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Analytical Study of Creeping Flow past a 
Composite Sphere: Solid Core with Porous 
Shell in Presence of Magnetic Field 

D.V.  Jayalakshmamma,* P.A. Dinesh† and M. Sankar‡ 

Abstract 

The two-dimensional creeping flow of an electrically 
conducting fluid past a multiple composite sphere 
consists of solid sphere with permeable porous shell in 
presence of applied transverse magnetic field is studied 
analytically using Stokes and Brinkman equations. The 
basic governing equations are solved using similarity 
solution method and closed forms of exact solutions are 
obtained. Stream lines are discussed for various 
Hartmann number (ܯ) and porous parameter (ߪ). It is 
observed that the fluid flow is suppressed in presence of 
magnetic field both in non-porous and porous regions 
and also the results obtained are in excellent agreement in 
the absence of the magnetic field.  

Keywords: Stokes equation, Brinkman equation, creeping flow, 
magnetic field. 

1. Introduction  

The problem of flow through / past porous media have several 
important applications, like the flow of oil through rocks, 
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extraction of energy from geothermal region, combustion in an 
inert porous matrix, underground spreading of chemical waste, 
chemical catalytic reactors, the filtration of solids from liquids, the 
study of flow sedimentation. Also, the drug permeation through 
human skin, dispersion of cholesterol and other fat substances 
from arteries to endothelium. To understand the concept of these 
practical application one should know fluid flow past / through a 
body, in particular fluid flow past / through a sphere or cylinder in 
porous region. 

For the above cited applications, we must apply a constitutive 
equation to describe the fluid velocity and hydrodynamic pressure 
for the considered domain. For creeping flow (low Reynolds 
number), there are two methods commonly employed namely 
Darcy’s law and the Brinkman’s equation. In the literature, we find 
several studies on the flow past a sphere in porous media using 
Darcy’s or Brinkman equation under different boundary 
conditions. Beaver’s and Joseph (1967), Saffman (1971), Raja Sekhar 
and Amarnath (1996), where they have used Darcy’s equation to 
describe the flow field. The problem of stokes flow past porous 
bodies have been studied by Higdon and Kojima (1981), Qin and 
Kaloni (1988), Pop and Cheng (1992), Padmavathi et al. (1993) 
Barman (1996), Pop and Ingham (1996), using Brinkman equation 
in the porous region. 

Many works have been done on the flow past / through a 
composite sphere using Stoke’s and Brinkman equations under 
different boundary conditions.   Masliyah (1987) conducted a 
theoretical analysis to the creeping flow over an isolated composite 
sphere with a permeable shell, whose permeability is constant, but 
thickness can arbitrary. The drag experienced by a composite 
sphere is derived using the Brinkman flow equation together with 
Stoke’s flow approximation. Kaloni and Qin (1993) have used 
continuity of velocity, stress and continuity of pressure has been 
used instead of continuity of normal stress in discussing uniform 
flow past a spherical shell. The axisymmetric motion of multiple 
composite spheres, solid core with permeable shell under creeping 
flow condition was studied by Shing Bor Chen (1998) to investigate 
the hydrodynamic interactions for a chain of composite spheres 
undergoing axisymmetric motion. The Stokes and Brinkman 
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equations are used to describe the flow field outside and inside 
particle respectively. An arbitrary flow of viscous, incompressible 
fluid past a porous sphere of radius a with an impermeable core of 
radius b, is studied using Brinkman equation in the porous region 
by Anindita Bhattacharyya and Raja Sekhar (2004) with stress jump 
condition at the interface of the fluid-porous region. They found 
that the drag and torque not only change with the change of 
permeability but also significant effect of stress jump coefficient is 
observed. Srivastava and Srivastava (2005) have discussed the 
steady flow of an incompressible viscous fluid streaming past a 
sphere at small Reynolds number with a uniform velocity by 
dividing the flow in three regions and in all the three regions 
Stoke’s stream function is expressed in powers of Reynolds 
number. Recently Pop, et.al (2010) studied Brinkman flow of a 
viscous fluid through spherical porous medium embedded in 
another porous medium using the continuity of velocity, stress and 
normal stress at the interface. They have shown that the 
dimensionless shearing stress on the sphere is periodic in nature 
and its absolute value increases with an increase of porous 
parameters in both the regions. 

