

Mapana – Journal of Sciences 2024, Vol. 23, No. 1, 133-147 ISSN 0975-3303 | https://doi.org/10.12723/mjs.68.7

DNA Barcoding of Fish Fauna Using Mitochondrial CO1 Gene

Anisha S Menon*, Nandini N.J.[†], Manoj Mathews[‡] and Jisha Jacob*

Abstract

This study aimed to investigate the quantitative relationships between four fish species from three genera based on molecular analyses (barcoding) of nine species from five genera utilizing the mitochondrial COI gene. Species within the same genus showed more transitional incompatibilities than transversional mismatches. The samples were divided into four main groups by a phylogenetic tree built from the sequencing data (cytochrome COI) of samples from the two populations using the neighbour-joining method. As dissimilar species were clustered under separate nodes and similar species were clustered under the same nodes, the neighbourjoining tree revealed various clusters corresponding to the taxonomic status of the species. In conclusion, the mitochondrial CO1 gene is a useful molecular marker for DNA barcoding.

Keywords: DNA barcoding, mitochondrial CO1 gene, molecular taxonomy, biodiversity assessment, DNA sequencing.

^{*} Molecular Microbial Ecology Lab, PG and Research Department of Zoology, St. Joseph's College (Autonomous), Devagiri, University of Calicut 680 555, Kerala, India; anishasumith13@gmail.com, jishajacob@ devagiricollege.org

[†] Department of Zoology, University College, Trivandrum; nandininnj@ gmail.com

[‡] PG and Research Department of Chemistry, St. Joseph's College (Autonomous), Devagiri, University of Calicut 680 555, Kerala, India; mathewsmanoj@gmail.com

Introduction

Fish is high in protein and micro- and macronutrient supplements, as well as vitamins A, B, and D. Omega-3 fatty acids, which are vital for the body and brain, are also abundant in it [1]. Fish are among the healthiest foods on the earth and are consumed in a broad variety due to their contribution to fitness and well-being [2]. In addition to being consumed as food, fish is becoming more and more popular as feed. [3].

Among the fishes in India, our study focuses on 9 species of fishes belonging to 5 genera: Etroplus suratensis, Etroplus maculatus, Nematalosa nausus, Sardinella longiceps Thunnus albacares, Auxis rochei, Oreochromis niloticus, Oreochromis urolepis, and Oreochromis mossambicus. Etroplus is the state fish of Kerala [4]. The largest of the native cichlids is the *Etroplus suratensis*, often known as the Banded Pearl spot. It is a euryhaline fish that is typically found in riverine estuaries, coastal lagoons, and both natural and artificial freshwater environments in peninsular India, mostly in Kerala and Sri Lanka. [4] [5]. Orange chromide, or *E. maculatus*, is found in Kerala's backwaters. Kerala's main fish, sardine, is much sought-after for the state's seafood food security and is said to be an inexpensive treat that Keralites can add to their diets to increase their protein intake [6]. One of the most significant and economically significant fisheries on India's west coast is the oil sardine, or Sardinella longiceps [7]. Nematalosa nausus is found in fresh, brackish, and marine along Mumbai, Karnataka, and Kerala coasts [8]. Auxis rochei, known as Bullet tuna, is found exclusively in tropical oceans, including the Mediterranean Sea, and can grow up to 50cm [9]. Thunnus albacares known as yellowfin tuna is a near-threatened, highly migratory species, seen except in the Mediterranean [10]. Oreochromis species (Oreochromis mossambicus (Tilapia), Oreochromis niloticus (Nile tilapia, cultured since 2012) Oreochromis urolepis (Wami tilapia) are used in aquaculture wherein utilizes their high adaptability, fecundity and ability to attain enormous size in a short time to culture and feed the rising population [11].

Numerous techniques exist for identifying species. Since fish are thought to be more phenotypically variable than most other vertebrates and have comparatively larger within-population coefficients of

variation of phenotypic traits, identification by morphometric measurement is frequently inconsistent [12]. In this work, an attempt was made to identify these fish species using molecular taxonomy since it seems to be the most effective tool for species identification and has advantages over other taxonomy methods [9]. The portion of the mitochondrial COI gene that is utilized as a "species barcode" is excellent and has a high degree of species identification efficiency [13]. Thus, this tool is employed for quick commercial analysis, particularly species confirmation [14]. Following the molecular taxonomy-based identification of species, the evolutionary relationship between organisms can be evaluated by the construction of a phylogenetic tree [14]. The importance of understanding the phylogenetic relationship existing within and between species in a population cannot be overemphasized as it has become a handy method used in tracing the origin and evolution of species from the sequences obtained from organisms [15].

Materials and Methods

Fish Collection and Identification

9 fish were collected from fish markets in and around Kozhikode district. A preliminary analysis of species of *Etroplus, Sardinella, Nematalosa, Thunnus, Auxis,* and *Oreochromis* was done with the help of fishermen and based on their taxonomic features such as length, width, the structure of the body, the color of the body, fin structure, etc, their morphological appearances were deeply studied.

Molecular Analysis

DNA Isolation, Amplification, Electrophoresis, And Gel Elution

Total genomic DNA was extracted using a genomic DNA extraction kit following the manufacturer's protocol using 25 mg abdominal muscle tissue from samples

The section of the mitochondrial DNA genome from the COI gene was amplified using the following primers;

Forward primer, F1:5 'TCAACCAACCACAAGACATTGGCAC 3'

Reverse primer, R1:5 TAGACTTCTGGGTGGCCAAAGAATCA 3' The DNA samples were subjected to the PCR reaction.

The PCR product was confirmed by Agarose gel electrophoresis using a 1.5% gel prepared in 1X TAE buffer and visualization of the bands was observed under a UV trans-illuminator. The size of the product can be estimated with the help of a 1kb base pair DNA ladder. Gel elution is performed and stored the purified DNA at -20°C.

