Changing and Unchanging the Geodetic Number: Edge Removal

G Micheal Antony*, R Arul Ananthan \dagger and S Balamurugan*

Abstract

Let S be a collection of elements in a vertex set V . If every vertex in a graph G falls on a geodesic connecting two vertices from S, then that graph is said to be a geodesic graph. $g(G)$ is the smallest cardinality of the geodesic subset of a graph G and is known as the geodetic number. This study investigates how the removal of an edge affects the geodetic number of some unique families.

Keywords: Geodesic set, Geodetic number.
2000 Mathematics Subject Classification Number: 05C12.

1. Introduction

For a detailed examination of the geodetic number, see Chartrand et al.'s initial introduction of the number in [3]. What we mean by a graph is a non-trivial, finite, undirected, linked graph with many edges and no loops. As usual, $\mathrm{V}(\mathrm{G})$ represents the vertices of a graph and E represents the edges of a graph. The symbol for the edge between two vertices u and v is (u, v). The length of the shortest $u-v$ path through a connected graph G is the distance of a vertex v from a vertex u and is denoted by $d(u, v)$. between the vertex u and the vertex v. The minimum distance between the vertices u and v is known as the geodesic distance. The criticality and stability of the geodetic number of some particular families of graphs are being studied for the first

[^0]time. Let us partition the edges of a graph G into four sets according to how their removal affects $g(G)$. Let Let $E(G)=E_{g}^{-}(G) \cup E_{g}{ }^{0}(G) \cup$ $E_{g}^{+}(G) \cup S_{P}(G)$
Definition 1.1 The set S, which is a subset of vertices $V(G)$ of a graph G is called a geodesic set if every vertex in G is in a geodesic path connecting two vertices of S. The geodetic number of a graph G is the number of elements in a minimum geodetic set in G, denoted by $g(G)$.

Definition 1.5 The Wagner graph has twelve edges and eight vertices, making it a three-regular graph.

Definition 1.6 For an integer $n(\geq 3)$, the graph with the vertex set $\{(\mathrm{xi}, \mathrm{yj}): 0 \leq \mathrm{i}, j \leq \mathrm{n}-1, \mathrm{i} \neq \mathrm{j}\}$ is known as the Crown graph.

Definition 1.7 Two rows of paired nodes make up a Cocktail Party graph, where all nodes other than the paired ones are connected by straight lines.

Definition 1.8 The construction of the Circular Ladder graph CLn involves either a straight connection between the four 2-degree vertices or the Cartesian product of an edge and a cycle of length n (≥ 3).

Definition 1.9 The Franklin graph has 18 edges and 12 vertices, making it a 3-regular graph.

Theorem 1.7 [8] states that $g(G)=4$ for the Wagner graph.
Theorem 1.8 [7] Considering the crown graph $G, g(G)=2$.
Theorem 1.9 [8] For the circular ladder graph $G, g(G)=3$.

2. Effects of Removal of an Edge on $g(G)$, in Some Particular Families of Graphs

In this section, we investigate the effects of the removal of an edge on $g(G)$ for some families of graphs like Wagner graph, crown graph, circular ladder graph, Franklin graph and cocktail party graph.
Theorem 2.1 For the Wagner graph $G, E(G)=E_{g}^{-}(G) \cup E_{g}{ }^{0}(G)$

Proof.

Case i: An edge is incident with succeeding vertex. For every e in $E(G)$, the geodesic set of $G-\left\{e_{i}\right\}$ will be the set $\left\{V_{i-1}, V_{i}, V_{i+1}\right\}$, where $\mathrm{i}=1$ to 8 .

For $e \in E(G)$, the set $\left\{v_{i-1} v_{i} v_{i+1}\right\}$. Hence $g\left(G-\left\{e_{-i}\right\}\right)<g(G)$ and so $E(G)$ $=E_{g}^{-}(G)$.
Case ii: An edge is not incident with succeeding vertex.
For $\mathrm{e} \in \mathrm{E}(\mathrm{G})$, the set $\left\{\mathrm{v}_{\mathrm{i},} \mathrm{V}_{\mathrm{i}+2}, \mathrm{~V}_{\mathrm{i}+4}, \mathrm{v}_{\mathrm{i}+6}\right\}$ where $\mathrm{i}=1$ and 2 will serve as a geodesic set of $G-\left\{\mathrm{e}_{\mathrm{i}}\right\}$. . Hence $g\left(G-\left\{\mathrm{e}_{\mathrm{i}}\right\}\right)=g(G)$ and so $E(G)=E_{g}{ }^{0}(G)$.

Figure 2.1. Wagner graph
Theorem 2.2 For the Crown graph $G, E(G)=E_{g}{ }^{\circ}(G)$
Proof. Label the vertices and edges of G as shown in Figure 2.2. By Theorem 1.8, $g(G)=2$. Further $S_{1}=\left\{v_{1}, u_{1}\right\}, S_{2}=\left\{v_{2}, u_{2}\right\}, S_{3}=\left\{v_{3}, u_{3}\right\}$, $S_{4}=\left\{v_{4}, u_{4}\right\}$ and $S_{5}=\left\{v_{5}, u_{5}\right\}$ will be geodesic sets of G. Also, removal of any one of the edges from G does not increase the minimum geodetic number of G refer Table 2.1. Thus $E(G)=E_{g}^{0}(G)$.