Many practical problems need a mechanism to control motion of 
the fluid past solid bodies with MHD effects. Stewartson (1956), 
Childress (1963), Sanyal and Roy Chowdhury (1984), have studied 
the flow of an electrically conducting incompressible fluid past a 
sphere / cylinder in presence of a magnetic field.  

In the available literature less attention has been reported on the 
flow past a composite sphere in presence of external constraints, 
which accelerates or suppresses the flow past / through a body. In 
this article we studied the creeping flow of a steady, 
incompressible, viscous, electrically conducting fluid past a solid 
sphere embedded in porous medium in presence of transverse 
magnetic field with the boundary conditions as continuity of 
velocity, tangential and normal stress at the interface of the non-
porous and porous region and no-slip condition at the surface of 
the solid sphere. We observed that the presence of the magnetic 
field suppress the flow in the porous region as well as in the non-
porous region. 
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2. Mathematical formulation 

Consider a steady, incompressible, electrically conducting, viscous 
fluid past a stationary solid sphere of radius ‘a’ embedded in a 
porous sphere of radius b in presence of uniform magnetic field 
 in transverse direction as shown in the physical configuration (଴ܪ)
fig.1. Here we use the spherical co-ordinate system (ߠ,ݎ,∅) with 
the origin at the center of the sphere and the axis ߠ = 0 along the 
direction of the uniform flow  ݑஶ from the porous sphere and due 
to axisymmetry we have డ

డ∅
= 0. Also we consider the flow domain 

in two regions as non-porous and porous region. 

 

Figure1: Physical configuration 

The constitutive equations for the flow in non-porous region is 
given by  

∇ ∙ ଵݍ⃗ = 0,    (1) 

ଵݍ௘൫⃗ߪ௛ଶߤ × ሬሬ⃗ܪ ൯× ሬሬ⃗ܪ + ଵݍଶ⃗∇ߤ  =  ଵ,   (2)݌∇

where ⃗ݍଵ = ௥ݑ) ఏݑ,  is ߤ ,is the velocity of the non-porous region (∅ݑ,
the viscosity of the fluid, ߤ௛ is the magnetic permeability, ߪ௘ is 
electrical conductivity, ܪሬሬ⃗  transverse magnetic field and ݌ଵ is 
hydrostatic pressure of the non-porous region. 

For the flow in the  porous region is described  by 

∇ ∙ ଶݍ⃗ = 0,    (3)                                                                       
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− ఓ
௞
ଶݍ⃗ ଶݍ௘൫⃗ߪ௛ଶߤ + × ሬሬ⃗ܪ ൯ × ሬሬ⃗ܪ + ଶݍଶ⃗∇∗ߤ   =  ଶ ,  (4)݌∇

where ⃗ݍଶ = ௥ݒ) , ఏݒ  is the velocity of the fluid in the porous (∅ݒ,
region, ߤ∗ is the Brinkman viscosity, ݌ଶ is hydrostatic pressure of 
the fluid in the  porous region and ݇ is the permeability of the 
porous region. Here we  assume that Brinkman viscosity is equal to 
viscosity of the fluid i,e  ߤ∗ =  .ߤ

Making the equations (1) to (4) dimensionless using the 
dimensionless parameters as 

