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Weakly non-linear stability of Maxwell Fluid
in a Porous Layer with the effect of Magnetic
field

C. Bheemudu?*, T. Ramakrishna Goud?

Abstract

The problem of magnetoconvection over a Maxwell
fluid due to porous media with the Darcy-Brinkman
model via magnetic field is studied. Analytical results
of the critical Darcy-Rayleigh numbers at the onset of
stationary convection and oscillatory convection are
derived. The governing dimensionless equations are
tackled through the normal mode approach, resulting
in an eigenvalue problem within the context of linear
stability theory.

Furthermore, we harness the power of the Galerkin
first-order method in MATLAB R2020a to address
and resolve this eigenvalue problem. The behavior of
various parameters, like the Q,A,Da, and Pm, has been
analyzed. The neutral curves are obtained for different
prescribed values of the other physical parameters. The
Chandrasekhar and Darcy numbers stabilize the system,
and the Critical oscillatory Rayleigh number is a non-
monotonic function of Pm. In order to study the heat
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transport by convection, the well-known Ginzburg-
Landau equation has been derived using weakly non-
linear analysis.

Keywords: Maxwell fluid, Magnetic effect, Porous media,
Convection.

1. Introduction

In the geological context, double-diffusive convection processes
in the sedimentary basin evolution, metamorphism, crustal heat
and solute transport, and ore genesis. In the hydrogeological
processes, mixed convection in porous media possesses the
lower-level transposition of nuclear wastes, liquid reinjection,
transport of over-saturated soil, electro-chemical processes,
and the migration in fibrous insulation. A porous medium is
a material or substance characterized by interconnected voids,
pores, or cavities that facilitate the passage of fluids, including
liquids and gases. These pores exhibit a diversity of sizes
and shapes, and their arrangement within the medium has a
notable impact on fluid flow characteristics. Both mathematical
models and experimental techniques are employed to explore
fluid behavior within porous media, bearing significant
consequences for a range of practical applications and
environmental concerns. An early double-diffusive convective
instability problem was studied in a horizontal salted layer
heated from below and later studied with the porous media by
Nield [5] at different solutal and thermal boundary conditions.
He identified overstability when stabilizing solute inclines and
possible salt fingers are tapered in a porous medium. Later
this was extended by Taunton et al. [6], Rudraiah et al. [8], and
others. Poulikakos [9] studied the linear stability analysis of
the double-diffusive convection by using the Darcy-Brinkman
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model. Malashetty [11] investigated the linerar stability of the
diffusive equilibrium in a horizontal plane porous layer of a
binary mixture of two miscible fluids. Kalla et al. [12] studied
multiple convective cases analytically and numerically when
the horizontal porous layer is heated below within mixed
fluids. The model of double-diffusive convection in a porous
medium has been extensively investigated by Ingham and Pop
[13], Nield and Bejan [17], Vadasz [22], Benerji et al. [26, 27],
and Reddy et al [28].

Darcy postulated the empirical relation when fluid flow
through the porous media is directly proportional to the
pressure gradient and this is known as the Darcy model. The
below eq. (1) relation inserted in the momentum equation,
which is

q= —%(Vp—pg% (1)

Where the permeability of a porous medium is K. The modified
Darcy law was including the local acceleration term and this is
known as the modified Darcy model or Darcy-Lapwood model
and the relation eq. (2) is

In anisotropigc, it is in the form of

Oa _

€
i —;(Vp—ngruK-q)- (3)

When the flow is curvilinear and the curvature of the path

through porous media then the inertia effect, becomes, the
streamlines are distorted more and the drag increases more
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rapidly. In this situation the relation eq. (3) becomes added with
the inertial term (q. A)q, this was referred to by Lapwood

(q-V)q=—¢ <Vp—pg+%q)- (4)

If the pattern of fluid is unsteady in a certain region then
considered the local acceleration term 252 and it is known
as the modified Darcy-Lapwood model or Darcy-Lapwood-

Brinkmann model, the relation is

p %%Jré(q'v)q]:—(Vp—ngr%q)- (5)
Maxwell’s model [10] is the widely used first viscoelastic rate
type model in gases but it is not a model for storing energy fluids
and dissipation energy fluids. Maxwell makes an equivalence
with the constitutive equation of the Maxwell fluid due to a
porous medium. Khuzhayorov et al. [15] investigated the Non-
Newtonian fluids due to porous medium and generalized
dynamically permeable Darcy’s law used for porous medium.
This system is valid at small Reynolds and Deborah numbers.
The momentum equation in the modified Darcy-Maxwell model
involved the equation (6), given below