Amplification

Using the forward primer 5'3' and the reverse primer 5'3', the COI gene-containing region of the mitochondrial DNA genome was amplified. In a PCR tube, 25µL of Emerald Amp GT Master mix (Takara), 2µL of COI forward and reverse primer, 20µL sterile water, and 1µL DNA sample (50ng/ml) were combined to create a 50µl reaction mixture under cold conditions. The PCR reaction was applied to the DNA samples. There was a five-minute initial denaturation at 95°C, and then 35 cycles of denaturation at 95°C for ten seconds each. The cycle was finished with primer annealing at 54°C for 45 seconds, primer extension at 72°C for 45 seconds, and final elongation at 72°C for three minutes. The temperature was maintained at 4°C.

Sequencing of the Gene, Analysis, and Construction of Phylogenetic Tree

Sequences of the sample were done at using COI gene-specific forward and reverse primers of fish. The ends of COI gene sequences were trimmed and multiple sequence alignment is done using MEGA 10 (Molecular Evolutionary Genetic Analysis) software. The sequence was analyzed using the BLAST Bioinformatics tool for comparing species. The sequences are applied to Mega 10 (Molecular Evolutionary Genetic Analysis) software by trimming the ends for the construction of a phylogenetic tree by the neighbour-joining method.

Results and Discussion

The present study was undertaken with 9 different species of 6 genera of fishes (Fig 1)

Fig 1- Morphological appearances of 9 different species of fishes

Table 1- Scientific nomenclature of the above-mentioned 9 different

 species of fishes

1.	Etroplus suratensis	2.	Etroplus maculatus	3.	Nematalosa nausus
4.	Sardinella longiceps	5.	Thunnus albacares	6.	Auxis rochei
7.	Oreochromis niloticus	8.	Oreochromis urolepis	9.	Oreochromis mossambicus

Molecular Analysis

To verify the species identity, the sequences from the current investigation were matched using BLAST to sequences published in publicly accessible databases like GenBank. Table 2 lists the GenBank Accession numbers for the COI sequences of the investigated species.

Table 2: Accession numbers for the CO1 sequences of samples

	Denoted by	GenBank Accession number
Etroplus suratensis	D3	MG923359
Etroplus maculatus	D4	AP009505
Sardinella longiceps	D1	MG251979
Thunnus albacares	T4	KT719291
Auxis rochei	T5	MH638691
Oreochromis niloticus	T1	LC487084
Oreochromis urolepis	T2	MF509598
Oreochromis mossambicus	Т3	MK210574

The pairwise BLAST alignment of D3 *Etroplus suratensis* COI sequences and with D4 *Etroplus maculatus* sequence shows 83 mismatches

which include 53 transitions and 30 transversions present. The pairwise BLAST alignment of D1 Sardinella longiceps CO I sequences and with D2 *Nematalosa nausus* sequence shows dissimilarities and there are 99 mismatches. There are 59 transitions and 40 transversions found among those mismatches. The pairwise BLAST alignment of Thunnus albacores and Auxis rochei COI sequences shows 54 mismatches and include 35 Transition mismatches and 18 transversion mismatches. Sequences between T1 Oreochromis niloticus COI sequences with T2 Oreochromis urolepis COI sequence gave 33 mismatches including 29 transitions and 4 transversions. Sequences between T1 Oreochromis niloticus COI sequences with T3 Oreochromis mossambicus COI sequence gave 31 mismatches and within them, there were 25 Transitions and 6 transversions. The sequence between T2 *Oreochromis urolepis* COI sequences with T3 *Oreochromis mossambicus* COI sequence had 25 mismatches and out of them 21 were transition and 4 were transversion. So this pairwise alignment shows the molecular discrimination of different species based on the COI gene.

Sequence Analysis

The amplified DNA was eluted using Gene JET elution kit and checked using Agarose gel electrophoresis. The eluted DNA along with its specific primers was send to SciGenome, Kakkanad for sequencing. The sequenced sample was then edited using MEGA 10 (Molecular Evolutionary Genetic Analysis) software. The aligned sequence was submitted to BLAST in order to authenticate the similar sequences in the database.

Fig.2- The chromatogram of CO1 forward sequence of T1 Oreochromis niloticus

>T1_Forward_23024-1_P3205, Trimmed Sequence (643 bp)

Fig.3 - Consensus sequence of CO1 forward sequence of T1 Oreochromis niloticus

LC487084.1:27-669 Ore	ochromis n	iloticus Onil5 mitochondrial COI gene for cytochrome c oxidase subunit 1, partial cds
Sequence ID: Query_12689	Length: 643	Number of Matches: 1

