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Abstract 

The effect of non-uniform basic temperature gradient on 
the onset of Marangoni convection in a horizontal layer 
with a free-slip bottom heated from below and cooled 
from above is considered. A linear stability analysis is 
performed to undertake a detail investigation. The 
eigenvalues are obtained for lower rigid isothermal and 
upper free adiabatic boundaries. The resulting eigenvalue 
problem is solved exactly and single-term Galerkin 
expansion procedure. The influence of various 
parameters on the onset of convection has been analyzed. 
Three non-uniform basic temperature profiles are 
considered and the results obtained from both the 
methods are compared and are found to be in good 
agreement. Some general conclusions about their 
destabilizing effects are presented. 

Keywords: Marangoni Convection, Non-Uniform Temperature, 
free-slip, Galerkin Expansion 

1. Introduction  

An extensive research has been done by many researchers on the 
onset of convection in a thin layer of fluid heated from below. The 
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convective instabilities in such a fluid layer may be due to 
buoyancy or due to surface tension. The convection driven by 
buoyancy is known as Rayleigh – Benard convection and that by 
surface tension is known as Marangoni convection. The onset of 
Marangoni convection in a layer of fluid with free upper surface 
and heated from below has been studied extensively because it 
plays an important in numerous applications such as crystal 
growth from melts[8], droplet migration in nonuniform 
temperature fields [12] and flame spreading over a pool of liquid 
fuel.[10] One of the earliest studies on Marangoni convection was 
made by Pearson[5] under assumptions of infinitesimally small 
amplitude analysis with non-deformable free surface and no-slip at 
the bottom. He showed that thermocapillary forces can cause 
convection when the Marangoni number exceeds a critical value in 
the absence of buoyancy forces. Pearson [5] obtained the critical 
Marangoni number, Mc = 79.607 and the critical wave number ac = 
1.9929. His analysis has been extended by many authors. [9], [11], 
[13]-[15] Linear stability analysis of Marangoni convection with 
free-slip boundary conditions at the bottom was first treated by 
Boeck and Thess. [1] For free-slip case, they obtained the critical 
Marangoni number, Mc = 57.598 and the critical wave number ac = 
1.7003. 

Vidal and Acrivos (1966), Debler and Wolf [2] and Nield [4] 
studied the effect of a non-uniform temperature gradient on the 
onset of Marangoni convection. Rudraiah [6] and Friedrich and 
Rudraiah [3] have examined the combined effect of rotation and 
non-uniform basic temperature gradient on Marangoni convection. 
They showed that the rotation suppresses convection. The 
combined effect of non-uniform temperature gradient and 
magnetic field on Marangoni convection has been studied by 
Rudraiah et al. [7] Using the single-term Galerkin expansion 
procedure, they showed that a suitable non-uniform temperature 
gradient and magnetic field suppress Marangoni convection. The 
above literature pertains to Marangoni convection subject to a non-
uniform basic temperature gradient with no-slip condition. 

Here in this paper, we study the effect of non-uniform temperature 
gradient on Marangoni convection with free-slip at the bottom. The 
linear stability theory is applied and the resulting eigenvalue 
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problem is solved using exact method and single-term Galerkin 
expansion procedure.  

2. Problem Formulation 

Consider a horizontal fluid layer of depth d with a free upper 
surface heated from below and subject to a uniform vertical 
temperature gradient. The fluid layer is bounded below by a rigid, 
electrically and thermally-perfect conducting wall and bounded 
above by a free surface. This free surface is subject to a constant 
heat flux. The interface has a surface tension; 휎 is assumed to be a 
linear function of the temperature   

휎 = 휎 − 휎 (푇 − 푇 )     (1) 
  

where 휎  is the value of 휎 at temperature 푇  and the constant 휎  is 
positive for most fluids. We use Cartesian coordinates with two 
horizontal x- and y- axis located at the lower solid boundary and a 
positive z- axis is directed towards the free surface. In the basic 
state, the velocity q and the temperature T have the following 
solutions 

q=0, −
∆

 = 푓(푧),     (2) 
where f (z) is a non dimensional temperature gradient satisfying 
the condition 

∫ 푓(푧)푑푧 = 1      (3) 

To investigate the effect of the non-uniform temperature gradient 
on the Marangoni convection, three types of basic temperature 
profile are chosen.  

