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Abstract 
In this paper we establish existence results for the 
periodic boundary value problem   of first order delay 
differential equation using Leray - Schauder 
alternative and Schauder’s fixed point theorem. We 
define lower and upper solutions to establish existence 
of solution between them.   Further we define strict 
lower and upper solutions for the problem to establish 
existence of solution strictly between the two. 
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1.  Introduction 

The study of boundary value problems (BVPs) for differential 
equations with deviating arguments (DEDA) is important 
because of their applications in various fields such as production 
problems in Eco- nomics, Biological systems, Physical models etc.  
Thus, given a DEDA the most natural question that arises is of 
existence of its solution. 
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The existence theory of ordinary differential equations as well as 
de- lay differential equations (DDE) is well developed in ([1, 4, 

12]). For the fixed-point theory, which is the main source of 
proving many existence results, one may refer to [11]. Existence 
results on solution between lower and upper solutions for BVP of 
first order ordinary differential equation are discussed in [ 6 ] , [7], 
[8] and [9]. One may refer [2], [3], [5], [10], [13] and [14] for 
BVP of First Order DDEs. 

Periodic boundary value problem (PBVP) for first order DDE of 

the type x′ (t) = f (t, xt ),  t ∈ I = [0, T ],  x(0) = ϕ(0) = x(ϕ)(T ), 

x(θ) = ϕ(θ); θ ∈ [−r, 0], is studied in [1]. Here ϕ ∈ C [−r, 0], 

f : I × R → R is a continuous function  satisfying 

0 ≤ f (t, v(t)) + λv(0) −  f (t, u(t)) − λu(0) ≤  µ(v(t) − u(t)) ∀ u, v ∈ C[−r, 
0] 

such that u ≤ v and λ, µ are some constants such that 0 < µ < λ. 

In [10], PBVP for first order DDE x′ (t) = f (t, x, xt ),  t ∈ [0, 2π], 

x(0) =  x(2π), is investigated using  contraction mapping  theorem 
for 

operators whose domain and range are different Banach spaces.  
PBVP for a  differential equation with piecewise constant 

argument (DEPCA) given by x′ (t) = f (t, x, x([t − 1])), t ∈ [0, T ],   x(0) 

=  x(T ) is studied  in [14].  Here f: [0, T] × R2   → R is a continuous 
function satisfying f (t, u1 , v1 ) −  f (t, u2 , v2 ) ≥ −M1 (u1 − u2 ) − M2 (v1 − 

v2 ),  for t ∈ [0, T ], 

M1 , M2 > 0, u1 , u2 , v1 , v2 ∈ R with α(t) ≤ u2 ≤ u1 ≤ β(t) and 

α([t − 1]) ≤  v2  ≤  v1  ≤  β([t − 1]), where  α and  β are lower  and  

upper solutions  of the given PBVP for DEPCA. 

In this paper we consider existence of solution to PBVP for a first 
Order DDE using Leray - Schauder alternative and Schauder’s 
fixed point theorem. 

Let T > 0, λ > 0, I = [0, T], 0 < r < T and f: I × R → R be 

continuous. We consider the following PBVP for first order DDE: 
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y′ (t) + λy(t) = f (t, y(t − r)),  t ∈ I, (1) 

y(t) = y(0), t ∈ [−r, 0], (2) 

y(0) = y(T ). (3) 

We use the following notations throughout the paper:  

1.  B = C[−r, T ] ∩ C′ [0, T ], is the  set of all functions  defined  and 
continuous on [−r, T ] and are continuously differentiable on [0, 
T ]. 

2.  X = {y ∈ B: y(t) = y(0),  ∀  t ∈ [−r, 0]}. 

3.  Y = {y ∈ B: y(t) = 0, ∀ t ∈ [−r, 0]}. 

4. ∥ 𝑥 ∥∞ =  𝑠𝑢𝑝
𝑡∈[−𝑟,𝑇] 

|𝑥(𝑡)|  +  𝑠𝑢𝑝
𝑡∈[0,𝑇]

|𝑥́(𝑡)|, ∀ 𝑥 ∈ 𝐵 

5. ‖(𝑦, 𝜉‖∗  =  ‖𝑦‖∞ + |𝜉|, ∀(𝑦, 𝜉)𝜖 𝑌 𝑥 𝑅. 