Some 1188 bhs(643) Eugent 0.0 Eugent 643/643(100%) Gass 0/643(0%) Strand Plus/Plus 1188 bhs(643) 0.0 643/643(100%) 0/643(0%) Plus/Plus 1188 bhs(643) 0.0 643/643(100%) 0/643(0%) Plus/Plus 0.0 1188 bhs(643) 0.0 643/643(100%) 0/643(0%) Plus/Plus 0.0 1188 bhs(643) 0.0 643/643(100%) 0/643(0%) Plus/Plus 0.0 1 GCCCCGTATAGTAGGAACTGCATTAGCTACCAATCTCSGAGCAACTAGACTAAGCCAAGCC	nge 1: 1 t	t to 643 Graphics	Match & Previous Match
guery 1 GAGECGGATAGTAGGAACTGCACTAAGCCCCCCTAATTCGGACAACTAAGCCAGCC	ore 88 bits(64	Expect Identities Gaps Strand 643) 0.0 643/643(100%) 0/643(0%) Plus/Plu	us
Sbjet 1 TGAGCCGGATAGTAGGAACTGCACTAAGCCTCATATCGGCAGAACTAAGCCAGCC	ery 1	TGAGCCGGATAGTAGGAACTGCACTAAGCCTCCTAATTC5GGCAGAACTAAGCCAGCCCG	60
guery 61 GCTECTITETEGBAGACGACAGACCATATETATAGTATGTACKGACATGCTTTCTATA 128 bbjet 61 GCTECTITETEGBAGACGACAGATETATAGTAGTGATAGTACGACATGCTTTTCATA 128 bbjet 121 TAATTTICTITATAGTAATACCAATATGATTGGAGCTTTGGAAACTGACTAGTACCCC 188 bbjet 121 TAATTTICTITATAGTAATACCAATATGATTGGAGCTTTGGAAACTGACTAGTACCCC 188 sbjet 121 TAATTTICTITATAGTAATACCAATATGATTGGAGCTTTGGAAACTGACTAGTACCCC 188 guery 121 TCATGATTGGTGCACCAGACATGGCCTTCCCCTGGAATAAATA	jct 1	TGAGCCGGATAGTAGGAACTGCACTAAGCCTCCTAATTCSGGCAGAACTAAGCCAGCCCG	60
Sbjet 61 GCTCTTCTCCCGAGGACCAGCAGACTAGATTAGATTGAATIGTAACAGCACATACTAGCTTTCGAAA 128 Query 121 TAATTTTCTTTATAGTAATACCAATTAGGATGGAGGCTTTGGAAACTGACTAGCTAG	ery 61	GCTCTCTTCTCGGAGACGACCAAATCTATAATGTAATTGTTACAGCACATGCTTTCGTAA	120
guery 121 AATTTICTITATAGTAATACCAATTATGATTGGAGGCTTTGGAAACTGACTAGTAGCCCC 180 Sbjet 121 TAATTTICTITATAGTAATACCAATTATGATTGGAGGCTTTGGAAACTGACTAGTACCCCC 180 Sbjet 121 TAATTTICTITATAGTAATACCAATTATGATTGGAGGCTTGGAAACTGACTG	jct 61	GCTCTCTTCTCGGAGACGACCAAATCTATAATGTAATTGTTACAGCACATGCTTTCGTAA	120
Sbjet 121 TÄÄTTTTCTTTÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ	ery 121	1 TAATTTTCTTTATAGTAATACCAATTATGATTGGAGGCTTTGGAAACTGACTAGTACCCC	180
Query 181 CATGATTGGTGCACCAGACATGGCCTTCCCTGGAATAAATA	jct 121	1 TAATTTTCTTTATAGTAATACCAATTATGATTGGAGGCTTTGGAAACTGACTAGTACCCC	180
Sbjet 181 fcArGATTGGTGCACCAGACATGGCCTTCCCCCCAATAAATAACAACAGACGCTTTGACTTC 240 Query 241 TcccccccTCATTTCTTCTTCTTCTCGCCCCAATACTGGAGTCGAAGCAGGTGCCGGCAACAG 300 Sbjet 241 TcccccccCTCATTTCTTCTTCTCCTCGCCCCAATACTGGAGTCGAAGCAGGTGCCGGCAACAG 300 Sbjet 241 TcccccccCTCATTTCTTCTTCTCCCCGCCCCAATACTGGAGTCGAAGCAGGTGCCGGCCAACG 300 Sbjet 241 TccccccCCTCATTTCTTCTTCTCCCCGCCCGCGCGCCGCCGCGCGGCCGCC	ery 181	1 TCATGATTGGTGCACCAGACATGGCCTTCCCTCGAATAAATA	240
Query 241 TCCCCCCCTCATTICTTCTTCTCCCCCCCTCATCTGGAGCCAGGTCGAAGCAGGTGCGGACAGA 300 Sbjct 241 TCCCCCCCTCATTICTTCTTCTCCCCGCCTCATCTGGAGCAGGTGGAAGCAGGTGCGGACAGAG 300 Sbjct 301 GATGGACTGTTTATCCCCCGCTGGCAGGCAATCTTGGCCACGCTGGACGTCGGCAAGAG 300 Sbjct 301 GATGGACTGTTTATCCCCCGCTGGCAGGCAATCTTGCCCACGCTGGACCTTCTGTTGACCT 360 Sbjct 301 GATGGACTGTTTATCCCCCGCTGGAGGCAATCTGCCCACGCTGGACCTTCTGTTGACCT 360 Sbjct 301 GATGGACTGTTTATCCCCCGCTGGAGGCAATCTGCCCACGCTGGCCATTGTGTGACTT 360 Sbjct 10 AACCATCTTCTCCCCCCACTTGGCCGAGGCAATCTATTTTAGGTGCAATTAATT	jct 181	1 TCATGATTGGTGCACCAGACATGGCCTTCCCTCGAATAAATA	240
Sbjet 241 fccccccctcattfctfctfctfctcccccccccccccc	ery 241	1 TCCCCCCCTCATTTCTTCTTCTTCTCCGCCTCATCTGGAGCCGAAGCAGGTGCCGGCACAG	300
