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Telestroke systems have transformed the way stroke 
patients are diagnosed and treated in remote settings. 
However, there is still room for improvement to 
optimize stroke care delivery. The integration of 
advanced technologies into telestroke systems can 
enhance stroke diagnosis and treatment, leading to 
better patient outcomes and reduced healthcare costs. In 
this discussion, we explored various technologies, such 

telemedicine, and mobile applications, that can be 
integrated into telestroke systems to improve stroke care 
delivery. These technologies can enable accurate and 
timely diagnosis, facilitate remote consultations, monitor 
patients’ conditions, and improve communication 
among healthcare providers. By integrating advanced 
technologies into telestroke systems, healthcare 
providers can improve stroke care delivery, particularly 
in underserved areas, and increase access to specialized 
stroke care, resulting in better patient outcomes.
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with healthcare being one of the most impacted sectors [1], [2]. The 
combination of AI algorithms with distributed systems has enabled 
the development of remote patient monitoring, medical imaging 
analysis, and disease outcome prediction, among other applications. 
This paper delves into the potential of distributed AI, which entails 
the fusion of AI algorithms with distributed systems, to improve 
healthcare outcomes.

Remote patient monitoring has become a crucial element in 
contemporary healthcare systems [3]. Employing distributed AI 
in remote patient monitoring has resulted in increased patient 
involvement, better healthcare outcomes, and cost reduction [4]. 
Remote patient monitoring involves gathering and transmitting 
patient data to healthcare providers, allowing continuous monitoring 
and timely interventions.

Distributed AI systems can analyze this data in real-time, identifying 
patterns and trends that may signify potential health issues [5]. Early 
detection of such problems can lead to rapid interventions, minimizing 
the risk of complications and hospital readmissions. Moreover, 
remote patient monitoring with distributed AI allows healthcare 
providers to manage a larger patient population, alleviating the strain 
on healthcare systems and enhancing the overall quality of care [6].

Another area where distributed AI has the potential to transform 
healthcare is medical imaging analysis [7]. Traditional medical 
imaging analysis methods rely on manual interpretation by 
radiologists, which can be both time-consuming and susceptible to 
human error [8]. AI algorithms, when integrated with distributed 
systems, can quickly process vast volumes of medical imaging data, 
such as MRIs, CT scans, and X-rays, with high accuracy [9], [10]. The 
use of distributed AI in medical imaging analysis results in faster 
and more accurate diagnoses, facilitating early intervention and 
improving patient outcomes [11].

For example, AI algorithms can identify patterns in medical images 

healthcare providers to make well-informed decisions about 
diagnosis and treatment [13]. Furthermore, as AI algorithms continue 
to advance and improve, the accuracy of medical imaging analysis 
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is expected to grow, potentially surpassing the expertise of human 
professionals [14].

Disease outcome prediction is another essential application of 
distributed AI in healthcare [15]. Utilizing AI algorithms and 
distributed systems, healthcare professionals can predict the 
progression of diseases and identify the most effective treatment 
options for individual patients [16]. This personalized approach to 
healthcare ensures patients receive the most suitable care based on 
their unique needs and situations.

Distributed AI can analyze extensive data from various sources, 
including electronic health records, genetic information, and lifestyle 
factors, to generate accurate disease outcome predictions [17]. These 
predictions can guide healthcare providers in making more informed 
decisions regarding treatment plans and interventions, ultimately 
improving patient outcomes and quality of life [18].

Fig. 1. Distributed AI in Healthcare: Applications and Outcomes.

Stroke is a leading cause of death and disability worldwide. Timely 
diagnosis and treatment are crucial for reducing long-term disability 
and mortality [55]. Telestroke systems have emerged as a promising 
solution to improve access to specialized stroke care, particularly in 
rural and remote areas where access to stroke specialists is limited [56].
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Telestroke systems use telecommunication technologies to facilitate 
remote consultations between stroke specialists and patients or 
healthcare providers in distant locations. These systems can include 
audiovisual consultations [57], real-time guidance for administering 
treatments [58], and feedback to improve the use of thrombolytic 
agents [59].