0 [
1+3=|vP=-Lv
( A&) K ()

Hayat et al. [19]-[20] developed Homotopy Analysis Method
to analyze the magnetohydrodynamic flow of a Maxwell fluid
via porous through suction and injection stretching sheet and
studied the convergence of the series, skin friction, local Nusselt
number, and velocity. Abbas et al. [18] investigated the Maxwell
fluid porous channel using the homotopy analysis
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method and the effects were studied with Deborah number De,
Reynolds number Re, and Hartmann number M parameters
for suction and injection. Wang and Tan [24] investigate the
modified Darcy-Maxwell model at the onset of stability analysis
for viscoelastic fluid with the Soret effect. Here, the Soret
effect destabilizes the oscillatory convection, and relaxation
time enhances the instability. The variation of the Rayleigh
number with respect to the Nusselt number was derived at the
modes of stationary and oscillatory. Malashetty and Biradar
[25] analyzed Maxwell fluid’s linear and nonlinear instabilities
in a saturated porous medium by using the Darcy-Maxwell
method in the momentum equation. Gaikwad and Dhanraj [21]
scrutinized the effects of anisotropic and internal heating on
the binary Maxwell liquid in a permeable layer. Raghunatha et
al. [29] investigated the instabilities of the diffusive convection
in a Maxwell fluid via a porous medium which was derived
from the Darcy model. Their exits oscillatory neutral curves
indicate the Darcy Rayleigh number versus wave number.
Observed quasi-periodic bifurcation at the rest of the state
and point out the bifurcation is either critical, sub-critical, or
super-critical depending on the physical parameters. Karimi
et al.[30], Rastegarpouyani et al.[31] investigated biosamples
with machine learning approaches and mono-infection,
co-infections. Hosseinzadeh et al. [32] used a 2DDarcy-
Forchheimer model for porous medium and used numerical
methods to demonstrate the system. He evaluated and
observed the Nusselt number, Eckert number, and temperature
to study the model. The Application of numerical methods
was investigated by Jahanmahin et al.[33], Pasha et al. [34]
, Fathollahi et al.[35], and Faress et al.[36]. Recently Charchi
et al.[37], Abdollahzadeh et al.[38], and Shadman et al.[42]
examined the film-coupled nanostar
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resonators, hybrid nanofluids with nanotubes, and Magnetic
nanofluids with a stretching sheet respectively. Reddy and Ravi
[39] studied the states of perturbed states with small amplitude
using the eigenvalue problem at the onset of convection for
Maxwell fluid with porous. They studied quantities of various
parameters at stationary and oscillatory and found that
the Damkohler number has a contrast effect on steady and
oscillatory convection.

The magnetic field has significant applications in various
contents like material processing, liquid metals convection,
steel casting systems, electric Motors, electromagnets, electric
generators, electromagnetic wave propagation, thermal
wind tunnel, and other contents. Alfven [1] first studied the
interrelation between the magnetic field with electrically
conducting fluid over a solar field. Thompson [2]produced the
Jetferey’s theory over convection with the effect of magnetic
tield for non-viscous fluids and discussed the oscillations. He
added ponderomotive force jXH in the momentum equation,
where H is the magnetic field and j is the current density. The
current density j is
) jzp(E-I-u%XH). (7)
In this, the fields satisfy Maxwell’s equations. Sparrow and
Cess [4] studied the onset of convection due to buoyancy and
magnetic forces over vertical plates and found magnetic field
should show a significant effect at the time of convection in
liquid metals compared with fluids. Knobloch et al [7] present
the convection in Boussinesq fluid due to a magnetic field, the
diffusivity ratio of the magnetic field over the thermal field
is small when the magnetic field is large. The model is static
equilibrium when R = Re < Roand there exists a steady solution
for R > Reand unstable for Re < R < Rcand there exists Hopf
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bifurcation at R = Rc.. Where R represents the Rayleigh number
and suffix e, o and c represents equilibrium, over stable and
critical respectively. Uetake et al. [14], Sharma [16], Ghosh [23],
Ravi and Suman [40], and Benerji et al. [41] studied the effect
ofthe magnetic field over different fluids at variant boundaries
with other conditions.