guery 381 GATGGACTGTTTATCCCCCCGCTCGCAGGCAATCTTGCCCCCGCTGGACCTTCTGTTGACT 368 sbjct 381 GATGGACTGTTTATCCCCCCGCTCGCAGGCAATCTTGCCCCCCCGCGGACCTTCTGTTGACT 368 guery 361 TAACCATCTTCTCCCCCCACTTGGCCGAGGCAATCTATCT	jct 241	1 TCCCCCCCTCATTTCTTCTTCTCCGCCTCATCTGGAGTCGAAGCAGGTGCCGGCACAG	300
sbjct 301 GATGGACTGTTTATCCCCCGCGTCGGAGGCAATCTTGCCCACGCTGGACCTTCTGTTGACT 360 Query 361 TAACCATCTTCTCCCCCCACTTGGCCGGAGTGTCATCTATTTTAGGTGCAATTATTTTA 420 sbjct 361 TAACCATCTTCTCCCCCCACTTGGCCGGAGTGTCATCTATTTTAGGTGCAATTATTTTA 420 sbjct 361 TAACCATCTTCTCCCCCCACTTGGCCGGAGTGTCATCTATTTTAGGTGCAATTATTTTA 420 guery 421 TCACAACCACTTATTAACATGAAACCCCCCTGTCCCCAATTACAAACACCCCTATTTG 480 sbjct 421 TCACAACCACTTATTAACATGAAAACCCCCCTGTCCCCAATTACCAAACACCCCTATTTG 480 yuery 481 TGTGATCCGTCCTAATTACCGCGCGAGTACTACTCCTTCTTCTCCCGCGCCGTCTTGCCGCCG 540 sbjct 481 TGTGATCCGTCCTAATTACCGGAGTACTACTACTCCTTCTATCCCTGCCCGCGTCTTGCCCGCCG 540	ery 301	1 GATGGACTGTTTATCCCCCGCTCGCAGGCAATCTTGCCCACGCTGGACCTTCTGTTGACT	360
Query 361 TAACCATCTTCTCCCCCCCACTTGSCCGGAGTGTCATCTATTTTAGGTGCAATTAATTTTA 420 sbjct 361 TAACCATCTTCTCCCCCCCACTTGSCCGGAGTGTCATCTATTTTAGGTGCAATTAATTTTA 420 guery 421 TCACAACCATTATTAACATGAAACCCCCTGTCTCCCAATTCAACCAAC	jct 301	1 GATGGACTGTTTATCCCCCGCTCGCAGGCAATCTTGCCCACGCTGGACCTTCTGTTGACT	360
sbjct 361 TAACCATCTTCTCCCCCCACTTGGCCGGAGTGTCATCTATCT	ery 361	1 TAACCATCTTCTCCCCCCCACTTGGCCGGAGTGTCATCTATTTAGGTGCAATTAATT	420
Query 421 TCACAACCATTATTAACATGAAACCCCCTGCCATTCCCAATATCAAACACCCCTATTTG 480 Sbjct 421 TCACAACCATTATTAACATGAAACCCCCCTGCCATTCCCCAATATCAAACACCCCTATTTG 480 yuery 481 TGTGATCGGTCCTAATTACCGCGAGTACTACTCCTTCTTCCCGGTCCTGCCGCCG 540 ybjct 481 TGTGATCCGTCCTAATTACCGCGCGAGTACTACTCCCTTCTTCTCCCGGTCCTGCCGCCG 540 ybjct 481 TGTGATCCGTCCTAATTACCGCGCGAGTACTACTCCTTCTTCTGCCGCGCCG 540	jct 361	1 TAACCATCTTCTCCCTCCACTTGGCCGGAGTGTCATCTATTTTAGGTGCAATTAATT	420
Sbjet 421 TCACAACCATTATTAACATGAAACCCCCTGCCATTCCCCAATCAAACACCCCTATTTG 480 Query 481 TGTGATCCGTCCTAATTACCGCAGTACTACTCCTTCTTTCCCTGCCCGTCTTGCCGCCG 540 Sbjet 481 TGTGATCCGTCCTAATTACCGCAGTACTACTCCTTCTTTCCCTGCCCGTCCTTGCCGCCG 540	ery 421	1 TCACAACCATTATTAACATGAAACCCCCTGCCATCTCCCAATATCAAACACCCCCTATTTG	480
Query 481 TGFGATCCGTCCTAATTACCGCAGTACTACTCCTTCTATCCCTGCCCGTTCTTGCCGCG 540 bbjct 481 TGFGATCCGTCCTAATTACCGCAGTACTACTCCTTCTATCCCTGCCCGTTCTTGCCGCCG 540	jct 421	1 TCACAACCATTATTAACATGAAACCCCCTGCCATCTCCCAATATCAAACACCCCCTATTTG	480
Sbjct 481 TGTGATCCGTCCTAATTACCGCAGTACTACTCCTTCTATCCCTGCCCGTTCTTGCCGCCG 540	ery 481	1 TGTGATCCGTCCTAATTACCGCAGTACTACTCCTTCTATCCCTGCCCGCTTCTTGCCGCCG	540
BUARU EAS CENTENEARTHETTETANENCOLECANNEETTANAECTETTETTENEEEEEEAE COO	jct 481	1 TGTGATCCGTCCTAATTACCGCAGTACTACTCCTTCTATCCCTGCCCGTTCTTGCCGCCG	540
QUELA 241 GENTEREN DELEGRANCE MARCHARCELE CONTRACE CONTRACES CONTRACES CONTRACES CONTRACES CONTRACES CONTRACES	ery 541	1 GCATCACAATACTTCTAACAGACCGAAACCTAAACACAACCTTCTTTGACCCTGCCGGAG	600
SDJCT 541 GCATCACAATACTTCTAACAGACCGAAACCTAAACACAACCTTCTTTGACCCTGCCGGAG 600	jct 541	1 GCATCACAATACTTCTAACAGACCGAAACCTAAACACAACCTTCTTTGACCCTGCCGGAG	600
QUERY 601 GAGGAGACCCCATCCTATACCAACACTTATTCTGATTCTTCGG 643	ery 601	1 GAGGAGACCCCATCCTATACCAACACTTATTCTGATTCTTCGG 643	