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{1}\right\}$	S_{3}	$E-\left\{e_{11}\right\}$	S_{2}
$E-\left\{e_{2}\right\}$	S_{2}	$E-\left\{e_{12}\right\}$	S_{1}
$E-\left\{e_{3}\right\}$	S_{1}	$E-\left\{e_{13}\right\}$	S_{1}
$E-\left\{e_{4}\right\}$	S_{3}	$E-\left\{e_{14}\right\}$	S_{4}
$E-\left\{e_{5}\right\}$	S_{4}	$E-\left\{e_{15}\right\}$	S_{1}
$E-\left\{e_{6}\right\}$	S_{1}	$E-\left\{e_{16}\right\}$	S_{1}
$E-\left\{e_{7}\right\}$	S_{5}	$E-\left\{e_{17}\right\}$	S_{5}
$E-\left\{e_{8}\right\}$	S_{1}	$E-\left\{e_{18}\right\}$	S_{1}
$E-\left\{e_{9}\right\}$	S_{2}	$E-\left\{e_{10}\right\}$	S_{4}
$E-\left\{e_{10}\right\}$	S_{1}	$E-\left\{e_{20}\right\}$	S_{5}

Table 2.1

Figure 2.2 Crown graph
Theorem 2.3 For the graph G of the cocktail party, $E(G)=E_{g}{ }^{-}(G) \cup E_{g}{ }^{0}$ (G)

Proof. Label the vertices and edges of G as shown in Figure 2.3. Clearly $g(G)=4$. Here, removal of any one of the vertices from G does not increase the geodesic number of G refer Table 2.2. Thus $E(G)=E_{g}{ }^{-}(G) \cup E_{g}{ }^{0}(G)$.

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{1}\right\}$	$\left\{v_{1}, v_{2}, v_{4}\right\}$	$E-\left\{e_{11}\right\}$	$\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$
$E-\left\{e_{2}\right\}$	$\left\{v_{1}, v_{3}, v_{4}, v_{6}\right\}$	$E-\left\{e_{12}\right\}$	$\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$
$E-\left\{e_{3}\right\}$	$\left\{v_{1}, v_{3} v_{4}\right\}$	$E-\left\{e_{13}\right\}$	$\left\{v_{2} v_{4}, v_{6} v_{8}\right\}$
$E-\left\{e_{4}\right\}$	$\left\{v_{5}, v_{6}, v_{8}\right\}$	$E-\left\{e_{14}\right\}$	$\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{5}\right\}$	$\left\{v_{2}, v_{4}, v_{5}, v_{8}\right\}$	$E-\left\{e_{15}\right\}$	$\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}$
$E-\left\{e_{6}\right\}$	$\left\{v_{5}, v_{7}, v_{8}\right\}$	$E-\left\{e_{16}\right\}$	$\left\{v_{1}, v_{3}, v_{5}, v_{7}\right\}$
$E-\left\{e_{7}\right\}$	$\left\{v_{1}, v_{3}, v_{4}, v_{7}\right\}$	$E-\left\{e_{17}\right\}$	$\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$
$E-\left\{e_{8}\right\}$	$\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$	$E-\left\{e_{18}\right\}$	$\left\{v_{1}, v_{4}, v_{5}, v_{8}\right\}$
$E-\left\{e_{9}\right\}$	$\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$		$\left\{v_{2}, v_{4}, v_{6}, v_{8}\right\}$

Table 2.2

Figure 2.3 Cocktail party graph
Theorem 2.4. G is the circular ladder graph for the, $E(G)=E_{g}{ }^{0}(G)$.
Proof. Label the vertices and edges of G as shown in Figure 2.4. By Theorem 1.9. $g(G)=3$. Further $\mathrm{S}_{1}=\left\{v_{1}, u_{3}, u_{4}\right\}, S_{2}=\left\{v_{2}, u_{4}, u_{5}\right\}, S_{3}=\left\{v_{3}, u_{1}, u_{5}\right.$ $\}, S_{4}=\left\{v_{4}, u_{1}, u_{2}\right\}, S_{5}=\left\{v_{5}, u_{2}, u_{3}\right\}, S_{6}=\left\{u_{1}, v_{3}, v_{4}\right\}, S_{7}=\left\{u_{2}, v_{4}, v_{5}\right\}, S_{8}=\left\{u_{3}, v_{1}, v_{5}\right\}, S_{9}=u_{4}, v$ ${ }_{1}, v_{2}, S_{10}=\left\{u_{5}, v_{2}, v_{3}\right\}$ will be geodesic sets of G. Also, removal of any one of the edges from G does not increase the geodetic number of G refer Table 2.3. Thus $E(G)=E_{g}{ }^{\circ}(G)$