∗ݎ = ௥
௔

∗ଵݍ⃗   ,  = ௤ሬ⃗ భ
௨ಮ

∗ଶݍ⃗   ,  = ௤ሬ⃗ మ
௨ಮ

∗ଵ݌    ,  = ௔௣భ
ఓ௨ಮ

, ∗ଶ݌ = ௔௣మ
ఓ∗௨ಮ

ሬሬ⃗ܪ   , ∗ = ுሬሬ⃗

ுబ
, (5)   

Using the dimensionless variables from equation (5) in equations 
(1) and (2),  we get 

డ
డ௥

(௥ݑଶݎ) + ௥
ୱ୧୬ ఏ

డ
డఏ

ఏݑ) sinߠ) = 0,    (6) 

 డ௣భ
డ௥

= ௥ݑଶܯ + ቂడ
మ௨ೝ
డ௥మ

+ ଶ
௥
డ௨ೝ
డ௥

+ ଵ
௥మ

డమ௨ೝ
డఏమ

+ ୡ୭୲ఏ
௥మ

డ௨ೝ
డఏ

− ଶ௨ೝ
௥మ
− ଶ

௥మ
డ௨ഇ
డఏ

− ଶ௨ഇ ୡ୭୲ఏ
௥మ

ቃ     (7) 

ଵ
௥
డ௣భ
డఏ

= ఏݑଶܯ + ቂడ
మ௨ഇ
డ௥మ

+ ଶ
௥
డ௨ഇ
డ௥

+ ଵ
௥మ

డమ௨ഇ
డఏమ

+ ୡ୭୲ ఏ
௥మ

డ௨ഇ
డఏ

+ ଶ
௥మ

డ௨ೝ
డఏ

− ௨ഇ௖௢௦௘௖మఏ
௥మ

ቃ     (8) 

nwhere  ܯଶ = ఓ೓
మఙ೐ுబమ௔మ

ఓ
  is the Hartmann number. 

Similarly non-dimensionalising equations (3) and (4) using 
equation (5), we get 

డ
డ௥

(௥ݒଶݎ) + ௥
ୱ୧୬ ఏ

డ
డఏ

ఏݒ) sinߠ) = 0,   (9)  

− డ௣భ
డ௥

= ܵଶݒ௥ − ቂడ
మ௩ೝ
డ௥మ

+ ଶ
௥
డ௩ೝ
డ௥

+ ଵ
௥మ

డమ௩ೝ
డఏమ

+ ୡ୭୲ఏ
௥మ

డ௩ೝ
డఏ

− ଶ௩ೝ
௥మ
− ଶ

௥మ
డ௩ഇ
డఏ

− ଶ௩ഇ ୡ୭୲ఏ
௥మ

ቃ    (10) 

− ଵ
௥
డ௣భ
డఏ

= ܵଶݒఏ − ቂడ
మ௩ഇ
డ௥మ

+ ଶ
௥
డ௩ഇ
డ௥

+ ଵ
௥మ

డమ௩ഇ
డఏమ

+ ୡ୭୲ ఏ
௥మ

డ௩ഇ
డఏ

+ ଶ
௥మ

డ௩ೝ
డఏ

− ௩ഇ௖௢௦௘௖మఏ
௥మ

ቃ (11) 

where  ܵଶ = ߪ  ,ଶܯ+ଶߪ = ௔
√௞

  is the porous parameter. 

By introducing the stream function ߖଵ(ߠ,ݎ)  in the non-porous 
region, which satisfies equation of continuity, equation  (6) as  

௥ݑ = ଵ
௥మ ୱ୧୬ ఏ

డఅభ
డఏ

ఏݑ        ;   = ିଵ
௥ ୱ୧୬ ఏ

డఅభ
డ௥

 .    (12) 
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By eliminating the pressure from equation (7) and (8) using 
equation (12), we get 

ଵߖସܧ ଵߖଶܧଶܯ− = 0,     ܾ ≤ ݎ < ∞.    (13) 

Similarly in porous region ߖଶ(ߠ,ݎ) represent the  stream function 
which satisfies  equation of continuity in porous region, equation  
(9)  as 