From the literature, it is clear that the problem of
magnetoconvection of a Maxwell fluid in a porous layer has
not been studied yet. In the present analysis, we aim to fill
this research gap by conducting both linear and weakly non-
linear stability analyses of a Maxwell fluid flowing through
a porous layer while considering the influence of a magnetic
field. By examining the linear and weakly non-linear stability
characteristics, we aim to gain deeper insights into the
magnetoconvection phenomenon and the behavior of Maxwell
fluids in porous media under the influence of a magnetic field.
Section 2 describes the mathematical model of the problem. In
Sect. 3, we derive the Rayleigh number and its critical value at
the stationary and oscillatory stages. In Sect. 4, we obtain the
two-dimensional amplitude equation. Finally, we present the
results and discussions in Sect. 5 through graphical images and
tabular data.

2. Basic Equations

Let us assume a horizontal layer of Maxwell fluid heated from
below confined between ze(0, d) with constant temperature
0, and 6, + AB(AH > 0) are maintained at upper and lower
boundaries, respectively, and gravity force g acts on it. Then,
according to [26], [32], [39], the governing equations with the
Boussinesq approximation are
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V-V=0V-H=0, (8)
<0 K 2 Han _
1+ A= | (VP =pg)+ =V = p.VV+—(VxH)x H=0, (9)
ot K Po
%-l'(v V)6 = kV?, (10)
H

eaa—t+(v-V)H—(H-V)V=nV2H, (11)
p=po[l—al(l-0), (12)

along with the boundary conditions
at z=0: V=0 0 =0, + Ad H = H,, (13)
at z=d : V=0 9:90 HZHO

The basic state of the Maxwell fluid is derived as

Af
‘/;):07 p:pb(z)v 91):90_ (7) 2, Hb:a (14)

The model defined by Egs. (8)-(11) is non-dimensionalised by
choosing the transformations
= (513,
d d d
(U*, U*,UJ*) = (EU, E'U, Ew) s

k. H 0
(", H*,0") = (ﬁt’ o M) : (15)
By using non dimensional quantities from Eq 15 non
dimensionalize the Egs. (8)-(11) on dropping the asterisks for

simplicity, the dimensionalized equations are

V-V=0,V-H=0, (16)
(1 +X%) (VP — ROE;) +V — DaV?*V + QPm (V x H) x H =0, (17)
%+(V-V)9=w+v29, (18)

H ! .
60—t+(V-V)H—(H-V)V:6£+PmV2H, (19)

and along with the boundary conditions
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at z=0: V=0, =1 and

H (20)
at z=1: V=0, =0 and H

I
&8

The controlling parameters are the thermal Rayleigh number
(R), Darcy number (Da), Chandrasekhar number (Q), Magnetic
Prandtl number (Pm) and Deborah number (A) are given by

gAT rdpyor fhe pmHZE & o
ik - De T ©= upun’A_dQ’Pm_k'

All quantities which are used in the above equations have been

R— (21)

explained in nomenclature.

Take the z- component of curl of curl eq. (17) and the third
component of eq.(19), we get

(1 - /\%) RA;T — V*w + DaViw + QPmVZﬁazz =0, (22)
0OH, Ow 9
=~ 5- = PmVHL, (23)
a6 o2
and along with the boundary conditions
at 2=0 : w=0, 6 =0, and BSZZ:O, (25)
at z=1: w=0, 0 =0, and aHZ:O.
0z

Where v2 = W + 2 0y2 + 2 822 and V2 = OB_;JF(;“_; Now eliminating ©
and H_from eq.(22)-(24), one obtains

Lw=N. (26)
»* (0 0 0
2 2 2
L= QP Vaz<&—v>+<a—PmV><l+)\at>
+V?(DaV?® —1) <% - v2> (g — PmV2) (27)

N = (% — Pm v2> <1 + A%) (V.V)0 + QPm (% - va2) (H-V)V —(V-V)H).
(28)
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3. Linear stability analysis Let us substitutew = sin wze!(l@my)+rt
[3] and [39], in the linear form of eq. (26) and hence Lw = 0,
hence one obtains

ao0® + a18% 4+ a9d* + a30® + a4y = 0, (29)

where
ag = DaPm, (30)
a; = (Pm + Dao)
ay = Dao? + (1 + Pmm*PmQ),
as = o + ™ PmQo — Pmg*R(1 + \o),
as = R*o(1 + \o).
3.1. Stationary instability First, we consider stationary
instability, i.e., 0 = 0 is real. The stationary Rayleigh number R
can be written as
_ m2Q0% + 0" 4 Dad®