Fig. 3. Telestroke System for Rural Areas

In this paper, we present a case study that explores the practical 

focusing on a Distributed AI-driven Telestroke Solution for Rapid 
and Accurate Stroke Diagnosis[2], [7], [24]. Telestroke solutions aim 

treatment, particularly in remote or resource-limited settings [19], 
[20]. The primary goal of this case study is to exhibit the potential 

diagnosis, by outlining the design, implementation, and performance 
of a system that enables real-time medical image analysis and remote 
collaboration among healthcare professionals[4], [5]. We provide an 
in-depth explanation of the methodology, data sources, AI algorithms, 
and distributed system architecture utilized in this telestroke 
solution[6], [8]. Furthermore, we discuss the results and insights 
derived from the case study, emphasizing the potential of distributed 
AI to enhance diagnostic accuracy, enable timely interventions, and 
ultimately improve patient outcomes in stroke care[9], [19]. Through 
this case study, we aim to showcase the transformative power of 
distributed AI in healthcare and encourage further research and 
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The structure of this paper is as follows: Section II offers an extensive 

AI-driven telestroke systems. Section III encompasses a cohesive 
methodology, integrating discussions on data sources, AI algorithms, 
and the distributed system architecture employed in our telestroke 
approach. The experimental results, showcasing the effectiveness and 
accuracy of our telestroke system, are detailed in Section IV. Section 

their implications for the future of telestroke systems. Finally, Section 
VI suggests potential areas for further research and improvements 

interest in the medical community due to their potential to transform 
stroke care delivery, particularly in regions with limited resources. 
In this section, we review existing research and developments to 

different approaches, and identify gaps that our research aims to 
address.

Telestroke networks have been in use for some time, providing remote 
consultation services and ensuring timely access to stroke expertise 
[26], [27]. These networks have led to improved patient outcomes, 
lowered healthcare costs, and increased usage of thrombolytic therapy 
[28]. However,  conventional telestroke networks mainly depend on 
human expertise, which may be limited by factors such as availability, 
inter-rater variability, and time-sensitive decision-making [29].

AI has demonstrated potential in overcoming some limitations of 
conventional telestroke networks. Numerous studies have investigated 
the application of AI algorithms in automating the interpretation 
of stroke imaging, including CT and MRI scans, to aid in diagnosis 
and treatment planning [30], [31]. AI models have exhibited high 
accuracy in detecting early ischemic changes, hemorrhagic strokes, 
and predicting functional outcomes [32], [33]. Furthermore, AI-
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based decision support systems have been developed to recommend 
personalized treatment plans, such as the selection of thrombolytic 
therapy or endovascular treatment [34], [35].

Recently, distributed AI and edge computing have emerged as 
potential solutions for enhancing the performance and accessibility 
of AI-based telestroke systems. Distributed AI can mitigate the 
computational load on centralized servers and decrease latency 
by processing data locally or regionally [36]. Researchers have 
investigated distributed AI for stroke imaging analysis [37] and 
federated learning for the development of AI models without sharing 
sensitive patient data [38]. Edge computing can further enhance 

smartphones, tablets, or IoT devices, improving responsiveness and 
reducing data transfer [39].

Despite the advancements in AI-based telestroke solutions, there are 
still several gaps that our research aims to address:

1. Integration and Standardization: Most existing AI-based telestroke 

of stroke care. A comprehensive and standardized framework is 
necessary to incorporate AI-based solutions throughout the entire 
stroke care process, from initial assessment to treatment selection 
and monitoring.



7

Sathyanarayana

2. Validation and Generalizability: Many AI models for stroke 
diagnosis and treatment planning have been validated on single-
center or limited datasets. More extensive multi-center studies are 
required to ensure these models are generalizable across diverse 
populations and healthcare settings.

3. Addressing Inequalities in Access to Care: Although distributed 
AI and edge computing show promise in improving telestroke 
service accessibility, research on effectively deploying these 
technologies in underserved regions and bridging the digital 
divide is still lacking.

4. Ethical and Legal Considerations: The use of AI in medical 
decision-making raises ethical and legal concerns, such as patient 
privacy, data security, and liability. Research is needed to address 
these challenges and establish best practices for the responsible 
use of AI in telestroke care.

5. Real-Life Integration and Expansion: Numerous AI-enabled 
telestroke approaches have been proposed, but only a handful 
have been assessed and validated in actual clinical situations. To 
effectively implement AI-powered telestroke systems in healthcare 
institutions such as hospitals, it is crucial to tackle practical 
obstacles associated with incorporating these systems into current 
processes, ensuring user receptiveness, and achieving sustainable 
scalability. Further research is needed to identify strategies for 
successful implementation, user training, and adoption of these 
AI-based telestroke solutions in a variety of healthcare settings.

In the current section, we describe the methodology used for the 
proposed telestroke solution, which involves data sources, AI 
algorithms, and the distributed system structure. We will investigate 
the rationale supporting the decisions made for each facet and how 
they seamlessly integrate to form a coherent system.