௥ݒ = ଵ
௥మ ୱ୧୬ ఏ

డఅమ
డఏ

ఏݒ        ;    = ିଵ
௥ ୱ୧୬ ఏ

డఅమ
డ௥

 .    (14)                         

By eliminating the pressure from equation (10) and (11)  using (14) 
we get 

ଶߖସܧ − ܵଶܧଶߖଶ = 0,       ܽ ≤ ݎ ≤ ܾ.    (15) 

where ܧଶ = డమ

డ௥మ
+ ୱ୧୬ ఏ

௥మ
డ
డఏ
ቀ ଵ
ୱ୧୬ఏ

డ
డఏ
ቁ is  an operator. 

To solve equation (13) and (15), we considered the following 
boundary conditions, the no-slip condition at solid sphere 

(ߠ,ܽ)௥ݒ = 0,            0 ≤ ߠ ≤  (16)    , ߨ2

(ߠ,ܽ)ఏݒ = 0,            0 ≤ ߠ ≤  (17)    , ߨ2

the matching condition at the interface of the non-porous and 
porous region 

(ߠ,ܾ)௥ݒ = ,ܾ)௥ݑ 0       ,(ߠ ≤ ߠ ≤  (18)    ,ߨ2

(ߠ,ܾ)ఏݒ = ,ܾ)ఏݑ 0       ,(ߠ ≤ ߠ ≤  (19)    ,ߨ2

߬௥ఏ(ଶ)(ܾ, (ߠ = ߬௥ఏ(ଵ)(ܾ, 0       ,(ߠ ≤ ߠ ≤  (20)   ,ߨ2

߬௥௥(ଶ)(ܾ, (ߠ = ߬௥௥(ଵ)(ܾ,ߠ),       0 ≤ ߠ ≤  (21)   .ߨ2

We know that the  stream function in the non-porous region, is 

(ߠ,ݎ)ଵߖ  = ଵ
ଶ
ቀݎଶ − ଵ

௥
ቁ ܾ     ,ߠଶ݊݅ݏ ≤ ݎ < ∞.   (22) 

Using  equations (12) and (22), the boundary conditions for the 
velocity components in the non-porous region are 

~  ௥ݑ   cosߠ    and   ݑఏ  ~   −sinߠ    as   ݎ → ∞.  (23) 



Creeping Flow past a Composite Sphere                      Mapana J Sci, 10, 2(2011) 

17 

 

Hence the boundary condition far from the  porous region equation 
(22) in terms of ߖଵ is  

,ݎ)ଵߖ ௥ ~  (ߠ
మ

ଶ
ݎ   as    ߠଶ݊݅ݏ → ∞.    (24) 

3. Method of Solution 

The boundary condition equation(24) suggests the following 
similarity solution to equation (13) and (15) as 

,ݎ)ଵߖ (ߠ  =  ଵ݂(ݎ)݊݅ݏଶߠ,         ܾ ≤ ݎ < ∞,   (25)  

,ݎ)ଶߖ (ߠ  =  ଶ݂(ݎ)݊݅ݏଶߠ,         ܽ ≤ ݎ ≤ ܾ.  (26) 

Substituting equation  (25) in (13) and equation (26) in (15), the 
partial differential equation of order four in terms of respective 
stream functions ߖଵ(ߠ,ݎ) and ߖଶ(ߠ,ݎ) reduces to ordinary 
differential equation of order four in  ଵ݂(ݎ) and ଶ݂(ݎ) respectively  

ଵ݂
௜௩(ݎ)−  ସ௙భ

ᇲᇲ(௥)
௥మ

+ ଼௙భᇲ(௥)
௥య

− ଼௙భ(௥)
௥ర

ଶܯ− ቀ ଵ݂
ᇱᇱ(ݎ)− ଶ௙భ(௥)

௥మ
ቁ = 0, ܾ ≤ ݎ < ∞,   (27) 