R,
S q2

(31)

3.2. Oscillatory instability To study the oscillatory stability,
consider the both real and imaginary parts of Rayleigh number
R. The Rayleigh number at the onset of oscillatory convection

is
R=R,+iR; (32)

where Rr and Ri are real and imaginary part of Rayleigh

number.
h - (14 Dad?) (w?* + Pm?6%) (6% + w?X) 02 + 726*°QPm [Pmé* + w? + (=1 + Pm)Ad*w?]
T P W2+ Pm2o%) (1 +w2h2) ’
(33)
R - (1+ Dad?) (w? + Pm*§*) wA? — w?0?A [n* 72 PmQ (w? + Pmé?) + 0% (1 + Dad?) (w* + P
t ¢* (W4 Pm26*) (1 + w?)?)
(34)
e Pm?*3* (14 Dad?) (=1 + 6*A) + Pmm?8°Q [1 + Pm (=1 + §%))] (35)
a 1 = m2PmQA — 02X + Dad? (1 — §%)) ’
T Pm2Q505 (=1 4+ Pm)2 (=1 + 8°\)° A% + (14 Pm)é2)° B2
R, = o : (36)
q¢*B
where the values of A and B are
A=QPmn? (14 Dad*) (14 Pm)d°, (37)

B = -1+ PmQ\+ )0* + Dab* (—1+ &°)).
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4. Weakly non linear analysis Let us introduce the following
series expansion interms of e

u=eu0+62u1+63uQ+--',

v =evy+ v+ Evg + e

w = €wg + €Wy + € wy + -+,
0= ey + €20, + 30 + - - |
H,=eH, +Hy + EHyy + -+,
H,=cH, +Hy +Hy+ -

H,=eH, +H, +EH, + -0 (38)
where
R—R
2 sc
€ = << 1
RSC
The first approximations are
Ug =;—7T [Aei(l””m“y) CcoSTz — c.c} ,

wy = [Aei(l“Hm“”) sinwz + c.c] ,
_ —im?
1 Pmé2,
Hy, =0,

T
H,, =
¢ Pmd2

1 .
6o =57 [Aez(l“”m“y) sinTz + c.c] , (39)

H,, [Ae”(l“”m”y) sinmz — C.C] ,

[Ae’(l“‘“”"””“y) cosmz + c.c} ,

where the amplitude, A, is a function of slow variables X, Y,Z
and T and the complex conjugate is denoted by c.c..The slow

variables can be scaled as
X =ex, Y=e%y7 Z =z T=¢4,

Using the above scaling differential operators can be written as

9,0 9 90 40 9 0 0 .0
or ox’ By oy  Cov' @ oz ol Car

By using Eq. (40), the operators L and N of Eq. (26) can be
written as

(40)

£=£0+€£1+€2£2"',
N =Ny + N+ ENy-- - (41)
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On substituting Eq. (41) into Eq. (26), and comparing the
coefficients of ¢, ¢2 and ¢, one obtains

Lowe =0, (42)
Eo'll)l -+ £1’(1/'0 =./\/'0, (43)
[:0?1)2 -+ 5171)1 -+ EQU)O =N1, (44)
where

,C() = PmV4 <—V2 + D(lv4 - QD2 - Rsc (1 + )\a_a7_>) » (45)
£ =2 _2pm (—3v? +4DaV"' —2QD* — R, | 1+ 22 (46)

! 0x0X > or ’

2
Lo = % (4DaPmV6 —3PmV*— 2QPmD?*V? — P’H'LRSCVQ)
+ a% (VY — DaV® + PmV* — DaPmV® + QPmD?*V? + R, V?)
o\ > 4 2, O )

+ (26176)() Fy (—3va + 6DaPmV* — QPmD ) + WARSCV . (47)

Let us Substitute the solution w, in to Lowo = 0., One obtains

2Q0%. + 62 + Dad’
Ry = TP +q;c e (48)
from the equation  Lowi+ZLiwo=No, N, =0and Lwo=0.The

equation reduces to w, = 0,which implies u, = 0. Similarly, the

first order solutions are
H(L'l :07
H,, =0,
2
2 P —
2Pmly.02,m

0, = | A|? sin 27 2. (49)