(i) f(z)=1 represents a linear temperature profile; 

(ii) f(z)=2z represents a parabolic temperature profile; 

(iii) f(z)=2(1-z) represents a inverted parabolic temperature 
profile; 

 

Subject to the Boussinesq approximation, the governing equations 
for an incompressible electrically conducting fluid are expressed as 
follows: 
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Continuity equation: 

 ∇. 푞⃗  = 0      (4) 
Momentum equation: 

 휌 ⃗ + (푞.∇)푞 = −∇푝 + 휇∇ 푞⃗     (5) 

Energy equation: 

 + (푞.∇)푇 = 휅∇ T     (6) 

where q, T, p, v, κ and η denote the velocity, temperature, pressure, 
density, kinematic viscosity, thermal diffusivity and electrical 
resistivity, respectively. When motion occurs, the upper free 
surface of the layer will be deformable with its position at 푧 = 푑 +
푓(푥,푦, 푡)at the free surface; we have the usual kinematic condition 
together with the conditions of continuity for the normal and 
tangential stresses. The temperature obeys the Newton's law of 
cooling, k = ℎ(푇 − 푇 ) , where k and h are the thermal 
conductivity of the fluid and the heat transfer coefficient between 
the free surface and the air, respectively, and n is the outward unit 
normal to the free surface. The boundary conditions at the bottom 
wall, z = 0, are free-slip and conducting to the temperature 
perturbations.  

To simplify the analysis, it is convenient to write the governing equations 
and the boundary conditions in a dimensionless form. In the 
dimensionless formulation, scales for length, velocity, time and 
temperature gradient are taken to be d, k/d, d2/k and 
ΔT/(a 훾(ΔTd/ρ kv) )  respectively.          Furthermore, two dimensionless 
groups appearing in the problem are the Marangoni number, M= 훾(ΔTd/
ρ kv) and the Prandlt number, Pr = v/k. 

3. Linearized Problem 

We study the linear stability of the basic state by seeking perturbed 
solutions for any quantity Φ(x, y, z, t) in terms of normal modes in 
the form 

Φ(x, y, z, t) = Φ0(x, y, z, t) +∅(푧) exp 푖 훼 푥 + 훼 푦 + 푠푡 ,   (7) 
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where Φ0 is the value of Φ in the basic state ,푎 = 훼 + 훼  is the 

total horizontal wave number of the disturbance and s is a complex 
growth rate with a real part representing the growth rate of the 
instability and the imaginary part representing its frequency. At 
marginal stability, the growth rate s of perturbation is zero and the 
real part of s, R(s) > 0 unstable modes while R(s) < 0 represents 
stable modes. Substituting equation (7) into equations (4) - (6) and 
neglecting terms of the second and higher orders in the 
perturbations we obtain the corresponding linearized equations 
involving only the z dependent parts of the perturbations to the 
temperature and the z-components of the velocity denoted by T 
and w respectively, 

 (퐷 − 푎 ) 푤 =  0     (8) 
 (퐷 − 푎 )푇 =  −f(z)w     (9) 

subjected to   푤 = 0       (10) 

 퐷 푤 = 0      (11) 

 T = 0       (12) 

 Evaluated on z=0,  푤 = 0      (13) 

  퐷T =0       (14) 

  퐷 푤 +푀 푎 휃 =0     (15) 

Evaluated of the upper free surface z=1, the operator D = d/dz 
denotes the differentiation with respect to the vertical coordinate z. 
The variables w and T denote respectively the vertical variation of 
the z-velocity, and temperature. 

4. Method of Solutions 

The resulting eigenvalue problem is solved exactly, in general, with 
M as an eigenvalue. Besides, an analytical expression for the critical 
Marangoni number is also obtained by single-term Rayleigh-Rits 
technique method with wave number a as a perturbation 
parameter. 



