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EFFECTS OF MAGNETIC FIELD AND
NON-UNIFORM BASIC TEMPERATURE
GRADIENT ON THE ONSET OF RAYLEIGH-
BENARD CONVECTION IN A FLUID WITH

SUSPENDED PARTICLES

br. S. Pranesh™

Abstract

The effects of a non-uniform temperature gradient and magnetic. -

. field on the onset of convection in a horizontal layer of Boussinesq .
fluid with sLspended particles confined batween an upper free /
adiabatic boundary and a tower rigid / isothermal boundary have
been considered. A linear stability analysis is performed. The -
microrotation is assumed to vanish at the boundaries. The Galerkin -
technique is used to obtain the eigenvalues. Theinfluence of various:
parameters on the onset of convection has been analysed. Six -
different non-uniform temperature profiles are considered and their
comparative influence on onset is discussed. Itis observed that the’
electrically conducting fluid layer with suspended particles heated

- from below is more stable compared to the classical electrically

conducting fluid without suspended particles. The critical wave.
number is found to be insensitive to the changesin the parameters
but sensitive to the changes in the Chandrasekhar number. .

Introduction.

The theory of Rayleigh-Benard instability of a horizontal liquid layer
with free upper surface over a heated plate has many important
applications in a number of engineering problems, such as in oil
extraction from porous medium, energy storage in moiten salts, and
chemical engineering of paints, colloids and detergents. The instability
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of Rayleigh-Benard convection is due to the effect of the thermal
buoyancy. Theoretical studies of the onset of convection in classical
viscous fiuids with non-uniform heating have been made by Currie [4]with
isothermal boundaries and by Nield[12] with adiabatic boundaries and
showed that in the case of piecewise linear temperature profile the onset
of convection could occur at a smaller Rayleigh number than that of
uniform heating. The non-uniform temperature gradient finds its origin in
transient heating or cooling at the boundaries and as a result the basic
temperature profile depends explicitly on position and time. This hasto
be determined by solving the coupled momentum and energy equations.
This'coupling also makes the problem very complicated. In the present
study, therefore, we adopt a series of temperature profiles based on a
s:mphficanon in the form of a quasi-static approximation (Currie[4], Lebon
and Cloot[10] and Rudraiah et al [14]) that consists of freezing the
temperature distribution at a given instant of time. In this method, we
assume that the perturbation grows much faster than the nitial state
and hence freeze the initial state into some spatial distribution. This
hypothesis is sufficient for our purpose bécause we are interested only
in finding the conditions for the onset of convection. Even with these
simplifications, the solutions to the variable-coefficients stability equations
pose a problem because the temperature gradient varies with depth.

Micropolar fluid theories [6-8] describe some physical systems, which
do not satisfy the Navier-Stokes equation. To explain the kinematics of
such media two new variables should be added to the velocity. These
variables are the spin, responsible for microrotations, and the micro
inertia tensor, which accounts for the atoms and molecules inside the
macroscopic fluid particles. These fluids are able to describe the behaviour
of suspensions, liquid crystals, blood, etc (see Power [14], Lukaszewicz
[11]and Eringen [9]). Chandra [2] observed in his experiments that adding
smoke part!cles to a layer of gas could decrease the Rayleigh number
at which convective motion commences. Sincé the particle spin
associated with Eringen's theory could possibly be appropriate to the
added dust situation described by Chandra [2], there may be dust, dirt,
ice or raindrops, or other additives. Thus we believe that the Eringen
micropolar convection model may be applicable to geophysical or
industrial convection contexts. The Rayleigh-Benard situation in
Eringen’s micropolar fluids has been investigated by many authors
[1,4,13,15-23). The main result from all these studies is that for heating
from below stationary convection is the preferred mode: The effect of
non-uniform basic temperature gradients on the onset of Rayieigh-Benard
convection ina micropolar fluid has not been given any attention. Hence,
the aim of this paper is to study the effect of magnetic field and non-
unlform basic temperature gradlents on Rayliegh-Benard convection with
the object of understanding the control of convection. A single term
Galerkin method expansion procedure is used here with the intention of
obtaining reasonable results with minimum of mathematics. -



Mathematical Formulation

Gonsider an infinite horizontal layer of a Boussinesquian, electrically
conducting fluid, with non- -magnetic suspended particte, of depth ‘d’
permeated by an externally applled uniform magnetic field normal to the
layer (see figure (1)). A Cartesian co-ordinate system is taken with'origin
in the lower boundary and z-axis vertically upwards. Let DT be the
temperature difference between the upper and lower boundaries. The
body forces acting on the fluid are buoyancy and magnetic field. The
goveming equations for the Rayleigh-Benard situationina Boussmesquuan
fluid with suspended particies are:

Co__ntinuity Equation.
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where ( is the velocity, @) is the spin, T is the temperature, H isthe

magnetic fieid, P=p '_'_'.?m"H(zn is the hydromagnetic pressure, p is

the density, p, is the density of the fluid at a reference temperature T=T,,
g is the acceleration due to gravity, { is the coupling viscosity coefflcrent
or vortex viscosity, 1 is the shear kinematic viscosity coefficient, 1 is the
moment of inertia, A" and 1’ are the bulk and shear spin viscosity
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coefficient, § is the micropolar heat conduction coefficient, C, is the
specific heat,  is the thermal conductivity, o is the coefficient of therma[

expansion and Y —l/u G, is the magnetic viscosity

(o, : electrlcal conductivity ‘and W, . magnetic permeabmty) All the
viscosity coefficients, heat conductlon coeff:ment and thermal conductivity
are thermodynamically restricted to be positive quantmes on the
assurnption of Clausius-Duhem inequality (see Eringen [7)). Inthe energy
equation {4) the viscous heating and Joule heating are neglected.

Equations (1)-(6) are solved subject to containment conditions appropriate
for arigid and thermally perfect conducting wall on the underside and by
a free surface on the upper side. This free surface is adjacent to a non-
conducting medium and subject to a constant heat flux {i.e., adiabatic).
Further, the no-spin boundary condition is assumed for microrotation.

Reference Steady-State

In the reference steady-state the fluid is at rest, the temperature
distribution across the layer is non-linear and the lines of force of the
magnetic field are vertical. This state is'described by : -

d dT,
=0, i -—0 H H k , —--—__....._.f
q, b p= pa(z) p= pb( ) T dz (z ) (7

The monotonic, non- -dimensional basic temperature grad:ent f(z) which

is non-negative satisties the condition jf(z)dz =1, The non-
O

uniformity in T, as in (7) finds its origin in transient heating or cooling at
the boundarles (Siddheshwar and Pranesh [18,21] and references
therein). We have considered various reference steady-state temperature
gradients in this paper and these are defined below:

Model Reference steady-state . _ f(x)

1 Linear

- (e 0<z<e
2 Heating from below - _ 0 g<z<]

0gz<l-¢

3 Cooling from above £t J—g <<
4 | Stepfunction _, ; 8(z~¢)
5  {Inverted parabolic | o2(- z)
8 | Parabolic 27




Linear Stability Analysis

Letthe reference steady-state be disturbed by aninfinitesimal perturbation
in velocity, microrotation, pressure, temperature and magnetic field. We
now have '

q:“_.qb-i"q’, (_1.)=(_l.)b'.f'd-)’, P=Pb+P,a pzpb+p”
T=T,+T, H=H,+H (8)

The primes indicate the primes indicate that the quantities are infinitesimal
perturbations and subscript b indicates the reference steady-state value.
In the present problem we assume the principle of exchange of stability
to be valid and hence deal with only stationary convection. . :

SUbstituting equation (8) into equatiohs (1)-(6), we get the linearised
equations governing the infinitesimal perturbations in the form :
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dz . - ‘ :

The perturbation equations (9)-(14) are non-dimensionalised using the
following definition: o : L
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Using equation (13} in equation (10), operating curl twice on the resulting
equation, operating curl on equation (11) and non-dimensionalising the
two resulting equations and also equations (12) and (14), we get:. -«

(1+N, W' W+ N, 720, +R(aT a;'r] oy (.‘?H_) -0 . (.16')

ox? Pm 0z
N,V?’Q, -2N Q ~N, VW = 0 | (17)
Pmaw B
VZH = 0

where the asterisks have been dropped for simplicity and

S
Vi =——C:+n 5 _(Qou_pling Para_meter_)l.
n
N; = IPIAYE) (Couple Stress Parameter),
N B . |
57 2 (Micropolar Heat Conduction Parameter),
pUC d . :
C+m |
Pr= T (Prandtl Number),
P _ C""ﬂ )
- v (Magnetic Prandt! Number),
R agATd’p, : :
v (Rayleigh Number) and
C+n)x yes
i H24? R : s
Q = =" Chandrasekhar Number). -~ =~~~
C+ny,, ( )

The infinitesimal perturbations W QT and H, are. assumed to be:
periodic and hence these permit a normal'mode solutlon in the form

[W.Q,T.0,] = [W@).G62).T(@),H,@]explillx+ my)] (20)



where 1 and'm are horizontal components of the wave number 2.
Substituting equation (20) into equations (16)-(19), we get