Fig.4- BLAST alignment of Oreochromis niloticus with database sequences LC487084

GTGCTTG /GCCGG /TAGTAGGA/CC GC/CTA/AGCCTCCTA/IT/CGGGC/GA/CTA/AGCC/GCCCGGCTCTCTCCGG/GA/CG/CC/GA/TTATA/IGTA/IT/GTA/AGC/A/AGCC/GC/CTCCGG/GA/CG/CC/GA/TTATA/IGTA/IT/GTA/AGC/A/AGCC/GA/AGCC/GA/AGC/GAGC/GA/AGC/GA/AGC/GA/AGC/GA/AGC/GA/AGC/GA/ иттептитиятиятиятиятиятиванаетитериистовие и посиетиление и терескосивие и посиетование и посиетие и посиетование и пос n alter the manuscript and walk and be manustral to be made the description and a new terms of the second second IGGGCCTTCTGTTG./CTT/ line desentand introducer the enternation of the constitution of the СТА АСАБИТ СВСА ИССТАА АСАСА АССТ ТСТТТБАСССТВСОВ АВ В В АССССАТССТТТ ИССА АСАСТ Т ИТТСБИТТС 560 570 180 590 600 610 620 650 640 and and an and a second a s

Fig.5- The chromatogram of COI forward sequence of T2 Oreochromis urolepis

>T2_Forward_23024-4_P3205, Trimmed Sequence (645 bp)

GCTTGAGCCGGATAGTAGGAACCGCACTAAGCCTCCTAATTCGGGCAGAACTAAGCCAGC CCGGCTCTCTCCTCGGAGACGACCAGATTTATAATGTAATTGTTACAGCACATGCTTTCG TAATAATTTTCTTTATAGTAATACCAATTATAATTGGAGGTTTTGGAAACTGACTAGTAC CACTTATGATTGGTGCACCAGACATGGCCTTCCCTCGAATGAACAACATGAGTTTTTGAC TCCTTCCCCCCTCATTTCTCCTCCTCCTCGCCTCATCCGGAGTCGAAGCAGGGGCCGGTA CAGGATGAACTGTTTACCCCCCACTCGCAGGCAATCTCGCCCACGCTGGGCCTTCTGTTG TTATCACAACCATTATTAACATAAAACCCCCTGCCATCTCTCAATATCAAACACCCCCTAT TTGTGTGATCCGTTCTAATTACCGCAGTGCTGCTCCTACTATCCCTGCCCGTTCTTGCCG CCGGCATCACAATACTTCTAACAGATCGCAACCTAAACACAACCTTCTTTGACCCTGCCG GAGGAGGAGACCCCATCCTTTACCAACACTTATTCTGATTCTTCG

MF509598.1:14-659 Oreochromis urolepis voucher JeliRed04 cytochrome oxidase subuni: 1 gene, partial cds; mitochondrial

Fig.8-The chromatogram of COI forward sequence of T3 Oreochromis mossambicus

>T3_Forward_23024-6_P3205, Trimmed Sequence (646 bp)

Fig.9- Consensus sequence of COI sequence from T3 Oreochromis mossambicus

ISSN 0975-3303

MK210574.1:5-647 Oreochromis mossambicus voucher ANU OM1 cytochrome c oxidase subunit I (CO1) gene, partial cds; mitochondrial Sequence ID: Query_3905 Length: 643 Number of Matches: 1

Range	1:1t	o 643 Gra	aphics			* Next	Match & Previous Match
Score 1188 b	its(64	3)	Expect 0.0	Identities 643/643(100%)	Gaps 0/643(0%)	Strand Plus/Pl	us
Query	1	GCTTGAG	CCGGATAGT	AGGAACTGCATTAAGCCT	CCTAATTCGGGCAGAACT	AAGCCAGC	60
Sbjct	1	GCTTGAG	CCGGATAGT	AGGAACTGCATTAAGCCT	CCTAATTCGGGCAGAACT	AAGCCAGC	60
Query	61	CCGGCTC	TCTCCTCGG	AGACGACCAGATTTATAA	TGTAATTGTTACAGCACA	TGCTTTCG	120
Sbjct	61	CCGGCTC	TCTCCTCGG	AGACGACCAGATTTATAA	TGTAATTGTTACAGCACA	TGCTTTCG	120
Query	121	TAATAAT	TTICTITAT	AGTAATGCCAATTATAAT	TGGAGGTTTTGGAAACTG	ACTAGTGC	180
Sbjct	121	TAATAAT	TTTCTTTAT	AGTAATGCCAATTATAAT	TGGAGGTTTTGGAAACTG	ACTAGTOC	180
Query	181	CACTAAT	GATTGGTGG	ACCAGACATGGCCTTCCC	TCGAATAAATAACATGAG	TTTTTGAC	240
Sbjct	181	CACTAAT	GATTGGTGC	ACCAGACATGGCCTTCCC	TCGAATAAATAACATGAG	TTTTTGAC	240
Query	241	TCCTccc	CCCCTCATT	TETECTTETECTEGECTE	ATCCGGGGTCGAAGCAGG	GGCCGGTA	300
Sbjct	241	TCCTCCC	CCCCTCATT	TETECTTETECTEGEETE	ATCCGGGGTCGAAGCAGG	GGCCGGTA	300
Query	301	CAGGATO	GACTGTTTA	TCCCCCACTCGCAGGCAA	TCTCGCCCATGCTGGGCC	TTCCGTTG	360
Sbjct	301	CAGGATO	GACTGTTTA	TCCCCCACTCGCAGGCAA	TCTCGCCCATGCTGGGCC	TTCCGTTG	360
Query	361	ACTTAAC	CATCTTCTC	CCTCCACTTGGCCGGGGT	STCATCTATTTTAGGTGC	AATTAATT	420
Sbjct	361	ACTTAAC	CATCTTCTC	CCTCCACTTGGCCGGGGT	STCATCTATTTTAGGTGC	AATTAATT	420
Query	421	TTATTAC	AACCATTAT	TAACATAAAACCCCCTGC	CATCTCCCAATATCAAAC	ACCCCTCT	480
Sbjct	421	TTATTAC	AACCATTAT	TAACATAAAAACCCCCTGC	CATCTCCCAATATCAAAC	ACCCCTCT	480
Query	481	TIGTATO	ATCCGTTCT	AATTACCGCAGTACTACT	CCTACTATCCCTACCCGT	TCTTGCCG	540
Sbjct	481	TTGTATO	ATCCGTTCT	AATTACCGCAGTACTACT	CCTACTATCCCTACCCGT	TCTTGCCG	540
Query	541	CCGGCAT	CACAATACT	TCTAACAGACCGAAACCT	ΑΑΑΕΑΕΑΑΕΕΤΤΟΤΤΤΓΑΑ	CCCTGCCG	600
Sbjct	541	CCGGCAT	CACAATACT	TCTAACAGACCGAAACCT	AAACACAACCTTCTTTGA	CCCTGCCG	600
Query	601	GAGGAGG	AGACCCCAT	CCTTTACCAACACTTATT	CTGATTCTT 643		
Sbjct	601	GAGGAGG	AGACCCCAT	CCTTTACCAACACTTATT	CTGATTCTT 643		

