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Abstract

Plants rely on a delicate balance of 16 essential nutrients
to thrive, with macronutrients being crucial for robust
growth, while micronutrients play a vital role despite
being needed in smaller quantities. Insufficient nutrient
levels can stunt plant growth, hinder flowering,
and reduce fruit yield. Accurate diagnosis of these
deficiencies is paramount for farmers to address
issues effectively, ensuring the cultivation of nutrient-
rich crops and maximizing yield. Bananas, a globally
significant fruit crop known for its high nutritional
value, require meticulous nutrient management to thrive.
Micronutrients, such as Boron, are particularly critical
for maintaining hormonal equilibrium in banana plants,
with deficiencies often manifesting visibly on the leaves.
This study proposes a deep-learning approach to detect
Boron deficiencies in banana leaves. The developed CNN
model with Skip Connections (CNNSC), comprising
thirteen layers, outperforms established architectures
like VGG16, DenseNet, and Inception V3. Training
the model on a specialized dataset of 11,000 nutrient-
deficient images, with a split of 70% for training and 30%
for testing, yielded impressive results. Evaluation metrics
including accuracy, loss, precision, F1 score, recall, and
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the confusion matrix showcase the model’s effectiveness,
achieving a remarkable accuracy of approximately 95%.

Keywords: Nutrient, Skip Connection, Machine Learning, Boron
micronutrient

1. Introduction

Agriculture is indispensable in supplying food, fiber, and vital
resources for human survival and economic progress. The integration
of deeplearning methodologiesintoagricultural practiceshasemerged
as a promising avenue for enhancing multiple facets of farming. This
includes the ability to forecast crop yields, identify diseases, manage
pests, optimize irrigation, and more. Enhancing crop yield hinges
on cultivating plants rich in essential nutrients, which necessitate
a balanced intake of 16 key nutrients. These nutrients span various
categories, including:

e Carbon, Hydrogen, Oxygen
* Macronutrients: Nitrogen(N), Phosphorous(P), Potassium(K)
* Secondary nutrients: Calcium (Ca), Magnesium (Mg), Sulphur(S)

* Micronutrients: Boron (B), Chlorine (Cl), Copper (Cu), Iron (Fe),
Manganese (Mn), Molybdenum (Mo), and Zinc (Zn)

Soil serves as the primary reservoir for macronutrients, secondary
nutrients, and micronutrients crucial for plant growth. However,
factors such as soil salinization and imbalanced irrigation practices
can deplete the soil’s nutrient richness, hindering the absorption of
essential nutrients by plants. This deficiency disrupts the vegetative
and reproductive stages of a plant’s life cycle, leading to stunted
growth and reduced crop yields.

Bananas (Musa sp.) have garnered widespread popularity among
people of all social strata in India due to their year-round availability,
affordability, diverse cultivars, delightful flavor, and myriad
nutritional and medicinal benefits. Recognized for its fiber and
antioxidant content, bananas promote digestive health and heart
well-being. Moreover, the export potential for bananas incentivizes
farmers to cultivate nutrient-dense varieties that meet global quality
standards.
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Micronutrient deficiencies in banana plants, notably Boron often
manifest visibly on the leaves. Leveraging deep learning techniques,
this study aims to detect and diagnose such deficiencies by analyzing
leaf images. The research makes significant strides in:

* Design a deep learning model to detect micronutrient Boron
deficiency in banana leaves

* Comparison with existing pre-trained models VGG16, DenseNet,
and Inception V3 ¢ Suggest nutritional supplements to improve
the plant’s entire growth system on detection of nutrient deficiency
to enhance the yield

These advancements offer a practical solution for farmers and
agricultural experts to effectively monitor and mitigate Boron
deficiency in banana plants. Harnessing the capabilities of deep
learning and computer vision methodologies, the developed model
introduces a streamlined and automated approach for detecting
and remedying deficiencies. Such interventions hold the potential to
enhance both the productivity and quality of banana crops.

2. Motivation

Micronutrients are integral to a multitude of physiological functions,
encompassing growth, cellular activity, metabolic processes, and
tissue regeneration. The identification of micronutrient deficiencies
is instrumental in tailoring specific nutrient profiles for diverse age
demographics, ensuring optimal growth and development.