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{1}\right\}$	S_{4}	$E-\left\{e_{0}\right\}$	S_{5}
$E-\left\{e_{2}\right\}$	S_{5}	$E-\left\{e_{10}\right\}$	S_{1}
$E-\left\{e_{3}\right\}$	S_{1}	$E-\left\{e_{11}\right\}$	S_{9}
$E-\left\{e_{4}\right\}$	S_{2}	$E-\left\{e_{12}\right\}$	S_{10}
$E-\left\{e_{5}\right\}$	S_{3}	$E-\left\{e_{13}\right\}$	S_{6}
$E-\left\{e_{6}\right\}$	S_{2}	$E-\left\{e_{14}\right\}$	S_{7}
$E-\left\{e_{7}\right\}$	S_{3}	$E-\left\{e_{15}\right\}$	S_{8}

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{8}\right\}$	S_{4}		

Table 2.3

Figure 2.4. circular ladder graph
Theorem 2.5 For the Franklin graph $G, E(G)=E_{g}{ }^{-}(G) \cup E_{g}{ }^{0}(G)$.
Proof. Label the vertices and edges of G as shown in Figure 2.4. Clearly $g(G)=4$. Here, G's geodetic number remains unchanged if any one of its edges were removed, refer Table 2.4. Thus E $(G)=E_{g}^{-}(G) \cup E_{g}{ }^{0}(G)$.

Edge set	Geodesic set	Edge set	Geodesic set
$E-\left\{e_{4}\right\}$	$\left\{v_{1}, v_{2}\right\}$	$E-\left\{e_{10}\right\}$	$\left\{v_{3}, v_{7}, v_{12}\right\}$
$E-\left\{e_{2}\right\}$	$\left\{v_{3}, v_{6}, v_{8,}, v_{9}\right\}$	$E-\left\{e_{11}\right\}$	$\left\{v_{4}, v_{7}, v_{8}\right\}$
$E-\left\{e_{3}\right\}$	$\left\{v_{3}, v_{4}\right\}$	$E-\left\{e_{12}\right\}$	$\left\{v_{5}, v_{8}, v_{9}\right\}$
$E-\left\{e_{4}\right\}$	$\left\{v_{2}, v_{5}, v_{10}, v_{11}\right\}$	$E-\left\{e_{13}\right\}$	$\left\{v_{8}, v_{11}\right\}$
$E-\left\{e_{5}\right\}$	$\left\{v_{5}, v_{6}\right\}$	$E-\left\{e_{14}\right\}$	$\left\{v_{7}, v_{10}\right\}$
$E-\left\{e_{6}\right\}$	$\left\{v_{1}, v_{4}, v_{7}, v_{12}\right\}$	$E-\left\{e_{15}\right\}$	$\left\{v_{9}, v_{12}\right\}$
$E-\left\{e_{7}\right\}$	$\left\{v_{6}, v_{10}, v_{11}\right\}$	$E-\left\{e_{16}\right\}$	$\left\{v_{2}, v_{7}, v_{11}\right\}$
$E-\left\{e_{8}\right\}$	$\left\{v_{1}, v_{10}, v_{11}\right\}$	$E-\left\{e_{17}\right\}$	$\left\{v_{1}, v_{10}, v_{12}\right\}$
$E-\left\{e_{9}\right\}$	$\left\{v_{1}, v_{7}, v_{11}\right\}$	$E-\left\{e_{18}\right\}$	$\left\{v_{6}, v_{9}, v_{11}\right\}$

Table 2.4

Figure 2.5 Franklin graph

References

[1] F. Buckley, F. Harary, Distance in Graphs, Addition-Wesley, 1990.
[2] F. Buckley, F. Harary, L.V. Quintas, Extremal Results on the Geodetic Number of a Graph, Scientia (1988) 17-26.
[3] G. Chartrand, F. Harary, P. Zhang, Geodetic Sets in Graphs, Discussions Mathematicae Graph Theory. 20 (2000) 129-138.
[4] G. Chartrand, Lesniak, Graphs and Digraphs, CRC press, 2005.
[5] G. Chartrand, F. Harary, P. Zhang, On the Geodetic Number of a Graph, Networks. 39(1), (2002) 1 - 6.
[6] F. Harary, E. Loukakis, C. Tsouros. The Geodetic Number of a Graph, Math. Comput. Modeling. 17, (1993) 89 - 95.
[7] G. Micheal Antony, R. Arul Ananthan, S. Balamurugan, The Geodetic Number of Some Special Graphs, International Conf. on Advanced Research in Mathematical Sci. Conf. Proceedings, 2021.
[8] G. Micheal Antony, R. Arul Ananthan, S. Balamurugan, The Geodetic Number of Some Special Graphs, International Conf. on Advanced Mathematical Modeling And Computational Techniques Conf. Proceedings, 2021.
[9] S.Balamurugan, G.Micheal Antony, Criticality and Stability of the Geodesic number in Graphs (Communicated).

[^0]: * Department of Mathematics, St. Xavier's College (Autonomous), Palayamkottai, affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India; michealantony90@ gmail.com; balamaths@rocketmail.com
 † St. John's College, Palayamkottai, Tirunveli, Tamilnadu; arulanand1005@ gmail.com;