ଶ݂
௜௩(ݎ)−  ସ௙మ

ᇲᇲ(௥)
௥మ

+ ଼௙మᇲ(௥)
௥య

− ଼௙మ(௥)
௥ర

− ܵଶ ቀ ଶ݂
ᇱᇱ(ݎ)− ଶ௙మ(௥)

௥మ
ቁ = 0  ܽ ≤ ݎ ≤ ܾ.     (28) 

And also, the boundary conditions in terms of stream functions 
reduces in ଵ݂(ݎ) and ଶ݂(ݎ) as no-slip condition at the surface of the 
solid sphere 

ଶ݂(ܽ) = 0,    (29) 

 ଶ݂
ᇱ(ܽ) = 0,     (30) 

the matching condition at the interface of the porous and non-
porous region  

ଶ݂(ܾ) = ଵ݂(ܾ),    (31) 

ଶ݂
ᇱ(ܾ) = ଵ݂

ᇱ(ܾ),    (32) 

 ଶ݂
ᇱᇱ(ܾ) = ଵ݂

ᇱᇱ(ܾ),    (33) 

    ଶ݂ᇱᇱᇱ(ܾ)− ଶߪ ଶ݂
ᇱ(ܾ) = ଵ݂

ᇱᇱ′(ܾ),    (34) 
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 and for far from the boundary we get from equation (24) as  

ଵ݂(ݎ)  ~   ௥
మ

ଶ
     as      ݎ → ∞.    (35) 

 Solving equations (27) and (28), we obtained the solution in the 
form 

ଵ݂(ݎ) = ஺
௥

+ ଶݎܤ + ටగܥ
ଶ
ቀ1 + ଵ

ெ௥
ቁ ݁ିெ௥,  (36) 

ଶ݂(ݎ) = ஽
௥

+ ଶݎܧ + ܨ ቀ௖௢௦௛ௌ௥
ௌ௥

− ቁݎℎܵ݊݅ݏ + ܩ ቀ௦௜௡௛ௌ௥
ௌ௥

−  ቁ (37)ݎℎܵݏ݋ܿ

 where ܩ, ܨ,ܧ,ܦ,ܥ,ܤ,ܣ  are arbitrary  constants to be determined  
using the boundary conditions from equations (29) to (35)  and the 
obtained results are given in the appendix. 

4. Results and discussions 

We considered the  study of steady flow of an incompressible, 
viscous , electrically conducting fluid past a solid sphere embedded 
in a porous medium in presence of uniform magnetic field in the 
transverse direction of the fluid motion. The stream functions are 
obtained for non-porous and porous region. 

The nature of stream lines are observed by giving different 
Hartmann numbers for a small fixed  porous parameter to 
understand the effect of the magnetic field and also we observed 
the flow pattern for negligible Hartmann number  by varying 
porous parameter. From fig. 2(a) and 2(b) we notice that for a small 
porous parameter ߪ = 2 and for Hartmann number ܯ = 1,2, the 
flow of the fluid through porous medium is more and moves over 
the surface of the solid sphere. As the Hartmann number increases 
for ܯ = 10, the flow of the fluid in the porous region is reduced 
and moves away from the solid sphere which is shown in fig. 2(c). 
And further increase in Hartmann number for  ܯ = 50, fig. 2(d) 
shows the flow of the fluid past a porous sphere. Therefore , in 
presence of magnetic field the fluid flow is supressed in both the 
regions. 
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(a) ܯ = ߪ  ݀݊ܽ 1 = 2               (b)  ܯ = ߪ ݀݊ܽ 2 = 2 

                     

     (c)   ܯ = ߪ ݀݊ܽ 10 = 2               (d)  ܯ = ߪ ݀݊ܽ 50 = 2 

Figure 2 (a)-(d): Stream lines for variation of Hartmann number ܯ =

 1, 2, 10 and 50 for fixed porous parameter ߪ =  2.  