Bananas, renowned for their nutritional richness, confer numerous
health benefits. Packed with vital nutrients, including vitamin C,
vitamin B6, folate, potassium, magnesium, and dietary fiber, they
contribute significantly to overall well-being. By automating the
assessment of plant health, deep learning methodologies offer a range
of advantages such as:

* Reduce the time and effort required for manual inspection

* Enabling faster detection of plant diseases, nutrient deficiency, or
stress

* Offer more objective and consistent assessments
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* Contribute to improving crop management practices and
increasing yield

* More sustainable agriculture.
Hence, the motivational reasons, which aim to tackle specific

agricultural challenges and leverage cutting-edge technologies to
improve crop productivity are:

* Effects of micronutrient deficiency on human health which is
depicted in Table 1
* Deficiency of micronutrients is exhibited on the leaves of banana

plants which is shown in Table 2

Table 1: Impact of deficiency of micronutrients on human health
Sl. No. | Nutrient Deficiency | Effects [3,11,18]

1. |Boron Cognitive impairment and Executive
dysfunction of the Brain

2. Iron Feel tired, Weakness, Dyspnea, and
Drowsiness

3. Zinc Hair loss, Changes in their nails, Diarrhea,

Irritability, Anorexia, Eye problems,
Weight loss, Chronic wounds, Anosmia

4. |Manganese Bone demineralization and poor growth in
children, Skin rashes, Hair depigmentation,
Decreased serum cholesterol

Table 2 Micronutrients and deficiency Symptoms on leaves of
banana plants

Sl No. | Nutrient Deficiency | Symptoms

1. Boron Reduced leaf area, Curly leaves, Lamina
deformation, white stripes in young leaves
[8/4]

2. |Iron The younger leaves turn yellow or white

3. |Zinc Young leaves become smaller in size and
more lanceolate in shape

4. |Manganese The youngest leaf show narrow green
edges at the leaf margins, which further
spread to the midrib

The phenomenon of micronutrient deficiency, often termed "Hidden
Hunger,” is a pervasive issue impacting billions worldwide.
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Hannah [11] reports that approximately two billion individuals,
constituting 30% of the global population, grapple with deficiencies
in essential micronutrients, highlighting the formidable challenge
of combatting malnutrition and nutrient scarcity on a global scale.
The ramifications of such deficiencies extend to severe and enduring
health complications, profoundly affecting the quality of life for many
individuals across the globe.

As the world’s population burgeons, the urgency to bolster
food production and enhance its nutritional value intensifies.
Consequently, prioritizing the cultivation of nutrient-dense crops
assumes paramount importance in ensuring a sustained supply of
nourishing food for the expanding populace.

Bananas, revered for their exceptional health benefits, accessibility,
delectable flavor, and affordability, rank among the most widely
consumed fresh fruits worldwide. Abounding in essential
micronutrients such as Boron, Iron, Potassium, and Magnesium,
bananas hold immense potential to contribute to human health and
well-being.

This study endeavors to detect Boron deficiency, a critical
micronutrient, in bananas, thereby empowering farmers to cultivate
nutrient-enriched banana crops and consequently enhance human
health.

While conventional laboratory techniques for soil and plant analysis
offer valuable insights into nutrient deficiencies, their reliance
on laborious procedures and substantial costs present inherent
limitations. Micronutrient deficiencies in banana plants typically
manifest through discernible alterations in leaf color, size, and
morphology, contingent upon the specific nutrient deficiency.
Leveraging deep learning methodologies to detect Boron deficiencies
in banana leaves presents a promising avenue. Swift and accurate
results derived from deep learning models can equip farmers with
timely information to implement remedial measures and foster the
cultivation of nutrient-rich banana plants.
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3. Literature Survey

The repercussions of nutrient deficiencies extend beyond individual
plants to impact overall crop productivity, posing significant
challenges to farmers’ livelihoods and national economies. Addressing
and mitigating nutrient deficiencies in banana plants holds the
potential to bolster crop yields, fortify food security, and alleviate
hunger in regions heavily reliant on bananas as a staple food source.
In recent years, researchers have made notable strides in enhancing
agricultural productivity through the integration of Al technologies,
yielding innovative solutions and advancements across various facets
of farming practices. Continued research efforts in this domain are
poised to yield effective strategies for nutrient management, thereby
bolstering profitability and sustainability within the banana industry.
Researchers have undertaken diverse initiatives to detect nutrient
deficiencies in banana crops through image processing and analysis,
leveraging both Machine and Deep Learning techniques. Ongoing
research endeavors in applying deep learning methodologies to
banana plants encompass the following areas:

