $c_{\sigma_{ji}} (i_{b_{ij}}(A)) = i_{\sigma_{ij}}(A) \cap i_{\mu_j} c_{\mu_i}(A).$

Fathima & Rani $b\mu_{ii}$ - Open Sets in Bigeneralized Topological Spaces

Proof. (i)
$$c_{b_{ij}}(i_{\mu_i}(A)) = c_{\sigma_{ij}}(i_{\mu_i}(A)) \cap c_{\pi_{ji}}(i_{\mu_i}(A)) = (i_{\mu_i}(A) \cup i_{\mu_i}c_{\mu_j}i_{\mu_i}(A)) \cap (i_{\mu_i}(A) \cup c_{\mu_j}i_{\mu_i}(A)) = (i_{\mu_i}(A) \cup i_{\mu_i}c_{\mu_j}i_{\mu_i}(A)) \cap (i_{\mu_i}c_{\mu_j}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_j}i_{\mu_i}(A)) \cap (i_{\mu_i}c_{\mu_j}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_j}i_{\mu_i}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_j}i_{\mu_i}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_j}i_{\mu_i}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_i}i_{\mu_i}i_{\mu_i}i_{\mu_i}(A)) = (i_{\mu_i}c_{\mu_i}i_{$$

Also by theorem 2.4(3) and 2.4(4), $i_{\mu_i}(c_{b_{ij}}(A)) = i_{\mu_i}(c_{\sigma_{ij}}(A) \cap c_{\pi_{ji}}(A)) = i_{\mu_i}(c_{\sigma_{ij}}(A)) \cap i_{\mu_i}(c_{\pi_{ji}}(A)) = i_{\mu_i}c_{\mu_j}(A) \cap i_{\mu_i}c_{\mu_j}i_{\mu_i}(A) = i_{\mu_i}c_{\mu_j}i_{\mu_i}(A).$

(ii) From (i), the proof follows.

(iii)
$$i_{b_{ij}}(c_{\sigma_{ji}}(A)) = i_{\sigma_{ij}}(c_{\sigma_{ji}}(A)) \cup (i_{\pi_{ji}}(c_{\sigma_{ji}}(A)))$$
. Now,
 $i_{\pi_{ji}}(c_{\sigma_{ji}}(A) = c_{\sigma_{ji}}(A) \cap i_{\mu_j}c_{\mu_i}(c_{\sigma_{ji}}(A)) = c_{\sigma_{ji}}(A) \cap i_{\mu_j}c_{\mu_i}(A) \subset c_{\sigma_{ji}}(A) \cap c_{\mu_i}i_{\mu_j}c_{\mu_i}(A) = (A \cup i_{\mu_j}c_{\mu_i}(A)) \cap c_{\mu_i}i_{\mu_j}c_{\mu_i}(A) = i_{\sigma_{ij}}(c_{\sigma_{ji}}(A))$. Also from the definition $i_{b_{ij}}(c_{\sigma_{ji}}(A)) \subset i_{\sigma_{ii}}(c_{\sigma_{ii}}(A))$. Hence the result follows.

(iv) From (iii), the proof follows.

$$(v) \ i_{\sigma_{ji}}c_{b_{ij}}(A) = \ c_{b_{ij}}(A) \cap \ c_{\mu_{j}}i_{\mu_{i}}\left(c_{b_{ij}}(A)\right) = \ c_{b_{ij}}(A) \cap \\ c_{\mu_{j}}i_{\mu_{i}}\left(c_{\mu_{j}}i_{\mu_{i}}(A)\right) \ by (i), \ c_{b_{ij}}(A) \cap c_{\mu_{j}}i_{\mu_{i}}(A) = \ (c_{\sigma_{ij}}(A) \cap \\ c_{\pi_{ji}}(A)) \cap c_{\mu_{j}}i_{\mu_{i}}(A) = \ c_{\sigma_{ij}}(A) \cap c_{\mu_{j}}i_{\mu_{i}}(A).$$

(vi) From (v), the proof follows.

Theorem 3.12. In a BGTS (X, μ_1 , μ_2), the following statements are true for any subset A.