6. For a linear operator L: X → Y x R, ‖𝐿‖  =  𝑠𝑢𝑝
‖𝑥‖∞=1

‖𝐿𝑥‖∗ 

Note that (B, ‖. ‖∞), (𝑋, ‖. ‖∞), (𝑌, ‖. ‖∞) and (𝑌 × 𝑅, ‖. ‖∗) are Banach 
spaces. 

We now state Leray - Schauder alternative [6] and Schauder’s fixed 
point theorem [11]. 

Theorem 1.1. Leray - Schauder Alternative: 

Let C be a complete convex subset of a locally convex Hausdorff 
linear topological space E and U an open subset of C with p ∈ U. In 
addition, let A: U → C be a continuous and compact map. Then either 
A has a fixed point in U or there is U ∈ 𝜕𝑈and µ∈(0,1) with u = µAu 
+ (1-µ)p. 
 
Theorem 1.2.  Schauder’s Fixed Point Theorem: 

Let E be a normed linear space, S: E→E be a continuous and 
compact map such that S(E) is bounded. Then S has a fixed point. 

We state the following Lemma without proof. 

Lemma 1.3.  Let be an operator defined by 

 , where:  
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Then 

 is a continuous linear operator. 

 exists and it is defined by 

 

 is continuous linear operator. 

We also require the following lemma. 

Lemma 1.4.  Let  be continuous and  be 

defined by , where 

 

Then,  is continuous and compact. 

Proof. Claim1:-  uniformly on  and  uniformly 

on . 

Since,  and , we have 

  as  pointwise on . 

Let  and , where 

 

and 

 

We show that  in . 

Since  uniformly on  in . 

Let  be arbitrary and . Then 

 and . 
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Let . Since  uniformly on 

 uniformly on . 

Therefore,  uniformly on , as 

 is continuous. 

 such that,  

and  

Therefore,  

 

 and . 

 uniformly on . 

Since  and , we get 

 and 

. 

 

 uniformly on . 

 as  and 

 as . 

 as . 

. 

    

 as . 

 is continuous. 

Claim 2:- :-  is compact. 

Let  be a bounded sequence in . 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

18 

 

Therefore,  such that . 

Let , where 

 

Since , we have 

 and . 

Note that . 

Also,  such that  and . 

Let . Then, 

 and 

. 

. 

Since , we have  

and . 

. 

. 

 is bounded on . 

 is uniformly bounded on  and  is uniformly 

bounded on . 

Let  be arbitrary and  be arbitrary. 

CASE-1: Let . 

Choose .Then 

 such that . 

 is equicontinuous at . 

CASE-2: Let . 

Choose  and  be such that . 
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If , then . 

Let . Then 

 

       

 such that . 

 is equicontinuous at 0 . 

CASE-3: Let . 

Choose  and let . Then 

 

 such that . 

 is equicontinuous at . 

CASE-4: Let . 

Choose . Then 

 such that . 

 is equicontinuous at , where . 

CASE-5: Let . 

Choose  and let  be such that . Then 
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 such that . 

 is equicontinuous at , where . 

Hence, from CASE-1 to CASE-5, we conclude that  is 

equicontinuous on . 

By Arzela-Ascoli theorem,  has a subsequence  

converging uniformly to  on . 

Let  be the corresponding subsequence of . 

Since , we have . 

 is uniformly bounded on  and  is 

uniformly bounded on .  is uniformly bounded on 

 and  is uniformly bounded on . 

Since  and as  is 

continuous,  is equicontinuous on . 

Therefore, by Arzela-Ascoli theorem  has a subsequence 

 converging uniformly to  on . 

Since  is a subsequence of  and  is a 

subsequence of  is a subsequence of . 

Since  uniformly on  uniformly on 

.  uniformly on . 

Since  uniformly on  on . 
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 uniformly on  as  and  

uniformly on  as . Hence  as . 

Let  be the corresponding subsequence of . 

Now . 

 and . 

. 

Therefore, by Bolzano-Weierstrass's theorem,  has a 

convergent subsequence  converging to  as . 

Let  be the corresponding subsequence of  in . 

Since,  in  as , we have  in  

as . 

Therefore,  

        

 in  as . 

Hence,  is a compact operator. 

2. Existence theorem using Leray-Schauder alternative 
In this section, we establish existence of solution for the PBVP (1)-(3) 
using Leray-Schauder alternative. 

Theorem 2.1. Let  be continuous. If , 

independent of  with  for any solution  of 

    (4) 

, 

 

for each , then the PBVP (1) - (3) has at least one solution in 

. Proof. Let  be defined by , 
where 
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By Lemma 1.3.  is linear, bijective and continuous. Also, 

 exists and is given by 

 

By bounded inverse theorem,  is bounded and hence 
continuous. 