* Identification and prediction of diseases in banana plants

* Detection of nutrient deficiencies in banana plants

3.1 Identification and Prediction of Diseases in Banana Plants

Prerana et al. [17] devised a unified system that harnesses the power
of a Convolutional Neural Network (CNN) to extract pertinent
features from images of bananas. These features are subsequently
inputted into a K-Nearest Neighbors (KNN) algorithm, facilitating
precise disease prognostication in banana plants. The system adeptly
identifies diseases such as Mosaic, Black Sigatoka, Yellow Sigatoka,
Panama wilt, and Streak, among others. Moreover, it offers proactive
measures and precautionary guidance to aid farmers in disease
detection and prevention.

Gokula Krishnan et al. [9] explored the efficacy of a hybrid
segmentation approach termed Total Generalized Variation Fuzzy C
Means (TGVFCMS) on the CIAT image dataset. TGVFCMS exhibited
a remarkable 93% accuracy in delineating disease-affected regions
and successfully identified five distinct diseases in banana plants,
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including Fusarium Wilt of Banana (FWB), Black Sigatoka (BS),
Xanthomonas wilt of banana or Banana Bacterial Wilt (BBW), Yellow
Sigatoka (YS), and Banana Bunchy Top (BBT). The CIAT image
dataset comprised 18,000 images, with only 9,000 images allocated to
the five disease classes.

On the other hand, Niraj et al. [15] proposed a deep learning
methodology aimed at clustering images of banana leaves into two
disease types, namely Black Sigatoka and Black Speckle. Their dataset
encompassed 653 images distributed across three categories: healthy
(360 images), Black Sigatoka (220 images), and Black Speckle (43
images). Their model achieved an impressive accuracy of 90%.

Sophia et al. [21] have pioneered the development of a mobile
application geared towards detecting diseases in banana leaves.
Leveraging ResNetl52 and InceptionV2 deep learning models,
trained with 3,000 images each, the application achieved remarkable
accuracies of 99% and 95% respectively. Their augmented dataset
comprised 18,000 images of banana leaves categorized into three
classes: Black Sigatoka, Fusarium Wilt, and healthy leaves. The
training involved an 80% training set, a 15% testing set, and a 5%
validation set.

Meanwhile, Michael [14] addressed the identification of the major
diseases affecting banana plants, including Xanthomonas wilt of
banana (BXW), Fusarium Wilt of Banana (FWB), Black Sigatoka (BS),
Yellow Sigatoka (YS), Banana Bunchy Top (BBT), and the Banana
Corm Weevil (BCW) pest class, utilizing aerial imagery processed with
machine learning techniques. Employing three models — Inception,
MobileNet, and ResNet50—trained with the CGIAR dataset,
they achieved accuracies ranging from 70% to 99%. Their dataset
comprised over 18,000 images, with experimental analysis conducted
on 12,600 banana leaf images. Nandini et al. [13] introduced a Gated
Recurrent CNN architecture tailored for classifying diseased banana
plants. The integration of recurrent layers facilitated the recognition
of sequential patterns inherent in the data sequence, resulting in an
impressive accuracy of 94%.

Cristian et al. [6] monitored the progression of disease infection in
banana leaf images utilizing the LesNet deep learning model, while
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the severity of diseases was quantified using Decision Trees (DT).
Anasta [2] pursued disease detection through thermal imaging using
a FLIR camera, employing image processing techniques, including
multi-threshold methods, to achieve an accuracy of 92%.

Surya et al. [23] conducted an analysis comparing various methods
for segmenting diseased banana leaves, concluding that the geodesic
method exhibited the least Mean Squared Error (MSE) parameter
value among techniques such as Canny, Robert, Prewitt, Color
Segmentation, and Sobel. Chaitanya and collaborators [5] devised a
3-layer CNN architecture aimed at detecting four distinct diseases
in banana leaves. Trained on a dataset comprising 1,200 images, the
model achieved an accuracy of 80%, successfully identifying Freckle
and Sigatoka diseases.