(i)
$$i_{\mu_j} i_{b_{ij}}(A) = i_{b_{ij}} i_{\mu_j}(A) = i_{\mu_j}(A).$$

(ii) $c_{\mu_j} c_{b_{ij}}(A) = c_{b_{ij}} c_{\mu_j}(A) = c_{\mu_j}(A).$
(iii) $i_{b_{ij}} i_{\beta_{ij}}(A) = i_{\beta_{ij}} i_{b_{ij}}(A) = i_{b_{ij}}(A).$
(iv) $c_{b_{ij}} c_{\beta_{ij}}(A) = c_{\beta_{ij}} c_{b_{ij}}(A) = c_{b_{ij}}(A).$
(v) $i_{b_{ij}} c_{\alpha_{ij}}(A) = c_{\mu_i} i_{\mu_j} c_{\mu_i}(A).$
(vi) $c_{b_{ij}} i_{\alpha_{ij}}(A) = i_{\mu_i} c_{\mu_j} i_{\mu_i}(A).$

(vii)
$$c_{\alpha_{ij}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cup c_{\mu_i}i_{\mu_j}c_{\mu_i}(A).$$

(viii) $i_{\alpha_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cap i_{\mu_i}c_{\mu_j}i_{\mu_i}(A).$
(ix) $c_{\alpha_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup c_{\mu_j}i_{\mu_i}c_{\mu_j}(A).$
(x) $i_{\alpha_{ji}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cap i_{\mu_j}c_{\mu_i}i_{\mu_j}(A).$
(xi) $c_{\sigma_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup i_{\mu_i}c_{\mu_j}(A).$
(xiii) $i_{\sigma_{ij}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cap c_{\mu_i}i_{\mu_j}(A).$
(xiii) $c_{\pi_{ji}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup c_{\mu_j}i_{\mu_i}(A).$
(xiv) $i_{\pi_{ji}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cap i_{\mu_j}c_{\mu_i}(A).$
(xv) $c_{\beta_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup i_{\mu_i}c_{\mu_j}i_{\mu_i}(A).$
(xvi) $i_{\beta_{ij}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cap c_{\mu_i}i_{\mu_j}c_{\mu_i}(A).$
Proof. (i) Clearly $i_{\mu_j}i_{b_{ij}}(A) \subset i_{\mu_j}(A)$. Also, $i_{\mu_j}i_{b_{ij}}(A) = i_{\mu_j}(i_{\sigma_{ij}}(A) \cup i_{\pi_{ji}}(A))$
Also, $i_{b_{ij}}(i_{\mu_j}(A)) = i_{\sigma_{ij}}(i_{\mu_j}(A)) \cup i_{\pi_{ji}}(i_{\mu_j}(A)) = (i_{\mu_j}(A) \cap c_{\mu_i}i_{\mu_j}(A)) \cup (i_{\mu_j}(A) \cap i_{\mu_j}c_{\mu_i}i_{\mu_j}(A)) = (i_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_j}(A)) \cup (i_{\mu_j}(A) \cap i_{\mu_j}c_{\mu_j}i_{\mu_j}(A)) = (i_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_j}(A)) \cup (i_{\mu_j}(A) \cap c_{\mu_j}i_{\mu_j}i_{\mu_j}(A))$

(ii) From (i), the proof follows.

(iii) By theorem 2.4(7) and (8), $i_{b_{ij}}i_{\beta_{ij}}(A) = i_{\sigma_{ij}}(i_{\beta_{ij}}(A)) \cup i_{\pi_{ji}}(i_{\beta_{ji}}(A)) = i_{\sigma_{ij}}(A) \cup i_{\pi_{ji}}(A) = i_{b_{ij}}(A).$

Also, $i_{\beta_{ij}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cap c_{\mu_i}i_{\mu_j}c_{\mu_i}\left(i_{b_{ij}}(A)\right) = i_{b_{ij}}(A) \cap c_{\mu_i}i_{\mu_j}c_{\mu_i}(A) \supset i_{b_{ij}}(A)$. Clearly, $i_{\beta_{ij}}i_{b_{ij}}(A) \subset i_{b_{ij}}(A)$. Hence proved.

(iv) From (iii), the proof follows.

$$(\mathbf{v}) \, i_{b_{ij}} c_{\alpha_{ij}}(A) = i_{\sigma_{ij}} \left(c_{\alpha_{ij}}(A) \right) \cup i_{\pi_{ji}} \left(c_{\alpha_{ij}}(A) \right) = \left(c_{\alpha_{ij}}(A) \cap c_{\alpha_{ij}}(A) \right) \\ c_{\mu_i} \, i_{\mu_j} c_{\mu_i}(A) \right) \cup \left(c_{\alpha_{ij}}(A) \cap i_{\mu_j} c_{\mu_i}(A) \right) = c_{\alpha_{ij}}(A) \cap (c_{\mu_i} \, i_{\mu_j} c_{\mu_i}(A) \cup c_{\mu_i} \, i_{\mu_j} c_{\mu_i}(A) \right)$$

Fathima & Rani $b\mu_{ii}$ - Open Sets in Bigeneralized Topological Spaces

$$i_{\mu_{j}}c_{\mu_{i}}(A) = c_{\alpha_{ij}}(A) \cap c_{\mu_{i}}i_{\mu_{j}}c_{\mu_{i}}(A) = \left(A \cup c_{\mu_{i}}i_{\mu_{j}}c_{\mu_{i}}(A)\right) \cap c_{\mu_{i}}i_{\mu_{j}}c_{\mu_{i}}(A) = c_{\mu_{i}}i_{\mu_{j}}c_{\mu_{i}}(A).$$