Fig.10- BLAST alignment of T3 Oreochromis mossambicus sequence MK210574

2_T6Forward_23024-4_P3205,Trimmed Sequence(645 bp)

Score 987 bit	s(534	Expect) 0.0	Identities 606/642(94%)	Gaps 0/642(0%)	Strand Plus/Plu	IS
Query	1	TGAGCCGGATAGTAG	GAAGTGCACTAAGCCTCC	TAATTCGGGCAGAACTAA	SCCAGCCCG	60
Sbjct	4	TGAGCCGGATAGTAG	GAAdcGCACTAAGCCTCC	TAATTCGGGCAGAACTAA	SCCAGCCCG	63
Query	61	GCTCTCTTCGGAG	ACGACCARATCTATAATG	TAATTGTTACAGCACATG	CTTTCGTAA	120
Sbjct	64	GCTCTCTCCCGGAG	ACGACCAGATTTATAATG	TAATTGTTACAGCACATG	TTTCGTAA	123
Query	121	TAATTTTCTTTATAG	TAATACCAATTATGATTG	SAGGETTTGGAAACTGAC	AGTACCEC	180
Sbjct	124	TAATTTTCTTTATAG	TAATACCAATTATAATTG	GAGGETTTTGGAAACTGAC	TAGTACCAC	183
Query	181	TCATGATTGGTGCAC	CAGACATGGCCTTCCCTC	GAATAAATAACATGAGCT	TTGACTTC	240
Sbjct	184	TEATGATTGGTGCAC	CAGACATGGCCTTCCCTC	GAATGAACAACATGAGTT	TTTGACTCC	243
Query	241	TECCCCCCTCATTIC	TTETTETTETCGCCTCAT	TGGAGTCGAAGCAGGTG	CGGEACAG	300
Sbjct	244	TECCCCCCTCATTIC	TEETEETEETEGEETEAT	GGGAGTCGAAGCAGGGG	CGGTACAG	303
Query	301	GATGGACTGTTTATC	CCCCGCTCGCAGGCAATC	TIGCCCACGCTGGACCTTO	TGTTGACT	360
Sbjct	304	GATGAACTGTTTAC	CCCCACTCGCAGGCAATC	TO GCCCACGCTGGCCTTO	TGTTGACT	363
Query	361	TAACCATCTTETCCC	TCCACTTGGCCGGAGTGT	CATOTATTTTAGGTGCAA	TTAATTTTA	420
Sbjct	364	TAACCATCTTUTCCC	TCCACTTGGCCGGGGTGT	CATOCATTTTAGGTGCAA	TAATTTTA	423
Query	421	TCACAACCATTATTA	ACATGAAACCCCCTGCCA	TCTOCCAATATCAAACACO	CCTATTTG	480
sbjct	424	TCACAACCATTATTA	ACATAAAACCCCCTGCCA	TCTOTCAATATCAAACACO	CCTATTTG	483
Query	481	TGTGATCCGTCCTAA	TTACCGCAGTACTACTCC	TECTATCCCTGCCCGTTC	TTGCCGCCG	540
Sbjct	484	TGTGATCCGTTCTAA	TTACCGCAGTGETGETCC	TACTATCCCTGCCCGTTC	TGCCGCCG	543
Query	541	GCATCACAATACTTC	TAACAGAECGAAACCTAA	ACACAACCTTCTTTGACCO	TGCCGGAG	600
sbjct	544	GCATCACAATACTTC	TAACAGATCGCAACCTAA	ACACAACCTTCTTTGACCO	TGCCGGAG	603
Query	601	GAGGAGACCCCATCC	TATACCAACACTTATTCT	SATTCTTCG 642		
Sbjct	684	GAGGAGACCCCATCC	TTTACCAACACTTATTCT	GATTCTTCG 645		

Fig.11- The pairwise BLAST alignment of Oreochromis niloticus COI sequences with Oreochromis urolepis

3_T6Forward_23024-6_P3205,Trimmed Sequence(646 bp) Sequence ID: Query_40385 Length: 646 Number of Matches: 1