Fredy et al. [7] engineered a cost-effective embedded system utilizing
a DenseNet CNN model to discern diseases in banana leaves. This
system proficiently categorized Bacterial Wilt and Black Sigatoka
diseases with an accuracy of 92%. The training utilized a dataset
containing 200 images per category, totaling 600 images, meticulously
labeled by an expert. The authors allocated 80% of the dataset for
training and 20% for testing.

Bolanle et al. [16] developed a pioneering Capsule Network model
(CapsNet) dedicated to detecting two major banana diseases,
specifically Black Wilt and Sigatoka. Compared to LeNet and
ResNet CNN models, the proposed CapsNet achieved a superior
classification accuracy of 95%. The training involved a custom dataset
comprising 1,000 images collected from cultivated fields across three
classes, partitioned into an 80% training set, 10% validation set, and
10% testing set.

SweetWilliam et al. [24] engineered an Artificial Neural Network
(ANN) employing Multilayer Perceptron architecture to categorize
banana leaves afflicted by Sigatoka disease. Discriminative color
features were extracted using a Scalable Color Descriptor, while
texture features were derived via a Histogram of Orientation Gradient
(HOG). The HOG descriptornotably achieved an outstanding accuracy
of 98 Furthermore, an Al-driven banana disease detection system was
devised utilizing Deep Learning Convolutional Neural Networks

8



Sunitha etal. Boron Deficiency Detection in Banana Leaves using Skip-Connected

(CNNSs), enabling timely disease detection and the formulation of
control measures with an impressive accuracy of 90%. Similarly,
Gokulnath et al. [10] undertook the classification of diseased banana

leaves employing the Adaptive Neuro Fuzzy Interference System
(ANFIS).

3.2 Nutrient Deficiency

Amritha et al. [1] directed their efforts toward crafting an automated
robot geared toward detecting Manganese, Potassium, Sulphur, and
Zinc deficiencies in various crops. They employed a CNN model to
alleviate the burden on farmers.

Renato et al. [19] devised a CNN model trained with fine-tuned
transfer learning to identify deficiencies in Nitrogen, Potassium, and
Sulphur inimages of banana leaves. Utilizing a dataset comprising 995
images, they applied a pre-trained VGG 16 CNN model, leveraging
transfer learning and fine-tuning. Their experimentation revealed
that Histogram Equalization within the YUV color space yielded an
outstanding accuracy of nearly 98.

Meanwhile, Jonilyn et al. [12] developed a web-based mobile
application utilizing the Random Forest (RF) machine learning
algorithm to detect deficiencies in Nitrogen, Potassium, and
Phosphorus on banana leaves. The application underwent training
using a 10-fold cross-validation approach, achieving a performance
accuracy of 92%. Their dataset comprised 705 images, encompassing
50 healthy leaves, 255 leaf images deficient in Nitrogen, 155 deficient
in Phosphorus, and 90 deficient in Potassium.

While the research on applying deep learning techniques to banana
plants encompasses various areas, such as disease identification,
yield prediction, ripeness assessment, and disease progression
monitoring, there has indeed been relatively less focus on specifically
detecting micronutrient deficiencies in banana leaves. To ensure the
optimal health and productivity of crops, addressing micronutrient
deficiencies in banana plants is crucial. Neglecting these issues can
result in significant economic losses and challenges in food supply.
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3.3 Research Gap

The current machine learning and deep learning techniques employed,
primarily concentrate on identifying micronutrient deficiencies such
as Nitrogen, Phosphorus, and Potassium, in selected crops such as
maize, rice, wheat, and cotton. Only a handful of researchers have
ventured into utilizing image analysis methods for diagnosing
symptoms of micronutrient deficiencies, despite the significant harm
they can inflict on plant/crop growth. Further, bananas being one of
the major crops, are the least focused.

This study bridges a research gap by addressing the absence of
exhaustive methodologies for detecting Boron micronutrient
deficiencies in banana leaves through the utilization of deep learning
techniques.

Deep learning techniques have proven successful in detecting
micronutrient deficiencies in banana leaves [1,12,19]. As a result,
creating a custom image dataset by capturing banana leaf images from
various plantations becomes an invaluable approach to achieving
the specific research goal of detecting micronutrient deficiencies
in banana leaves. By leveraging this dataset, ongoing research has
developed a more accurate and reliable model that aids in identifying
and addressing boron micronutrient imbalances in banana crops.