@+ N )D* ~a2f W+ N, [D? ;ai)G—gazT+Q}l)—;(Dz -a?DH, =0 (21)
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where D= .o

L dz

The sets of ordinary differential equations (21)-(24) are approximations
based on physical considerations to the system of partial differential
equations (16)-(19). Although the relationship between the solutions of
the goveming partial differential equations and the corresponding ordinary
differential equations has not been established, these linear models
repraduce qualitatively the convective phenomena observable through
the full system. ‘

Eliminating H, between equations (21) and-(24), we get.
(14N)(D?- 22W + N; (D - 8)G - RaT-QDW=0, = . (25)

Equations (22), (23) and (25) are solved subject to the following boundary
conditions:

o :
1, (26)

W=DW=T=G=0 atz
W=DW=DT=G=0 at z

Equat,i:oh' (26) indicates the use of rigid, i‘;sbthermai JoWeE bou‘ri.dar:;(- and
upper, free, . thermally insulating boundary (with respect 1o the
perturbation). The condition on G is the spin-vanishing boundary condition.

We now use the single-term Galerkin method to find the critical eigenvalue
to equations (22), (23) and (25) that gives general resuits on the eigen
value ofthe problem for various basic temperature gradients using simple,
polynomial, trial functions for the lowest eigen value. We obtain an
approximate solution of the differential equations with the given boundary
conditions by choosing trial functions for velocity, microrotation and




temperature perturbations that may satisfy some of the boundary
conditions but may not exactly satisfy the differential equations. This
leads to residuals when the trial functions are substituted into the
differential equations. The Galerkin method reqwres the residual to be
orthogonal to each individual trial function.

In the Gialerkin procedure, we expand the velocny, mlcrorotatlon and
temperature by, :

Wiz.)=3A,(W,(z). Glz.)=3B;(1)G,(2). T(z)=2C,(IT,(2)

where W{z), G(z) and T,(z) are polynomials in z that generally have to
satisfy the given boundary conditions. For the single term Gaterkm
expansion technique we take i=j=1.

Multiplying equation (25) by W, equation (22) by G and equaticn (23) by
T, integrating the resulting equation by parts with respectto zfrom 0 to
1 and taking W = AW,, G = BG, and T = CT, in which A, B'and C are
constants and W,, G, and T, are trial functions. This procedure yields
the following equation for the Rayleigh number R:

R : (Tl (D2 ~a? )Tl >[C_1C_2 +7N12C3”] _
L a(WT)C, @

where
C, =N,(G,(D* -2*)G,) - 2N,(G?),.

=1+ N, w,(0* -2’ f W, ) - Q(W,D*W, ),
C,=(W,(D* -a%)G,)(G,(D* ~2*)W,),
C, =N,N(£(z)G,T, (G G,(D*-a )w) z)WT)
In equation (27){ - -) denotes mtegratlon with respect to z between z
=0 and Z'= 1. We note here that Rin equation {27) is a functional and
the Euler-Language equatlons for the extrem;satlon of R are equations
(22), (23} and (25).
The trial functions satisfying (26) are

' w1_=2z_4_-_5z?.f 322 T1;'z(z-2), G, =z(1-2). | - (28)



Substituting (28) in equation (27) and performing the integration, we get

(s+za2)‘{ 28y,[(1+ N, )y, +216Q] - Ny2 } -
= _ ' . . (29)
36 N1N5Y3<f(Z)T1Ga)f 28 Yl(f(Z)WIT:_>_ )

where
y,=N, (10+2% JF2N,, y,=4536+432a2+19a", y,=126+13a’.

For a given'f(z), R attains its minimum value R ata=a_.

Theintegrals (f(z)W,T, ) and (£ (z)T,G, } will have the following forms
depending on the nature of basic temperature profile. -

_Model 1. Linear temperature pr’ofiie'
<f(z)WT T <f(z)fr. Yar
35
Model 2. Piecewise linear heating from below temperatures profile .

(£(z)W,T,)= 280(405 ~2106° +364¢* ~2108%),
(f(2)rG )=z ( 126" +45¢"-40¢” )

Model 3 P:ecewuse linear coollng from above temperature profile
(£ (z)WT) -------- L (406°~70e°~56¢" +140¢” 708 )

((2)NG,)= (126t 4156 ~20¢*-30¢)

Model 4. Step function temperature profile

(F@)WT,)=¢* ge5+1238“ -38%, {f(2)T,G,)=—c"+3¢’ ~2¢”.