Score 1011 b	its(54	Exp 7) 0.0	ect	Identities 611/643(95%)	Gaps 0/64	5 3(0%) P	itrand lus/Plu	JS
Query	1	TGAGCCGGATAG	TAGGA	ACTGCACTAAGCCT	CCTAATTCGGGC	AGAACTAAGCCAG	CCCG	60
Sbjct	4	TGAGCCGGATAG	TAGGA	ACTGCATTAAGCCT	CCTAATTCGGGC	AGAACTAAGCCAG	CCCG	63
Query	61	GCTCTCTTTCTG	GAGAC	GACCARATCTATAA	TGTAATTGTTAC	AGCACATGCTTTC	GTAA	126
Sbjct	64	GCTCTCTCTCTCG	GAGAC	GACCAGATTTATAA	TGTAATTGTTAC	AGCACATGCTTTC	GTAA	123
Query	121	TAATTTTCTTTA	TAGTA	ATACCAATTATGAT	TGGAGGCTTTGG	AAACTGACTAGT	cocc	186
Sbjct	124	TAATTTTCTTTA	TAGTA	ATGCCAATTATAAT	TGGAGGTTTTGG	AAACTGACTAGT	cdar	183
Query	181	TCATGATTGGTG	CACCA	GACATGGCCTTCCC	TCGAATAAATAA	CATGAGCTTTTGA	CITE	246
Sbjct	184	TAATGATTGGTG	CACCA	GACATGGCCTTCCC	TCGAATAAATAA	CATGAGTTTTTGA	ctcc	243
Query	241	TCCCCCCCTCAT	TTCTT	CTTCTFCTCGCCTC	ATOTGOAGTCGA	AGCAGGTSCCGG	ACAG	300
5bjct	244	TCCCCCCCTCAT	TTCTC	ETTERETESEETE	ATCCGGGGTCGA	AGCAGGGGGCCGG	ACAG	303
Query	301	GATGGACTGTTT	ATCCC	COGCTCGCAGGCAA	TCTTGCCCACGC	TGGACCTTCTGTT	GACT	36
Sbjct	304	GATGGACTGTTT	ATCCC	COACTCGCAGGCAA	TCTOGCCCATEC	TGGGCCTTCCGGTT	GACT	36
Query	361	TAACCATCTTCT		CACTTGGCCGGAGT	GTCATCTATTTT	AGGTGCAATTAAT	TTTA	426
Sbjct	364	TAACCATCTTCT	ccctc	CACTTGGCCGGGGT	GTCATCTATTT	AGGTGCAATTAAT	TTTA	423
Query	421	TCACAACCATTA	TTAAC	ATGAAACCCCCTGC	CATCTCCCAATA	TCAAACACCCCTA	TTTG	486
sbjct	424	TACAACCATTA	TTAAC	ATAAAACCCCCTGC	CATCTCCCAATA	TCAAACACCCCTC	TTTG	483
Query	481	TGTGATCCGTCC	TAATT	ACCGCAGTACTACT	CETTETATCCET	GECCGTTETTGEC	GCCG	546
Sbjct	484	TATGATCCGTTC	TAATT	ACCGCAGTACTACT	CCTACTATCCCT	ACCOTTCTTGCC	GCCG	543
Query	541	GCATCACAATAC	TTCTA	ACAGACCGAAACCT	AAACACAACCTT	CTTTGACCCTGCC	GGAG	60
5bjct	544	GCATCACAATAC	TTCTA	ACAGACCGAAACCT	AAACACAACCTT	CTTTGACCCTGCC	GGAG	603
Query	601	GAGGAGACCCCA	TCCTA	TACCAACACTTATT	CTGATTCTTCGG	643		
Sbjct	604	GAGGAGACCCCA	TCCTT	TACCAACACTTATT	CTGATTCTTCGG	646		

Fig.12- The pairwise BLAST alignment of Oreochromis niloticus COI sequences with Oreochromis mossambicus

Range 1: 1 to 645 Graphics								
Score 1053 b	its(57	(0) Expect	Identities 620/645(96%)	Gaps 0/645(0%)	Strand Plus/Plu	IS		
Query	1	GCTTGAGCCGGATAGT	AGGAACGCACTAAGCCT	CTAATTCGGGCAGAACT	AAGCCAGC	60		
Sbjct	1	GCTTGAGCCGGATAGT	AGGAACTGCATTAAGCCT	CTAATTCGGGCAGAACT	AAGCCAGC	60		
Query	61	CCGGCTCTCTCCTCGG	AGACGACCAGATTTATAA	IGTAATTGTTACAGCACA	TGCTTTCG	120		
sbjct	61	cceectctctctcctcee	AGACGACCAGATTTATAA	IGTAATTGTTACAGCACA	TGCTTTCG	120		
Query	121	TAATAATTTTCTTTAT	AGTAATACCAATTATAAT	GGAGGTTTTGGAAACTG	ACTAGTAC	180		
Sbjct	121	taataattttctttat	AGTAATGECAATTATAAT	IGGAGGTTTTGGAAACTG	ACTAGTE	180		
Query	181	CACTTATGATTGGTGC	ACCAGACATGGCCTTCCC	CGAATGAACAACATGAG	TTTTTGAC	240		
sbjct	181	CACTAATGATTGGTGC	ACCAGACATGGCCTTCCC	CGAATAAATAACATGAG	TTTTTGAC	240		
Query	241	TCCTTCCCCCCTCATT	τετεετετεστεσε	ATCCGGAGTCGAAGCAGG	GGCCGGTA	300		
Sbjct	241	TCCTCCCCCCCCCATT	יביבכין דביבביבפבביבי	ATCCGGGGTCGAAGCAGG	GGCCGGTA	300		
Query	301	CAGGATGACTGTTTA	CCCCCACTCGCAGGCAA	TCTCGCCCACGCTGGGCC	TTCTGTTG	360		
sbjct	301	chochtdohctottt	teccccheteschescha	teteseccientesecce	TTCESTTG	360		
Query	361	ACTTAACCATCTTTTC	CCTCCACTTGGCCGGGGT	STCATCCATTTTAGGTGC	AATTAATT	420		
Sbjct	361	ACTTAACCATCTICIC	cctccActtggccggggt	STCATCHATTITAGGTGC	AATTAATT	420		
Query	421	TTATCACAACCATTAT	TAACATAAAACCCCCTGC		ACCCCTAT	480		
sbjct	421	TTATTACAACCATTAT	TAACATAAAACCCCCTGC	CATCTC CAATATCAAAC	ACCCCTCT	480		
Query	481	TTGTGTGATCCGTTCT	AATTACCGCAGTGCTGCT	CTACTATCCCTGCCCGT	TCTTGCCG	540		
Sbjct	481	TTGTATGATCCGTTCT	AATTACCGCAGTACTACT	CTACTATCCCTACCGT	TCTTGCCG	540		
Query	541	CCGGCATCACAATACT	TCTAACAGATCGCAACCT	AAACACAACCTTCTTTGA	CCCTGCCG	600		
Sbjct	541	CCGGCATCACAATACT	TCTAACAGAGCGAAACCT	AACACAACCTTCTTTGA	CCCTGCCG	600		
Query	601	GAGGAGGAGACCCCAT		TGATTCTTCG 645				
Sbjct	601	GAGGAGGAGACCCCAT	CCTTTACCAACACTTATT	TGATTCTTCG 645				

Fig.13- The pairwise BLAST alignment of Oreochromis urolepis COI sequences with Oreochromis mossambicus

Construction of Phylogenetic Tree

The samples in this study were divided into four main groups according to population using the phylogenetic tree created from the sequence data (cytochrome COI) of samples from the two populations.