4. Methodology

A thirteen-layer Deep Learning model has been crafted and deployed
for the precise identification of Boron deficiency in banana leaves.
The architecture of this meticulously crafted model is illustrated in
Figure 1, showcasing its intricately designed structure.

CNN Model

:?*I

WS Loy
T = .']: “A
L_ u ’—)[ Data Pre-processing ]—)[ Data Augmenting ]—> ' AP
s B g
A s !
[Datasel Preparation ] [ Classification H Prediction ](—{ Model Evaluation ]

Validation of Data

Figure 1: General architecture of the designed model
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The subsequent section furnishes an elaborate elucidation of every
constituent of the devised model, comprising its architectural
framework, accentuating their respective functionalities and
contributions to the holistic system.

4.1 Dataset Creation

A meticulously curated dataset forms the cornerstone for training,
validating, and evaluating Deep Learning models. An intricately
assembled, diverse, and precisely annotated dataset plays a pivotal
role in the development of resilient models that demonstrate robust
generalization, high performance, and efficacy in addressing real-
world challenges.

The construction of a custom image dataset is underway, comprising
a comprehensive repository of banana leaf images sourced from a
variety of banana plantations. These plantations encompass a range
of banana cultivars, including Musa Acuminata (Dwarf Cavendish),
Robusta, Rasthali, Poovan, Monthan, and Elakkibale, gathered from
disparate locations in and around Hassan, Karnataka, India. Notably,
the manifestation of nutrient deficiencies is prominently evident in the
leaves of these banana varieties. As such, the images are meticulously
categorized by an agriculture expert into nine distinct classes based
on observed nutrient deficiencies [22].

Field visits to banana plantations were meticulously conducted
to capture images of plants exhibiting discernible signs of nutrient
deficiency. Figure 2 showcases a sample selection of leaf images
depicting nutrient deficiencies across the nine categorized classes,
alongside images of healthy leaves.

11
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Healthy

Manganese

Potassium Sulphur Zinc

Figure 2: Sample images of nutrient-deficient banana leaves

4.2 Dataset preparation

An extensive range of sources is utilized to gather images, employing
digital cameras and state-of-the-art mobile devices to capture leaf
samples. These images showcase leaves afflicted by Boron deficiency
alongside healthy specimens. The existing dataset comprises
diverse images with varying resolutions, lighting conditions, and
environmental settings.

4.3 Data Pre-processing

Prior to analysis, images undergo preprocessing, including resizing
to a uniform resolution and normalization of pixel values within a
desirable range (e.g., 0-1). The online tool Remove Background is
employed to render the image background black, enhancing color
features and enabling enhanced focus on the subject matter. This
process facilitates more precise analysis and processing.

4.4 Data Splitting

The dataset undergoes division into a 70% training set and a 30%
testing set. To address data imbalance, each category is meticulously
balanced to ensure equitable representation of both Boron deficient
leaf images and healthy leaves.
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4.5 Data Augmentation

The efficacy of deep learning models heavily hinges on the caliber,
volume, and context of the training data, underscoring the pivotal
role of data curation and preparation in attaining robust and
effective models. Nonetheless, grappling with data scarcity stands
out as a prevalent challenge in deep learning model development,
often entailing substantial financial and temporal investments. To
mitigate this constraint, techniques such as image data generation
and autoencoders are leveraged to bolster the training dataset by
generating supplementary samples.

4.6 CNN Model

Convolutional Neural Networks (CNNs) streamline the process
by autonomously identifying features with exceptional precision,
surpassing alternative models. Figure 3 depicts the innovative
thirteen-layer CNN model custom-designed for detecting Boron
deficiency in banana leaves.

o

tput
1x128 e

layer

Input Layer

u/)| Comvzo ) oo ) §| | ml Sigmoa_)
Figure 3: CNNSC model for detecting Boron Deficiency

5. Performance Evaluation

The farmland dataset undergoes a division into 70% for training and
30% for testing. Hyperparameters of the CNN model undergo tuning
using the Bayesian Optimization (BO) technique. BO method is
utilized to determine an optimized configuration of hyperparameters,
encompassing neuron count, activation function, optimizer, learning
rate, and batch size for the designed model. By considering past
evaluations, BO selects hyperparameters for the next iteration.