(vi) From (v), the proof follows.

$$(\text{vii})c_{\alpha_{ij}}i_{b_{ij}}(A) = i_{b_{ij}}(A) \cup c_{\mu_i}i_{\mu_j}c_{\mu_i}\left(i_{b_{ij}}(A)\right) = i_{b_{ij}}(A) \cup c_{\mu_i}i_{\mu_j}c_{\mu_i}(A) = i_{b_{ij}}(A) \cup c_{\mu_i}i_{\mu_j}c_{\mu_i}(A).$$

(viii) From (vii), the proof follows.

(ix)
$$c_{\alpha_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup c_{\mu_j}i_{\mu_i}c_{\mu_j}\left(c_{b_{ij}}(A)\right) = c_{b_{ij}}(A) \cup c_{\mu_j}i_{\mu_i}c_{\mu_j}(A)$$
 by (ii).

(x) From (ix), the proof follows.

(xi)
$$c_{\sigma_{ij}}c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup i_{\mu_i} c_{\mu_j}(c_{b_{ij}}(A)) = c_{b_{ij}}(A) \cup i_{\mu_i} c_{\mu_j}(A)$$
 by (ii).

(xii) From (xi), the proof follows.

(xiii)
$$c_{\pi_{ji}} c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup c_{\mu_j} i_{\mu_i} (c_{b_{ij}}(A)) = c_{b_{ij}}(A) \cup c_{\mu_j} i_{\mu_i} i_{\mu_i} c_{\mu_j} i_{\mu_i}(A) = c_{b_{ij}}(A) \cup c_{\mu_j} i_{\mu_i}(A).$$

(xiv) From (xiii), the proof follows.

$$(\text{xv}) c_{\beta_{ij}} c_{b_{ij}}(A) = c_{b_{ij}}(A) \cup i_{\mu_i} c_{\mu_j} i_{\mu_i} \left(c_{b_{ij}}(A) \right) = c_{b_{ij}}(A) \cup i_{\mu_i} c_{\mu_j} i_{\mu_i} c_{\mu_j} i_{\mu_i}(A) = c_{b_{ij}}(A) \cup i_{\mu_i} c_{\mu_j} i_{\mu_i}(A).$$

(xvi) From (xv), the proof follows.

Theorem 3.12. In a BGTS (X, μ_1 , μ_2), the following statements are true for any subset A.

(i) *A* is $b\mu_{ij}$ - open if and only if $i_{b_{ij}}i_{\beta_{ij}}(A) = A$.

(ii) *A* is $b\mu_{ij}$ - closed if and only if $c_{b_{ij}}c_{\beta_{ij}}(A) = A$.

Proof. (i) By theorem 3.12(vii), the result follows.

(ii) The proof of (ii) follows from (i).

References

[1] M. Anees Fathima and R. Jamuna Rani, μ_{ij} - semiopen sets in bigeneralized topological spaces, Malaya Journal of Mathematik, Vol.S., No.1, 12-16, 2019.

[2] M. Anees Fathima and R. Jamuna Rani, Remarks on interiors and closures of weak open sets in bigeneralized topological spaces, Ratio Mathematica, Vol.44, 75-85, 2022.

[3] C. Boonpak, Weakly open functions on bigeneralized topological spaces, Int. J. of Math. Analysis, 15(5)(2010),891-897.

[4] A. Csaszar, Generalized open sets, Acta. Math. Hungar,75(1997),65-87.

[5] A. Csaszar, Generalized Topology, Generalized Continuity, Acta. Math. Hungar, 96(2002), 351-357.

[6] A.csaszar, Further remarks on the formula for γ -interior, Acta. Math. Hungar, 113(4)(2006),325-332.

[7] A.Csaazar, Remarks on quasi-topologies, Acta. Math. Hungar, 119(2007),197-200.

[8] R. Jamuna Rani and M. Anees Fathima, μ_{ij} - preopen sets in bigeneralized topological spaces, Advances in Mathematics: Scientific Journal, 9(2020), No.5, 2459-2466.

[9] R. Jamuna Rani, P.Jeyanthi and D. Sivaraj, More on γ -interior, Bull. Allahabad Math.Soc., 25(2010), 1-12.

[10] W.K. Min, Almost continuity on generalized topological spaces, Acta. Math. Hungar, 25(2009), 121-125.

[11] P.Sivagami , Remarks on γ -interior, Acta. Math. Hungar., 119(2008), 81-94.