Let  be defined by , where 

 

Then, by Lemma  is continuous and compact. 

Let . Then 

 

Note that a fixed point of  is a solution of the PBVP (1) - (3). 

Let  be a bounded sequence in . Then since 

 is a compact operator,  has a convergent 

subsequence  as . 

Since  is continuous linear operator,  is 

convergent in  as . 

Therefore  is convergent in  as . 

 is a compact operator. 

Since composition of continuous operators is continuous,  is 
a continuous operator. 

Let . Then  is open in . 

By Leray-Schauder alternative either  has a fixed point in  or  

 and  such that . 
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Let if possible  have no fixed point in . Then  and 

 such that . 

Therefore  is a solution of PBVP (4), (2) and (3). 

Since . 

This is a contradiction to the hypothesis in the statement of the 
theorem. 

Therefore  has fixed point in  such that . 

Hence,  is a solution of PBVP (1) - (3). 

3. Existence Theorem using Schauder's fixed point theorem 

In this section we define lower and upper solution for PBVP of first 
order DDE to obtain existence of solution between lower and upper 
solution. Further we define strict lower and upper solutions for 
PBVP to obtain existence of solution strictly between strict lower and 
upper solution. We make use of Schauder's fixed point theorem to 
obtain our results. 

Firstly we have following definitions. 

Definition 3.1. A function  is called a lower solution of PBVP 
(1)(3) if 

1. . 

2. . 

3. . 

A function  is called an upper solution of PBVP (1)- (3) if the 
above inequalities are reversed. 

Definition 3.2. A lower solution  of PBVP (1)- (3), is called strict 
lower solution of the PBVP (1)- (3) if 

. 

An upper solution  of PBVP (1)- (3), is called strict upper 
solution of PBVP (1)- (3) if the above inequality is reversed. 

We now prove the existence of atleast one solution to the PBVP 
between the lower and upper solutions. 
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Theorem 3.3. Let  be continuous and , 

 such that . Let  be lower and 

upper solutions of PBVP (1)- (3) such that . 

Then, the  (1)- (3) has atleast one solution  such that 

. 

Proof. 

Since  are lower and upper solutions of PBVP (1)-(3), we 
have 

1. . 

2. . 

3. . 

4. . 

5. . 

6. . 

Further, since  and 

. 

Let  be defined by, 

. 

Since . 

Since .  

Also . 

. 

. 

. 

Hence  is continuous and bounded. 

Let  be defined by 
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Then  is continuous and bounded. 

Let  be defined by , where 

 

Therefore, by Lemma 1.3.  is linear, bijective and 
continuous. 

Also,  exists and is given by 

 

By bounded inverse theorem,  is bounded and hence 
continuous. 

Let  be defined as, , where 

 

Therefore,  is compact and continuous. 

Let, . Then, 

 

Then, a fixed point of  is a solution of 

 

 

Since,  is continuous linear operator and 

 is compact, therefore  is a compact operator. 

(5) 

(6) 



Mapana - Journal of Sciences, Vol. 22, Special Issue 1  ISSN 0975-3303 

26 

 

Also,  to be continuous, as composition of continuous 
operators is continuous. 

Further,  and  are bounded  is a bounded subset of 

. Therefore, by Schauder's fixed point theorem,  has 

a fixed point . 

Therefore,  is a solution of BVP (5), (2) and (6). 

We show that . 

Since , 

we have . 

. 

. 

Therefore, it is enough to show that . 

Let  be arbitrary. 

Define,  and 

. 

 and . 

Also,  and . 

 and . 

Since , we have 

. . 

Therefore, we prove that . 

Let, if possible  such that 

 and . 

Therefore, . 

Also,  for sufficiently small . 

.  
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CASE-1: Let . 

. 

. 

Therefore,  

 

CASE-2: Let . 

. 

. 

CASE-2.1: Let . 

Therefore,  

 

CASE-2.2: Let . 

Therefore,  

 

CASE-2.3: Let . 

Therefore,  

 

Hence, from the above discussed cases we conclude that 
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αϵ (t) < y(t) < βϵ (t), ∀ t ∈ [0, T ] and ∀ϵ > 0. 

Therefore by taking ϵ → 0 we get, α(t) ≤ y(t) ≤ β(t), ∀ t ∈ [0, T ]. 

⇒ α(t) ≤ y(t) ≤ β(t), ∀ t ∈ [−r, T ]. 