13
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Optimization of hyperparameters entails assessing the model’s
performance across all classes and analyzing metrics derived from
the confusion matrix, including Accuracy, Precision, Recall, and F1-
score. The hyperparameters tuned are listed below in Table 3:

Table 3: The optimized hyperparameters

Sl. No. Parameters Specifications

1 | Activation Function The Rectified. Linetar activation
(ReLu) and Sigmoid

2. |Regularizer L2
3. |Cost Function Categorical Cross entropy
4. |Optimizer Adam
5. |Epochs 100
6. |Dataset 70% Training, 30% Testing
7. |Learning Rate 0.01 to 0.0001
8. |Batch Size 64
9. |Image Size 150x150

The confusion matrix as depicted in Figure 4, defines the performance
of the model followed by the metrics measured.

Predicted Class

True False
Positive Positive

True False
Negative Negative

b
2
5
2]
o
2

Figure 4: Confusion Matrix

* Anaccuracy metric serves to gauge the algorithm’s effectiveness in
a comprehensible manner. In simpler terms, accuracy represents
the proportion of correct predictions made by the model.

Number of Correct Predictions _ TP+TN
Number of Total Predictions TP+TN+FP+FN

Accuracy =

14
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* Precision provides insight into the deep learning model’s ability
to accurately identify positive classifications, giving us a sense of
its reliability in this regard.

Number of correctly classified positive samples _ TP

P recision = — —
Total number of classified positive samples TP+FP

* The recall measures the models” ability to detect positive samples.
The higher the recall, the more positive samples detected.

Number of Correct Predictions _ TP

Recall = Number of Correct Predictions+Number of Negative Predictions " TP+FN

* TheF1 score metric amalgamates precision and recall into a unified
measure, offering a well-rounded assessment of a classification
model’s effectiveness. This score reaches its peak when both
precision and recall are in equilibrium.

Flscore = 2 * (precision * recall) (precision + recall)

6. Results

The innovative CNNSC image classification model merges two
separate CNNSC models that have been specifically developed for
detecting deficiencies in micronutrients, namely Boron. The CNNSC
model is composed of Conv2D layers followed by MaxPooling layers.
Skip connections are created between layers that share similar filters,
allowing for direct connections and information flow between these
layers. The model is trained with the dataset consisting of leaf images
that encompass both boron-deficient leaves and healthy leaves.
The dataset is partitioned into 70% training and 30% testing for
evaluating models” performance. Ultimately, the output of the model
is integrated to derive the final results. The model undergoes training
for 100 epochs, employing various batch sizes including 8, 16, 64, and
128. The Adam optimizer is utilized with an initial learning rate of
0.001, while the momentum and weight decay are set to 0.9 and 0.999,
respectively.

During the training process, the model is exposed to input images
of different sizes, ranging from 16x16, 32x32, 64x64, 128x128, to
150x150 pixels, enabling it to learn and adapt to various image
resolutions. When the image size is reduced, it results in the loss of
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high-frequency information, potentially impacting the fine details
and overall clarity of the visual content. The smaller the image, the
less specific the representation becomes. Further, decreasing image
size would decrease false negatives and increase false positives. The
designed model has achieved the highest accuracy when using an
image size of 150x150 pixels, indicating that this resolution yields
the most optimal results for the classification task. Table 4 presents
the performance accuracy of the designed CNNSC Boron and other
different models, providing a comprehensive comparison of their
respective performances in accuracy and loss parameters.

Table 4: Comparison of designed CNNSC-Boron and pre-trained
models

SI. Parameters Designed | Inception | Dense | VGG

No. CNNSC V3 Net 16
1. |Training Accuracy (%) [94.5 99.02 99.47 198.02
2. |Validation Accuracy (%)|92.16 98.53 92.36 |96.16
3. |Training Loss (%) 0.21 0.0023 0.014 1]0.013
4. |Validation Loss (%) 0.278 0.4532 0.2867 |0.254
5. |Execution Time(s) 1467 2430 5620 |7376

The accuracy graphs in Figure 5(a-d) and loss graphs obtained in
Figure 6(a-d) are analyzed to measure the effectiveness of the models,
providing insights into their performance and training dynamics.
Upon reviewing Table 4, it becomes evident that Inception V3
attained the highest accuracy of 99% in detecting Boron micronutrient,
while the designed CNNSC-Boron model exhibited a slightly lower
accuracy of 94%.