To know the effect of fluid flow in absence of magnetic field,   we have 
chosen negligibly small  Hartmann number (approximately equal to zero) 
and vary the porous parameter. It is evident from the  fig.3(a)-(d) where 
the flow of the fluid is supressed in porous and non-porous region due to 
the effect of porous parameter, which was observed fluid flow in the 
earlier works.  
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(a) ܯ = 0.001 and ߪ = 2                   (b)    ܯ = 0.001 and ߪ = 5 

             
(c)  ܯ = 0.001 and ߪ = 10               (d)  ܯ = 0.001 and ߪ = 50 

Figure 3 (a)-(d): Stream lines for variation of porous parameter ߪ =  2, 5, 10 and 
50 for neligible Hartmann number ܯ = 0.001. 

5. Conclusion 

In this article, the stream lines are plotted by varying the Hartmann 
number keeping the porous parameter constant, and we found that 
the fluid flow is supressed in non-porous the porous regions in 
presence of the magnetic field. Also the results are in excellent 
agreement with the existing literature in absence of magnetic field 
(for negligibly small Hartmann number). 
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Appendix 

ܩ = ௠భ௠లି௠ర௠య
௠భ௠ఱି௠ర௠మ

ܨ ;  = ଵ
௠భ

(݉ଷ −݉ଶܩ) ; 

ܧ = ଵ
௡భ

(݊ସ − ݊ଷܩ − ݊ଶܨ);  

ܦ = ଵ
௡ఱ

(݊ଽ − ܩ଼݊ − ݊଻ܨ − ݊଺ܧ);  

ܥ = ଵ
௟భି௟ఱ

ቂିଷ௟మ
ଶ

+ (݈ସ + ݈଻)ܩ + (݈ଷ + ݈଺)ܨ + 3݈ଶܧቃ ;    

ܤ = ଵ
ଶ
; 

ܣ  = ି௟మ
ଶ

+ ݈ସܩ + ݈ଷܨ + ݈ଶܧ + ܦ − ݈ଵܥ;   where 

݉ଵ = ݊ଵ(݊ହ݈ଵ଼ − ݊଻)− ݊ଵ(݊ହ݈ଶ଴ − ݊଺);   
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 ݉ଶ = ݊ଵ(݊ହ݈ଵ଻ − ଼݊)− ݊ଷ(݊ହ݈ଶ଴ − ݊଺); 

݉ଷ = −݊ଵ݊ଽ − ݊ସ(݊ହ݈ଶ଴ − ݊଺) ; 

݉ସ = ݊ଵ(݊ହ݈ଵ଼ + ݊଻)− ݊ଶ(2݊ହ݈ଶ଴ + ݊଺);        

݉ହ = ݊ଵ(݊ହ݈ଵଽ + ଼݊)− ݊ଷ(2݊ହ݈ଶ଴ + ݊଺); 

݉଺ = ݊ଵ݊ଽ − ݊ସ(2݊ହ݈ଶ଴ + ݊଺);     

݊ଵ = 3݈ଶ(଼݈ − 2݈ଵ); ݊ଶ = (2݈ଶ − ݈ଽ)(݈ଵ − ݈ହ) + (଼݈ − 2݈ଵ)(݈ଷ + ݈଺); 

݊ଷ = (2݈ସ − ݈ଵ଴)(݈ଵ − ݈ହ) + (݈ସ + ݈଻)(଼݈ − 2݈ଵ) ; 

݊ସ = ଷ௟మ
ଶ

(଼݈ − 2݈ଵ) ;   ݊ହ = (݈ଵଶ − 6)(݈ଵ − ݈ହ) ; 

݊଺ = (݈ଵଷ − 6݈ଶ)(݈ଵ − ݈ହ) + 3݈ଶ(6݈ଵ − ݈ଵଵ) ; 