A. Data Sources
To ensure the accuracy and reliability of the AI algorithms, we sourced 
data from a diverse range of sources for training and validation. These 
sources consists of -



8

Mapana - Journal of Sciences, Vol. 23, Special Issue 3 ISSN 0975-3303 

1. Medical imaging data: We made use of anonymized and 
preprocessed datasets from multiple stroke centers and hospitals, 
consisting of CT scans, MRI scans, and Digital Subtraction 

detect patterns and make well-founded decisions related to stroke 
diagnosis and treatment planning.

on patient age, sex, ethnicity, and other demographic aspects 
to account for possible differences in stroke presentation and 
outcomes [41]. This data was crucial to ensure that our AI 
algorithms recognize the variations in stroke risk factors across 
diverse populations.

patient medical history, laboratory results, and physician notes 
were utilized to gain a comprehensive understanding of each 
patient’s case. This data enabled the AI algorithms to take into 
account relevant prior conditions and contextual factors when 
recommending telestroke diagnosis and treatment options [42].
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Fig. 6. Illustration of Ischemic and Hemorrhagic Stroke Findings in 

B. AI Algorithms

aspects of telestroke diagnosis and treatment

for processing medical imaging data [43]. These networks are 

such as ischemic areas and hemorrhages [44].

to process and examine clinical records and physician notes[45]. 
This allowed the AI system to extract meaningful information 
from unstructured data and integrate it into the diagnosis and 
treatment decision-making process.

consolidate the data from medical imaging, patient demographics, 
and clinical records [46]. This system offered risk assessments, 
treatment options, and additional insights for physicians, 
facilitating more informed decision-making in a telestroke setting.
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C. Distributed System Architecture
Our telestroke solution leverages a distributed system architecture 

includes the following elements:

1. Edge Devices: We used edge devices, such as smartphones 
and tablets, for collecting medical data and enabling real-time 
communication between patients and physicians [47]. This 
facilitated quick assessment and treatment initiation during the 
critical time window following a stroke.

2. Cloud Computing: The AI algorithms and DSS were hosted on 

[48]. This allowed multiple healthcare providers to access the 
telestroke solution concurrently, without impacting performance 
or response times.

implemented end-to-end encryption and stringent access control 
mechanisms [49]. The above cloud servers in the second bullet 
adheres to the healthcare data privacy and security regulations. 
This ensured that the data transmission and storage processes 

D. Implementation
In this section, we explain the implementation process for our 
telestroke solution, which involves data preprocessing, AI model 
training and validation, system deployment, and evaluation.

performed the following preprocessing tasks: 

a. Medical imaging data: We standardized image resolution, 
pixel intensity, and contrast levels across different imaging 
datasets[50]. Moreover, we applied data augmentation 

the diversity of the training data [51].

We cleaned and standardized demographic and clinical 
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unstructured clinical notes into well-structured formats.

Fig. 7. Images Demonstrating Data Augmentation techniques like 
Deformation, Cropping, Rotation, Flipping, Scaling.

2. AI Model Training and Validation: We followed a two-step 
process for training and validating the AI algorithms:

a. Model Training: We split the preprocessed data into training 
and validation sets. With the training set, we adjusted the CNN 

processing clinical notes, and created the DSS to merge data 
from all sources [53].

b. Model Validation: We evaluated the performance of the 
AI models on the validation set, measuring their accuracy, 

incorporating feedback from medical experts, we continually 
improved the models to optimize their performance.

3. System Deployment: After completing the AI model training and 
validation steps, we deployed the telestroke solution using the 
following steps:

a. Edge Device Integration: We developed mobile applications 
for edge devices ,allowing both patients and healthcare 
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providers to enter data and access the telestroke system [47].

b. Cloud Deployment: We set up the AI models and DSS on 
secure cloud servers, ensuring smooth computing and storage 
capabilities, all while adhering to the required privacy and 
security protocols [55].

c. User Interface Development: We designed and implemented a 
user-friendly web interface for healthcare providers, allowing 
them to access patient data, AI model outputs, and treatment 
recommendations.

4. Evaluation: To determine the effectiveness of our telestroke 
solution, we performed a pilot study with multiple healthcare 
centers, measuring the following outcomes:

a. Diagnostic Accuracy: We compared the AI-generated diagnoses 
with expert clinician diagnoses, evaluating the system’s overall 
accuracy in identifying stroke subtypes and severity.

b. User Satisfaction: We conducted surveys among healthcare 
providers utilizing our telestroke solution to assess their 
contentment with the system and collect suggestions for 
potential enhancements.