The phylogenetic tree constructed is un-rooted. From a distant common ancestor, four branches formed represent two descendant groups; *Oreochromis* species (Clade 1) *Etroplus* species (clade 2) *Sardinella, Nematalosa* species (Clade 3), and *Auxis, Thannus* species (Clade 4). Clade 1 is further branched suggesting that *Oreochromis niloticus* has diverged from the sister taxa *Oreochromis urolepis* and *Oreochromis mossambicus*. Similar species were clustered under the same nodes in the phylogenetic tree, whereas dissimilar species were clustered under distinct nodes, revealing an identical evolutionary link among the species.

Conclusion

The current study analyzed the molecular and phylogenetic relationship between 9 different species of fishes which can be classified into *Etroplus, Sardinella, Nematalosa, Thunnus, Auxis,* and *Oreochromis.* Our result revealed that these 9 species can be differentiated by their external appearance which can be verified using mitochondrial COI sequence analysis and the relationship can be suggested by the construction of a phylogenetic tree. From the results obtained, the

mitochondrial COI gene can be named as an ideal region for "species barcode" and it has high efficiency in species identification [13]. So, this tool is used for rapid analysis for commercial purposes especially confirmation for the particular species

The knowledge of the biochemical composition of any edible organism is extremely important since the nutritive value is reflected in its biochemical contents [16]. In these experimental studies, we measured protein; carbohydrates, and lipids content in our sample. This analysis is required as the demand for protein-rich food is increasing, especially in developing countries [17]. This study it's revealed that *Sardinella longiceps* have higher protein, carbohydrate, and lipid compared with the other 3 species of *Etroplus suratensis*, *Etroplus maculatus*, and *Nematalosa nausus*.

The cooked or raw products, pickles, and sausages are readily available in tins, cans, etc. So, knowing the quality of the by-products is very important. To analyze the quality of the by-products we can design the internal primer from the already analyzed sequences. Thus, this study can be used as a tool for the identification of inferior adulteration in fish by-products.

In addition to identifying fish species, DNA barcoding using the CO1 gene can also provide valuable information about evolutionary relationships between fish species and populations, as well as biogeographical patterns of fish distribution.

References

- F. Jim et al., "Comparative analysis of nutritional value of Oreochromis niloticus (Linnaeus), Nile tilapia, meat from three different ecosystems," J. Food Qual., pp. 5-10, 2017.
- [2] Rust. BM, Nutritional Physiology, 2003, pp. 367-452.
- [3] J. H. Tidwell and G. L. Allan, "Fish as food: Aquaculture's contribution. Ecological and economic impacts and contributions of fish farming and capture fisheries," *EMBO Rep.*, vol. 2, no. 11, pp. 958-963, 2001 [doi:10.1093/embo-reports/kve236].
- [4] K. G. Padmakumar et al., "Etroplus suratensis (Bloch), the State Fish of Kerala," J. Biosci., vol. 37, no. 6, pp. 925-931, 2012 [doi:10.1007/ s12038-012-9271-x].

- [5] Gunawickrama and K. B. Suneetha, "Morphological heterogeneity and population differentiation in the Green chromide in Sri Lanka," *Ruhuna J. Sci.*, vol. 2, pp. 70-81, 2007.
- [6] Shyam et al., "Sardine economy of Kerala: Paradigms and Perspectives," *Int. J. Fish. Aquat. Stud.*, vol. 2, no. 6, pp. 351-356, 2015.
- [7] P. V. Kagwade, "The food and feeding habits of the Indian oil sardine Sardinella longiceps Valenciennes," *Indian J. Fish.*, vol. 11a, no. 1, pp. 345-370, 1964.
- [8] R. Froese and D. Pauly, 2008, "FishBase. World Wide Web electronic publication," *Version* (02/2009). Available at: http://www.fishbase.org.
- [9] E. G. Silas and P. P. Pillai, *Resources of Tunas and Related Species and Their Fisheries in the Indian Ocean*, 1982, pp. 10-15.
- [10] R. Froese, 2003, "FishBase. World Wide Web electronic publication," *Version* (02 / 2009). Available at: http://www.fishbase.org.
- [11] C. D. Webster and C. Lim, *Tilapia: Biology, Culture, and Nutrition,* 2006, pp. 5-6.
- [12] V. Sachithanandam et al., "DNA bar coding, phylogenetic diversity studies of Etroplus suratensis fish from Pooranankuppam brackish water, Puducherry," *Int. J. Curr. Res. Rev.*, vol. 04, pp. 33-42, 2012.
- [13] X. Bingpeng et al., "DNA barcoding for identification of fish species in the Taiwan Strait,", *PLoS One*, vol. 13, no. 6, pp. e0198109, 2018 [doi:10.1371/journal.pone.0198109].
- [14] J. Zhang and R. Hanner, "DNA barcoding is a useful tool for the identification of marine fishes from Japan," *Biochem. Syst. Ecol.*, vol. 39, no. 1, p. 31-42, 2011 [doi:10.1016/j.bse.2010.12.017].
- [15] J. K. Chambers et al., "AG protein-coupled receptor for UDPglucose," J. Biol. Chem., vol. 275, no. 15, p. 10767-10771, 2000 [doi:10.1074/jbc.275.15.10767].
- [16] R. Nagabhushanam and U. H. Mane, "Seasonal variation in the biochemical composition of *Mytilus edulis* at Ratnagiri on the west coast of India," *Hydrobiologia*, vol. 57, no. 1, pp. 69-72, 1978 [doi:10.1007/BF00018630].

 [17] Gopalsamy., Idayachandiran., Arumugam., Muthukumar., Kumaresan., Saravanan., Thangavel., Balasubramanian. (2014).
 Nutritional Value of Marine Bivalve, *Donax cuneatus* (Linnaeus, 1758) from Cuddalore Coastal Waters, Southeast Coast of India. *Invention*. 1-10.