Model 5. Inverted temperature profile
-19 e -1
fEWT)=5g (G-
Model 6. Parabolic temperature profile
=29
((@WT)=22, (1()1G,)=72
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Result and Discussion

In the paper we study the effects of non-uniform basic temperature
gradient and magnetic field on the onset of Rayleigh-Benard convection
in an electrically conducting micropolar fluid. Six non-uniform temperature
profiles are chosen for study. It is observed that for the critical Rayleigh
number, Hc, the following inequality holds for the six models under
guestion

R,<R, <R, <R, <R, <R,,
i.e., the step function is the most destabilising basic temperature
distribution and inverted parabolic is the most stabilising basic
temperature distribution. In the case of piecewise linear and step function
profiles, the critical Marangoni number R_depends on the thermal depth,
g, In addition to depending on the parameters of the problem. in the
case of piecewise linear prefile heating from below, cooling from above
and step function profiles the minimum value of R_is attained at
£ = 0.86, ¢ = 0.55 and & =0.64 respectively.

Before embarking on a discussion of the resuits let us make some
comments on the parameters Ni . Ns and Ns arising due to the suspended
particles. Assuming the Ciausius - Duhem inequality Eringen[8]
presented certain thermodynamic restrictions, which lead to non-
negativeness of N1 Ns and Ns. For { =0 (N,=0) itis clear that equation
(21) for W becomes independent of G, i.e. it is uncoupled. As { — e, we
see that N1— 1 and N, — 0. This is the Stokesian description of
suspension. Thus, itis obvuous that couple stress comes into play only
at small values of Na. This support the contentionthatN, € [0,1]and Ns .
is small positive real number. Coming to Nsit has to be finite because
the increasing of concentration has to practically stop somewhat and
hence Nshas to be a positive, finite real number. With the above
background and with.the motive specified in the introduction we now
discuss the resuits presented by the figures (1).” "

Figure - 1 S N
Z=5 . o _ To
Fiuid with fine
suspended particles
: : >
z2=0 .0 CTO+ AT
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Figure (2 a) is the plot of R, versus the coupling parameter N1 for different
nen-uniform temperature gradients and Chandrasekhar number Q. Clearly
R, increase with Ni. Increase in N1 indicates the increase in the
concentration of microelements. These elements consume the greater
part of the energy of the system in developing the gyrational velocities of
the fluid and as a result the onset of convection is delayed. Therefore,
the increase in N, is to stabilise the system.

Figure (2 b) is the plot of R, versus the couple stress parameter N, for
different non-uniform temperature profiles and Q. Clearly R_decreases
with the increase in N, and ultimately leveis off to the Newtonian value.
Increase in N, decreases the couple stress of the fluid which causes a
(decrease in microrotation and hence makes the system more unstable.

Figure (2 ¢} is the plot of M, versus the micropolar heat conduction
parameter N, for different non-uniform temperature profiles and Q. When
N; increases, the heat induced into the fluid due to these microelements
also increases, thus reducing the heat transfer from bottom to top. The
decrease in heat transfer is responsible for delaying the onset of instability.
This result can also be anticipated because Eq. (4) clearly shows that
the effect of the suspended particles is to deduct from the velocity. Thus
increase in N, is to stabilise the system. o

The effects of N,, N, and N_ on R_is true both in the presence and
absence of a magnetic field. When the strength of the magnetic field
increases, the system becomes stable, a result which is as seeninthe
case of classical fluid. On the other hand, when the microrotation and
- the magnetic field are simultarieously present, the stabilizing effect of -
N, is reduced, being counteracted by the magnetic field. Chandrasekhar
[3] has noticed the similar phenomenon, when the systemis subject to
both rotation and magnetic field. The above phenomenon can be physically
explained as follows:

When the magnetic field strength permeating the medium is considerably
strong, it induces viscosity into the.fluid, and the magnetic lines are
- distorted by convection. Then these magnetic lines hinder the growth of
disturbances, leading to the delay in the onset of instability. However,
the viscosity produced by the magnetic field lessens the rotation of the
fluid particles, thus controlling the stabilizing effect of N,.

From the calculations it has also been found that the critical wave number
‘is, in general, insensitive to the changes in the micropolar parametres
butis influenced by the magnetic field. A strong magnetic field succeeds

in inducing only the coupling number N1 into influencing aﬁ.
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The above results indicate that the externally applied magnetic field is
an effective means of controliing Rayleigh — Benard convection in
electrically conducting micropolar fluids. The results suggest that
Rayleigh — Benard convection in Newtonian fluids may be delayed by
adding micron sized electrically inert suspended particles. Further, by
creating conditions for an appropriate basic temperature gradient we
can also make an a priori decision cn advancing or delaying convection.
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