[AQeQi(lbci-Fmscy) _|_ C.C] ,

 2mdm

On substituting the first order solutions into the Eq. (44), we
obtain Newell-Whitehead equation in the form of

0A 0 i 02\’ 2
Mg — M <a_X - 2qscm> A=A+ X3|APA=0 (50)

where ‘
Ao =(1+ Pm)DadS, + (1 + Pm)és, + 62, (QPmn* — Ry.),
A =Pm (362, + 6Dad,, + Q) ,
Ay =R, .Pmd?,

4 scP 2
\s =QPm25", (WQ T— > _ Bl

Pmqq.02, 2
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Dropping t and y-dependence terms in the Eq. (50), one

obtains
d?A N\
o A1(1——|A|> (52)
SA(r) = A tanh(i), (53)
Ag
here

AO = ()\2/)\3)% and AO = (2)\1/)\2)%
4.1. Heat transport by convection

From Eq. (563), the maximum steady amplitude A is | Amax |

2y \ 3
|Amaa:| = (%) 5 (54)
3

The Nusselt number in terms of amplitude A defined as

Nu = T |A,m|2 (55)
From Eq. (65), we obtain convection for R > Rsc and conduction
for R < Rsc. Eq. (50) is valid for A3 > 0 which is possible when
R > Rs, Thus we get 1. convection for Nu > 1 2. conduction for
Nu <1 (see in Fig. 6).

5. Results and Discussion

The analytical and numerical results of Double diffusive
convection of Maxwell fluid in a horizontal layer with the
effect of magnetic field in a porous medium are presented and
discussed in this section with graphical representation.

In Fig.1, the neutral curves are presented, illustrating their
behavior under various values of Q at the onset of stationary
and oscillatory convection. Notably, it is observed that as
the value of Q increases, these neutral curves shift upward,
indicative of increased stability within the system, thereby
highlighting the stabilizing influence of Q. Within the context
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of magneto-convection, this phenomenon plays a crucial role
in monitoring heat transmission. The magnetic field, in this
regard, exerts the Lorentz force. When this force remains
relatively smaller than the viscous or turbulent pressure, it
leads to convective motions that twist and stretch the magnetic
tield, intensifying flow in turbulent conditions. On the other
hand,

5 10 15 20 25

Figure 1: Marginal stability curves for Da = 0.05, A = 0.5, Pm = 0.001.