S.P. Suma and Y.H. Gangadharaiah                                            ISSN 0975-3303    

6 

 

4.1. Exact Method 

Since equation (8) is independent of W equation (18) can be directly 
solved to get the general solution in the form 

W=Acosh(az) +B sinh(az)+C z cosh(az)+D z sinh(az)   (16) 

Using the boundary conditions (10) – (15) from equation (8), we 
obtain the expression for Marangoni number, M on the marginal 
curve for three types of basic temperature profile: 
 

a) Linear:   푀 =       (17) 

b) Inverted parabola:  푀 =     (18) 

c) Parabola:  푀 =      (19) 

  
where 푐 = − tanℎ푎 + sinℎ푎 + cosℎ푎 

 푐 = 푎 cosℎ푎  

 푐  = c1/c2 
 푐 = + tanℎ푎 + sinℎ푎 + cosℎ푎 
 푐 = 푎 cosℎ푎 
 푐 =c4/c5 
 푐 = − tanℎ푎 − tanℎ푎 sinℎ푎 + cosℎ푎 
 푐 =c7/c5 

 

4.2. Galerkin Method 

The single-term Rayleigh-Rits technique to find the critical 
eigenvalue. Multiplying equation(8) by w and equation (9) by T, 
integrating the resulting equations by parts with respect to z from 0 
to 1, using the boundary conditions (10) - (15) and taking w =Aw1 , 
T =BT1 in which A and B are constants and w1 and T1 are trial 
functions, yields the following equation for the eigenvalue:  

       

 M = 〈 ( ) 〉〈( ) 〉

( ) ( ) 〈 ( ) 〉    (20)  
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In equation (20), 〈… … 〉  denotes integration with respect to z 
between z=0 and z=1 we select the following trial functions 

 W = 푧(z − 2z + 1), T = z(1 − z/2)    (21) 
 
Such that satisfy all the boundary condition (10)-(14) except the 
boundary condition(15) but the residual from this is included 
residual from the differential equations. Substituting equations (21) 
into (20), we get 

푀 = 〈 ( )( / ) ( )〉
  (22) 

 
From equation (22) we obtain the expression for Marangoni 
number for three basic temperature profiles: 

a) Linear: 푀 =   (23) 

b) Inverted parabola:  푀 =    (24)  

c) Parabola:  푀 =     (25) 

  

5. Discussion and Conclusion 

The marginal stability curves in the (a, M) plane are obtained. The 
region above the marginal stability curve represents unstable 
modes and the disturbances will grow. The region below the curve 
represents stable modes and all disturbances will decay. The 
critical Marangoni number, Mc for the onset of steady convection is 
defined to be the global minimum of the corresponding marginal 
stability curves. For when M < Mc, all disturbances are stable while 
for M > Mc, a range of unstable disturbances exist. 

 

The effects of a non-uniform temperature gradient on the onset of 
Marangoni convection in afluid layer with free-slip at the bottom 
has been studied. The exact method and Galerkin procedure used 
and the following conclusion may be made from this study. A 
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comparison of the critical Marangoni number is shown in Table 1 
and the values are found to be in good agreement. Figures 1 and 2 
shows that the parabolic function is the most destabilizing basic 
temperature distribution, and the inverted parabolic is most 
stabilizing temperature distribution. 
 
Temperature Profiles Mc(Exact method) Mc (Galerkin method) Ac 

Linear  

Inverted parabola  

Parabola  

57.6037 

84.3201 

43.743 

56.771 

65.677 

49.993 

1.716 

1.716 

1.716 

 
Table 1: Critical Marangoni Number for Different Types of Basic 

Temperature Profiles 
 
 
 

 
Figure 1: Marginal Stability Curves Plotted for Different Types of 

Basic temperature Profiles (Exact method) 
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Figure 2: Marginal Stability Curves Plotted for Different Types of Basic 

temperature Profiles (Galerkin method) 
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