Fig. 8. Deep Learning Approach for Brain Lesion Detection in MR Images.

A. Dataset and Evaluation Metrics
The dataset used for testing the proposed telestroke solution consists 
of 150 anonymized stroke cases, obtained from several hospitals. The 

demographic information. To evaluate the system’s performance, we 
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accuracy.

B. Performance of the Proposed System
We tested our telestroke solution using the dataset, and its performance 
was compared with other existing methods.

1. Sensitivity: The proposed solution achieved a sensitivity of 93%, 
showing improvement over existing approaches with 88% and 
85%.

be 95%, demonstrating its ability to accurately identify non-stroke 
cases. This result is an enhancement over the existing methods, 

3. Overall Accuracy: The overall accuracy of our telestroke system 
was 92%, which is higher than existing approaches with 85% and 
87%.

C. Speed and Scalability
The proposed telestroke solution’s response time was measured to 
be 30 seconds, considerably faster than the existing methods, with 
45 seconds and 60 seconds. This rapid response time is crucial for 
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stroke diagnosis and treatment, as it allows healthcare providers to 
initiate treatment promptly, potentially reducing long-term disability 
and mortality.

number of concurrent cases, making it ideal for deployment in 
extensive telestroke networks. The cloud-based infrastructure ensures 
that the system can adapt to the growing demand for telestroke 
services.

Fig. 10. Response Time Comparison of Telestroke Systems

D. Comparison with Existing Approaches
Our telestroke solution performs better than pre-existing methods in 

response time and scalability make it a more practical choice for real-
world applications.

E. Evaluation of Experimental Findings
The experimental results indicate that the proposed telestroke 
solution is a valuable tool for accurate and timely stroke diagnosis. 
Its high performance and rapid response time can potentially lead to 
improved patient outcomes, especially in rural and remote areas with 
limited access to stroke specialists.

potential of advanced technology integration in telestroke systems 
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for improving stroke diagnosis and treatment in remote settings. 

learning, and remote monitoring, can greatly enhance the accuracy 

in time-to-treatment, which is crucial for stroke patients, as every 
minute saved can lead to better outcomes and decreased long-term 
disability. By enhancing the diagnostic process using automated 
image analysis and decision support systems, our approach allows 
healthcare providers to make faster, more educated decisions for each 
patient.

Moreover, our research emphasizes the importance of continuous 
education and training for healthcare professionals, as well as 
effective communication and collaboration between stroke specialists 
and remote healthcare providers. Our proposed telestroke system 
cultivates a collaborative environment that encourages knowledge 
sharing, leading to more effective stroke care and ultimately, 
improved patient outcomes.

and privacy in telestroke systems, stressing the necessity for robust 

of sensitive patient information.

In summary, the integration of advanced technologies in telestroke 
systems has the potential to revolutionize stroke care in remote 
locations, making high-quality healthcare accessible to a larger 
population, reducing disparities in stroke treatment, and ultimately, 
saving lives. By adopting our proposed solution, we can greatly 

ensuring a future where no patient is left behind due to geographical 
constraints.

In this section, we propose several directions for future research and 
development in the area of distributed AI-driven telestroke solutions. 
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While the current study has demonstrated promising results, there 
are limitations and areas for improvement that warrant further 
investigation.

fully addressed the challenges related to the technological 
infrastructure required for AI-driven telestroke solutions. 
Future research should consider various factors, such as internet 
connectivity, hardware compatibility, and system latency, to 
ensure the feasibility of these solutions across different settings.

data science, and computer engineering. Future research should 
aim to foster such collaborative environments to drive innovation.

potential for AI-driven telestroke systems to provide personalized 
treatment recommendations based on individual patient 
characteristics and genetic factors.

to provide multilingual support can help address language 
barriers and improve patient care in diverse populations.

preserving techniques, such as federated learning and differential 
privacy, can help protect patient data while still allowing for 
effective AI model training and validation.

Investigating the potential impact of AI-driven telestroke systems 
on global health, such as addressing disparities in stroke care 
and improving access to quality care in low- and middle-income 
countries.
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for telestroke network design, including resource allocation, 
communication protocols, and data management, can help to 

potential of AI-driven telemedicine solutions for the management 
and treatment of other neurological disorders, such as epilepsy, 

additional limitations and focusing on further improvements and 

solutions can continue to evolve and positively impact the care 
and outcomes for stroke patients across diverse settings.
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