T T — T 7
/ / /A
/ / y
/

7500

T
_zz288®]
2228

7000

65001

6000}

5500 1 1 1 1 1 1
6 8 10 12 14 16

Figure 2: Marginal stability curves for Q = 500, A = 0.25, Pm = 0.0001.
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160000] 7=0.02
————— A=0.04 ,
~~~~~~~~ A=0.06
120000
o’ 80000
40000
SRV 15 20 25

Q
Figure 3: Variation of Rf with @ for different values of A at Da = 0.001, Pm = 0.05.

when the Lorentz forces overpower the viscous forces or
turbulent pressure, the magnetic field effectively channels
plasma motions along its direction, inhibiting convective
motion. Fig. 2 displays the neutral curves for different values
of Da at the onset of both convection. In Fig.

2, we observed that Darcy value Da decreases with the increase
of Da, which indicates the existence of Darcy number advances
the onset of both convection. This is attributed to the fact
that as Da increases, the viscous forces present in the system
become stronger, which hinders the fluid from moving easily,
and hence the system stabilizes.

In Figs. 3 and 4, we represent the variation of the Rg with
respect to the Chandrasekhar number (Q) for different values
of the A and the magnetic Prandtl number (Pm). From these
figures, it has been observed that the RY increases with the Q,
indicating that the Q parameter exerts a stabilizing effect on
the oscillatory convection phenomenon.
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In Fig. 5, we explore the influence of the magnetic Prandtl
number (Pm) on RPwhile considering different values of
the Chandrasekhar number (Q). Notably, from this figure,
we deduce that the Rf? exhibits a non-monotonic behavior
concerning the Pm. This nonmonotonic trend suggests that the
interplay between magnetic effects and fluid viscosity plays a
crucial role in the overall stability behavior of the oscillatory
convection process.

In Tables 1, and 2, we present some examples in which
steady or oscillatory instability sets in for the constant values
of physical parameters. From table 1, we find there exists a
threshold (e 26,27) for the Chandrasekhar number, such that,
if @ > @ then the convection arises via stationary mode. From
Table 2, it was found that initially, the stationary convection
sets in, and as soon as the value of Da attains a critical value
(€ (0.3,0.4)),, the convection ceases to be oscillatory.

800 /
600

400

200 ; —— Pm=0.0002
P Pm=0.0004
........ Pm=0.0006

30 60 90 120 150
Q

Figure 4: Variation of RO with @ for different values of Pm at Da = 0.01, A = 0.005.
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) 02 04 0 08 1

Pm

Figure 5: Variation of RY with Pm for different values of Q at Da = 0.01, A = 0.5.

() Stationary R Stationary a Oscillatory R Oscillatory a  Instability

5 131.50958  7.540971 15.66410 1.310971  Oscillatory
10 203.24061 4.95885 62.11714 4.95885  Oscillatory
15 270.77612 5.97805 138.54948 5.87805  Oscillatory
20 335.97600 5.70067 244.15072 570067  Oscillatory
25 399.627/6 5.96522 378.10993 5.96522  Oscillatory
26 412.219265  6.012976  }08.23525  6.012976  Oscillatory
27 42475570 6.05935 459.45199 6.05933  Stationary
30 }62.15257  6.19062 539.615/8 6.19062  Stationary
35 523.80932 6.38765 797.85595 6.58765  Stationary
40 584.76912 6.56515 942.01931 6.56515  Stationary
45 645.15309 6.72174  1181.29417  6.7217)  Stationary
50 705.05034 6.86652  1/44.86879  6.86652  Stationary

Table 1: Critical stationary and oscillatory Rayleigh numbers for the different values of

@ and the fixed values of A = 0.1, Pm = 0.01, Da = 0.01.
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Da  Stationary R Stationary @ Oscillatory R Oscillatory a  Instability

0 1205.07624 9.95935 12947.97019 9.95935 Stationary
0.1 1575.25797 5.58617 5279.28099 5.58617 Stationary
0.2 1764.19072 4.94909 3298.03299 4.94909 Stationary
0.8 1916.38818 4.60152 2396.15263 4.60152 Stationary
0.4  2050.05493 4.36725 1881.1663/ 4.36725 Oscillatory
0.5 2172.15751 4.19296 1548.24596 4.19296 Oscillatory
0.6 2286.22704 4.05552 1815.38899 4.05552 Oscillatory
0.7  2394.33170 3.94285 1143.39150 3.94285 Oscillatory
0.8 2497.80185 3.84804 1011.16266 3.84804 Oscillatory
0.9 2597.55356 3.76647 906.33551 3.76647 Oscillatory

1 2694.24905 3.69528 821.20101 3.69528 Oscillatory

Table 2: Critical stationary and oscillatory Rayleigh numbers for the different values of @
and the fixed values of A =0.01, Pm = 0.001, Q = 100.
A=0.01 A=0.03 A=0.05

Q Ro Roc Ro Roc Ro Roc
0.5 5762.53403 3.50825 10636.59561 6.942606 206376.80265 6.942606
1.5 5635.45441  13.90335  10430.52900  27.56209  26021.73595  27.56209
2.5  5516.08971  31.21939  102538.35287  61.99760  25699.69476  61.99760
3.5 5368.05231  65.13167 < 10001.91141 129.64444 25318.76094 129.64444
4.5 5264.75889  98.72785  9838.40797  196.86140 25067.45655 196.86140