Therefore, F⋆ (t, y(t − r)) = f (t, y(t − r)), ∀ t ∈ [0, T ] and p(T , y(T )) = y(T ). 

Hence, y ∈ X is a solution of (1) - (3) such that 

α(t) ≤ y(t) ≤ β(t), ∀ t ∈ [−r, T].                                                                   □ 

Theorem 3.4.  Let f: I × R → R be continuous and f (t, x) ≤ f (t, y), 
∀ (t, x), (t, y) ∈ I × R such that x ≤ y.  Let α, β ∈ X be strict lower and 
upper solutions of (1) - (3) such that α(t) ≤ β(t), ∀ t ∈ [−r, T].  Then, 
PBVP (1) - (3) has atleast one solution y ∈ X such that α(t) ≤ y(t) ≤ β(t), 

∀ t ∈ [−r, 0] and α(t) < y(t) < β(t), ∀ t ∈ (0, T]. 

Proof. 
Since α, β ∈ X are strict lower and upper solutions of (1) - (3), we 
have 

1. α′ (t) < f (t, α(t − r)),  t ∈ I. 

2. β′ (t) > f (t, β(t − r)),   t ∈ I. 

3. α(t) ≤ α(0),   t ∈ [−r, 0]. 

4. β(t) ≥ β(0),   t ∈ [−r, 0]. 

5. α(t) ≤ β(t), t ∈ [−r, T ]. 

6. α(0) ≤ α(T ). 

7. β(0) ≥ β(T ). 

As α, β ∈ X, α(t) = α(0), ∀ t ∈ [−r, 0] and β(t) = β(0), ∀ t ∈ [−r, 0]. Let 

p, F⋆ , L, N and S be as defined  in Theorem  3.3. 
Therefore, by Schauder’s fixed point theorem, S: X → X has a fixed 
point y ∈ X. 
This will imply that y is a solution of (5), (2) and (6). 

 

Since α(0) ≤ α(T ) ≤ p(T , y(T )) ≤ β(T ) ≤ β(0), therefore α(0) ≤ p(T , 
y(T )) ≤ β(0). 
⇒ α(0) ≤ y(0) ≤ β(0). 
⇒ α(t) ≤ y(t) ≤ β(t), ∀ t ∈ [−r, 0]. 
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Next, we show that α(t) < y(t) < β(t), ∀ t ∈ (0, T ]. Let, if possible ∃ t1   

∈ (0, T ] such that 

α(t) < y(t) < β(t), ∀ t ∈ (0, t1 ) and y(t1 ) = β(t1 ). 

⇒ y(t1 − h) < β(t1 − h) for sufficiently small h > 0. 

𝛽(𝑡1)−𝛽(𝑡1−ℎ)

ℎ
 < 

𝑦(𝑡1) − 𝑦(𝑡1−ℎ)

ℎ
 

⇒ β′ (t1 ) ≤ y′ (t1 ). 

 

CASE-1: Let 0 < t1 ≤ r. 

⇒ −r < t1 − r ≤ 0. 

⇒ α(t1 − r) ≤ y(t1 − r) ≤ β(t1 − r). 
 

Therefore, y′ (t1 ) = F⋆ (t1 , y(t1 − r)) − λy(t1 ) 

= f (t1 , y(t1 − r)) − λy(t1 ) 

≤ f (t1 , β(t1 − r)) − λβ(t1 ) 

< β′ (t1 ), which is a contradiction. CASE-2: Let r < t1 ≤ T. 

⇒ 0 < t1 − r ≤ t1 . 

⇒ α(t1 − r) < y(t1 − r) < β(t1 − r). 
 

Therefore, y′ (t1 ) = F⋆ (t1 , y(t1 − r)) − λy(t1 ) 

= f (t1 , y(t1 − r)) − λy(t1 ) 

≤ f (t1 , β(t1 − r)) − λβ(t1 ) 

< β′ (t1 ), which is a contradiction. 

 
Hence, from CASE-1 & CASE-2 we have, α(t) < y(t) < β(t), ∀ t ∈ (0, 
T]. Therefore, F⋆ (t, y(t − r)) = f (t, y(t − r)), ∀ t ∈ [0, T ] and p(T , y(T )) 
= y(T ). Hence, y ∈ X is a solution of PBVP for FODDE (1) - (3) such 
that 
α(t) ≤ y(t) ≤ β(t), ∀ t ∈ [−r, 0] and α(t) < y(t) < β(t), ∀ t ∈ (0, T].           □ 
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