݊଻ = (݈ଵସ − 6݈ଷ)(݈ଵ − ݈ହ) + (݈ଷ + ݈଺)(6݈ଵ − ݈ଵଵ)  ; 

଼݊ = (݈ଵହ − 6݈ସ)(݈ଵ − ݈ହ) + (݈ସ + ݈଻)(6݈ଵ − ݈ଵଵ) ;  

 ݊ଽ = −3݈ଶ(݈ଵ − ݈ହ) + ଷ௟మ
ଶ

(6݈ଵ − ݈ଵଵ) ;            

݈ଵ = ටగ
ଶ
ቀܾ + ଵ

ெ
ቁ݁ିெ௕  ;        

 ݈ଶ = ܾଷ ;        

 ݈ଷ = ௖௢௦௛ௌ௕
ௌ௕

−         ; ℎܾܵ݊݅ݏܾ

 ݈ସ = ௦௜௡௛ௌ௕
ௌ௕

−           ;ℎܾܵݏ݋ܾܿ

݈ହ = ටగ
ଶ
ቀܾଶܯ + ௕

ெ
+ ଵ

ெమቁ ݁ିெ௕ ;  

݈଺ = ℎܾܵ݊݅ݏܾ − ቀଵ
ௌ

+ ܾܵଶቁ   ;  ℎܾܵݏ݋ܿ

݈଻ = ℎܾܵݏ݋ܾܿ − ቀଵ
ௌ

+ ܾܵଶቁ  ;ℎܾܵ݊݅ݏ
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଼݈ = ටగ
ଶ
ଶܯ ቀܾଷ + ௕మ

ெ
+ ଶ௕

ெమ + ଶ
ெయቁ ݁ିெ௕ ;           

݈ଽ = ቀܾܵଶ + ଶ
ௌ
ቁ ℎܾܵݏ݋ܿ − (ܵଶܾଷ +  ;ℎܾܵ݊݅ݏ(2ܾ

݈ଵ଴ = ቀܾܵଶ + ଶ
ௌ
ቁ ℎܾܵ݊݅ݏ − (ܵଶܾଷ +  ;ℎܾܵݏ݋ܿ(2ܾ

݈ଵଵ = ටగ
ଶ
ଷܯ ቀܾସ + ௕య

ெ
+ ଷ௕మ

ெమ + ଺௕
ெయ + ଺

ெరቁ ݁ିெ௕ ; 

݈ଵଶ = (6 −    ; (ଶܾଶߪ

݈ଵଷ =  ; ଶܾହߪ2

݈ଵସ =

൫(ߪଶ ଶ)ܾଷܯ− − 6ܾ൯݊݅ݏℎܾܵ − ቀ3ܾܯଶ+ ଺
ெ

+ ଷܾସܯ − ఙమ௕మ

ெ
 ;ℎܾܵݏ݋ଶܾସቁܿߪܯ−

݈ଵହ =

൫(ߪଶ ଶ)ܾଷܯ− − 6ܾ൯ܿݏ݋ℎܾܵ − ቀ3ܾܯଶ+ ଺
ெ

ଷܾସܯ+ − ఙమ௕మ

ெ
ଶܾସቁߪܯ−  ;ℎܾܵ݊݅ݏ

݈ଵ଺ = ௖௢௦௛ௌ௔
ௌ௔

− ℎܵܽ ; ݈ଵ଻݊݅ݏܽ = ௦௜௡௛ௌ௔
ௌ௔

−  ;ℎܵܽݏ݋ܿܽ

 ݈ଵ଼ = ℎܵܽ݊݅ݏܽ − ቀଵ
ௌ

+ ܵܽଶቁ  ;ℎܵܽݏ݋ܿ

݈ଵଽ = ℎܵܽݏ݋ܿܽ − ቀଵ
ௌ

+ ܵܽଶቁ          ; ℎܵܽ݊݅ݏ

 ݈ଶ଴ = ܽଷ. 

 

 

 