5.5 5167.62667 < 139.35760  9685.96711 < 278.36299  24844.15644  278.36299
0.5  5047.04313  204.53031  9498.81542  409.49904  24587.97173  409.49904
7.5 4902.85040  261.70310  9369.77569  524.88794  24425.66497 524.88794
8.5  4885.65884  326.02240  9249.85562  655.04084 24287.93000 655.04084
9.5 4809.17937  897.52225  9188.57495  800.10370  24173.98561  800.10370
10.5  4789.14568  ]76.23672  9035.49323  960.22349  24085.15072  960.22349
11.5  4652.26187 592.47111  8910.11112 1197.59431 23996.98296 1197.839451
12.5  4591.67850  688.15256  8824.64538 1393.22412 23957.93672 1393.22412
18.5  4516.62025 827.13384  8721.48891 1678.55197 23939.23952 1678.55197
14.5  4464.37401  939.96879  8651.83108 1910.91042 23949.85139 1910.91042
15.5  4415.40684 1060.21251 8588.47743 2159.17785 23981.33449 2159.17785
16.5  4354.94456 1232.12174 8513.38439 2515.21444 24055.54118 2515.21444
17.5  4818.03177 1369.78660 8463.80596  2801.20290 24135.28664 2801.20290
18.5  4278.91350 1514.97522  8419.77755 3103.61723 24235.69200 3103.61723
19.5 4237460681 1667.72221 8381.11236 3422.61482 248356.83878 3422.61482
20.5 4192.82789 1883.20226 8337.60833 3874.01517 24550.89617 3874.01517

Table 3: Stationary and critical stationary Rayleigh numbers for the different values of A and the fixed values
of Pm = 0.002 and Da = 0.01.
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Figure 6: The Figure is plotted for the fixed values of @ = 1000, Pm = 0.001, Da = 0.1.

Pm = 0.0005 Pm =0.001 Pm =0.0015

Q RO ROC RO ROC RO ROC

0.5  887.22072 0.29697  5691.35946  1.18857 8640.52999 2.67582
1.5 871.62639 1.82234  8626.66806  7.30264 8489.37797  16.46089
2.5 85716755 4.64808  3566.70181  18.64922  8349.48537  42.08955
3.5 839.58630  10.44675  3493.60044  41.98489  8179.00995  94.91343
4.0 82746776 16.32543  534453.58165  65.69270  8062.40882  148.69388
5.5 816.32690  23.52065 339742467  94.76387  7954.85205  214.76356
6.5  802.82881 3517068  3541.52968  141.93716  7824.67232  322.20854
7.5 793.66382  45.45688  3305.60055  183.67777  7736.39100  417.48461
8.5 785.27501 57.07599  5268.90471  230.91508  7655.68709  525.50852
9.5 TTT.62545  70.03294  3237.28897  283.68960  1582.20335  646.41973
10.5  768.51830  89.39852  3199.68689  362.73946  7494.89910  827.9268/
11.5  764.41259  99.98019  3182.75296  400.01336  7455.620623  927.47196
12.5  757.05638  122.94866 3152.45144  500.12015  7585.44799  1144.35852
13.5  750.79212  148.33387 3120.70519  604.38761  7325.96140  1385.26055
14.56  746.77918  168.96590 3110.25533  689.81567  7288.06164  1581.90636
15,6 743.33192  190.96907 3096.16717  780.05683  7255.70969  1792.40281
16.5  739.98562  222.44821 3080.93349  910.16080  7220.91798  2094.86498
175 737.89358  247.67034 3072.08913 1014.63077  7200.89248  2338.26068
18,5 78571574  274.28047 3065.839497 1125.05575  7185.92512  2596.01047
19.5  784.54035  302.28371 3060.80217 1241.47885  7175.90332  2868.26799
20.5  733.73678  341.79725 3057.87404 1406.11500  7170.06598  3254.11359

Table 4: Stationary and critical stationary Rayleigh numbers for the different values of Pm and the fixed
values of A = 0.04 and Da = 0.01.
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6. Conclusion

In this study, the magneto convection in a Maxwell fluid
due to a vertical magnetic field saturated porous medium is
analyzed. For modeling the fluid flow, the Brinkman equation
and the Oberbeck-Boussinesq approximation are adopted for
modeling. The problem was studied by performing both linear
and weakly nonlinear analyses analytical methods. The normal
mode method has been employed to solve the governing
equations. The critical stationary and oscillatory Rayleigh
numbers versus wave numbers are plotted and discussed.

The behavior of various parameters, like the Q,A, Da, and Pm,
has been analyzed. The main findings of the analysis are as
follows:

* Itis obtained that the Chandrasekhar number and Darcy
number have a stabilizing effect on the system. Also, it is
found that the Critical oscillatory Rayleigh number is a
non-monotonic function of Pm.

* Fromtheresults, tostudy the heattransportby convection,
we have derived the amplitude equation. A multiple-
scale analysis is used to derive the amplitude equation.

* The relationship between the governing parameters (Q
and Pm) and the ROc offers valuable physical insights into
the intricate nature of oscillatory convection phenomena
in the system under investigation.

In future work, we plan to study linear instability numerically
and extend our investigations to solve the nonlinear stability
using the Energy method. Additionally, we aim to explore
the interplay between linear and nonlinear effects to gain
a comprehensive understanding of the system’s stability
behavior.
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