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Abstract

This paper represents the equilibrium positions and 

of several classical perturbative forces in an elliptical orbit. 
The tether may be conducting or non-conducting. In our 
problem, it is taken as non-conducting in nature. We have 

the system simultaneously. Three perturbations exist due 

shadows, and oblateness. The other perturbations are 
due to the elasticity of the cable and solar light pressure. 
The effect of air resistance is neglected, considering the 
satellites as high-altitude satellites. To determine the 
stability of the satellites, we have used the Lyapunov 
method. The dynamical behaviors of the satellites are 
represented by differential equations. Based on analytical 
analysis of the differential equations of motion, we get the 
equilibrium positions of the system concerned in elliptical 
orbit. Lyapunov method gives the equilibrium position as 
unstable as expected.
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1. Introduction

Over the past few decades, tether connected satellite systems have 
attracted the attention of researchers as an important and challenging 
space technology [1-5]. It has an extremely wide range of applications 
and a variety of problems depending upon the choice of model and 
perturbative forces. The exploration of space, various transport 

many other tasks can be solved with the help of tether connected 
satellite systems. The characteristics of tether connected satellites are 

makes the dynamical behaviours of the systems very complicated. 
For many application purposes, stationary movement of the tether 
is most suitable. In many studies of tether satellites, the researcher 
assumed the satellite’s system moves in a circular orbit and obtained 
valuable remarks. A detailed investigation of the stationary motion 
of tethers and their stability was conducted by Beletsky and Levin 
[6]. They showed that in a circular orbit, the motion of the systems 
and their elastic vibrations are unstable. In most of the studies, 
stability problems are carried out in the absence of other generalised 
perturbing forces. Burov and Troger studied the relative equilibriums 
and stability conditions for the tether satellite system [7].  The process 
of solving the absolute stability of a dynamical system is studied by 
Liberzon [8].  Yu et al. [9] reviewed the dynamics, modeling, and 
stability of tethered satellite systems. Kumar and Kumar [10] studied 
the equilibrium positions of a cable-connected satellite system under 

tethered satellite systems under the effect of air drag and Earth’s 
oblateness.

In this paper, we are interested in calculating the equilibrium positions 
and stability of the systems in Keplerian elliptical orbit under various 
perturbative forces mentioned in the abstract, taking the dumbbell 
model of the satellite system. Although the magnitude of Earth’s 

of these perturbative forces are very important because the system is 
exposed to these perturbative forces over a long time. We have taken 
the tether as non-conducting and elastic in nature. The shadow of 
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the earth is taken as cylindrical in nature, and electrostatic interaction 
due to charges developed in the metal body of the satellite system 
during its motion is neglected for its small value. Lyapunov test is 
applied to the equilibrium position to determine the stability of the 
systems.

2.  Modelling and Equilibrium Position

Modelling is very important to gain insight into the Dynamics of 
tether connected satellite systems. The three models that are very 
popular for tether satellites are the continuous model, discrete 
model, and rod model. Generally, the dynamical equations of these 
three models are constructed using Lagrange’s equations, Hamilton’s 
principle, and Newton’s laws. The equations obtained under different 
perturbative forces of the tether satellites are generally nonlinear 
and non-autonomous. In our problem, we used the rod model of 
tether satellites for the analytical analysis. Consider a satellite system 
connected by a non-conducting and elastic tether with the center 
of mass moving along a Keplerian elliptical orbit. We have already 
derived [12, 13] the dynamical equations in a rotating coordinate 
system in the body-centred frame of reference for such a model, and 
is written as

Where m1 and m2 are the masses of the mother satellite and sub-
satellite. µ denotes the earth’s gravity parameter. denotes the elastic 
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parameter for the connecting cable. Q1, Q2 are the charges developed 
on the two satellites respectively. B1, B2 are the absolute values of 
the forces due to the direct solar radiation pressure on m1 and m2, 
respectively. l

0
 is the length of the tether, R denotes the earth’s 

e 
is for the equatorial radius of the earth, and ge is the acceleration due 
to gravity. e is the eccentricity of the orbit, i is the inclination of the 

plane of the masses m1 and m2 with the orbital planes of the centre of 
the mass of the system, and  is the inclination of the ray  is called 
the shadow angle. The magnetic moment of the earth’s dipole is 
represented by µe and p is the focal parameter. The prime represents 
differentiation with respect to the true anomaly (v).

Fig. 1: Diagrammatical representation of the cable-connected satellites 

Lagrangian points are given by the constant values of the coordinate 
in the rotating frame of reference. Let these points be represented by

0 0
                                                                                       (2)

When the system’s center of mass is located at a certain point in an 
elliptical or circular orbit, the equilibrium state is chosen as constant 
values of coordinates with respect to the system’s body-centered 
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coordinate. Physically, it means that the speed and acceleration 
of the system are zero with respect to its body-centred coordinate 

of equation (2) is zero.

Putting (2) in the set of equations (1) we obtain

we are compelled to make our approaches with suitable limitations. 
Apart from this, we are interested only in obtaining the maximum 
effect of the earth’s shadow on the motion of the system.

In the further investigation, we put 0  and 0as because 

 or  cannot be zero. Therefore, we shall write (3) as

Where  

equation of (4), it follows X- coordinate of the equilibrium point 
cannot be zero as A and  are non-vanishing. The system is wholly 
extended along the X-axis. In this case, Y0

equilibrium point as (X0, 0)
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Therefore, the equilibrium position of motion of the system concerned 
is written as

From equation (6), we can easily determine the equilibrium position 
in a circular orbit for the same problem by just putting the eccentricity 
value zero, so for the circular orbit

3. Stability of the Equilibrium Position

To test the stability of the equilibrium position of the tether satellite 
system under the mentioned perturbative forces, we will rewrite the 
equations (1) in the case of the maximum effect of earth’s shadow and 
putting 0  and 0 .
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Now, we will take small variations in the coordinates of the 
equilibrium position and apply these variations to equations (8). Let 
the variations be represented by

Applying these variations to equations (8), the couple of equations 
become

Equations (8) admit the Jacobean integral, so its variation equations 
(10) also constitute the Jacobean integral. The form of the Jacobean 
integral in the variation parameters takes the form as

Where h is the Jacobean constant. To test the stability, we will now apply 
the Lyapunov method to the Jacobean integral equation. This integral 
equation is considered as Lyapunov function 1 2 1 2( ', ', , )L . Thus
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The Lyapunov function 1 2 1 2( ', ', , )L  is the integral of the variations 
equations (10); its differentiation taken along the trajectory of the 
system must vanish identically.  The only condition for this is that the 

fact, these conditions imply equilibrium positions. The second-order 

4. Conclusions

The aim of the present paper is to obtain the equilibrium position 

perturbative forces like a shadow of the earth, solar radiation pressure, 

when the tether is elastic in nature. We have obtained the equilibrium 
position under these conditions. The equilibrium condition shows 
that the Y centroid orbit coordinate is zero. This indicates the tether 
coincides with the plane of orbit with the center of mass, and the 
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mass points of m1 and m2 are collinear with the center of mass of the 
earth. From equations (6) and (7), it is clear that the X coordinated 
is more extended when the center of mass moves in a circular orbit 
compared to an elliptical orbit, and also, it is widest for a circular orbit.  

For a small period of time, we may neglect the other perturbative 
forces, and then we may have stable equilibrium positions. To 
stabilize the orbit, we need different control methods, which are the 
other parts of the tether satellite research.
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