CNNSC(Boron) : Training Accuracy Vs Testing Accuracy Inception V3 (Boron):Training Accuracy Vs Testing Accuracy

—— ['train_acc']
| — ['val_acc']

—— ['train_acc']
— ['val_acc’]

40 60 80 100

Epochs

(b)

60 80 100 20

Epochs

(@)

20 40
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VGG16(Boron):Training Accuracy Vs Testing Accuracy
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Figure 5: Accuracy illustration of CNNSC and other pre-trained models

However, a closer examination of the loss graph in Figure 6(a-d)
highlights a notable reduction in the loss of the designed CNNSC-
Boron model compared to other pre-trained models.

CNNSC(Boron) : Training Loss Vs Testing Loss
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Figure 6: Loss illustration of CNNSC and other pre-trained models
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Figure 7 presents the confusion matrices of all the models. It
demonstrates that the proposed CNNSC-Boron model has given
better performance than other models. The matrices indicate that the
proposed model has excelled in identifying a higher number of true
positives and true negatives compared to other models. Additionally,
it has a lower number of false positives and false negatives than the
other models.

CNNSC(Boron)-Confusion Matrix InceptionV3(Boron)-Confusion Matrix
1200
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Boron 1000 Boron 4 414
700
z 800 3
= K]
E 600 'é 600
Healthy 400 Healthy 544
500
200
Boren Healthy Boron Healthy
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(a) (b)
DenseNet{Boron)-Confusion Matrix VGG16(Boron)-Confusion Matrix
900 - o 800
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Boron 399 oo Boren 456
700
= 700 T
2 2 N 650
£ v
B 2
= -
600 600
Healthy 505 Healthy 608 550
500
500
400
Boron Healthy Boren Heailthy
Predx(te)d label Predicted label
<

Figure 7: Confusion matrices of the models

Figure 8 illustrates the key metrics derived from the Confusion
Matrix namely Precision, Recall, and F1Score. Observing the
Precision comparison in Figure 8(a), it is evident that the designed
CNNSC-Boron model has exhibited the highest precision value
of 90%, outperforming other pre-trained models, which achieved
approximately 60% precision. Furthermore, in Figure 8(b) and Figure
8(c), it can be observed that the designed CNNSC-Boron model has
achieved the highest Recall and F1Score values of 90%, indicating its
superior performance compared to other models.
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The performance of a system can also be determined by its execution
time, as performance and execution time have an inverse relationship.

Performance of A _ ExecutionTime of B
Performance of B Execution Time of A

Applying the aforementioned equation confirms that the execution
time of the designed CNNSC model [Figure 8(d)] is 1.6 times faster
than InceptionV3, 5 times faster than VGG16, and 3 times faster
than DenseNet, indicating superior efficiency and faster processing
capabilities. It is evident from the analysis that the designed Skip
Connection CNN model performs well when classifying leaf images

into two classes of micronutrients namely Boron deficient and
Healthy.

The advantages of considering the CNNSC model for detecting
micronutrient-deficient banana leaves are as follows:

* The designed model is 40% more precise

* CNNSC is 30% faster in providing timely decision
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The aforementioned features serve as evidence that the designed
model surpasses the existing pre-trained Deep Learning models in
terms of efficiency and performance. Furthermore, Table 5 presents a
detailed breakdown of the number of layers in the model.

Table 5: Layers in the models

Sl. No. [Models No. of Layers
1. CNNSC 13
2. InceptionV3 46
3. VGG16 16
4. DenseNet 121

The minimized count of Conv2D layers in the designed CINNSC
model enables them to arrive at decisions much faster than their
counterparts. The proposed model has undergone extensive
experimentation with varying hyperparameters, resulting in a
13-layer CNNSC model. Fewer layers in a deep learning model
typically lead to faster execution. Therefore, compared to other pre-
trained models, the proposed CNNSC model has fewer layers, thus
enhancing its performance.

7. Conclusion and Future Work

The meticulously engineered CNNSC model emerges as a robust
solution for precisely identifying micronutrient deficiencies in
banana plants. Trained on a tailored dataset comprising 11,000
banana leaf images, the model achieves an impressive accuracy rate
of 95%. In comparison to leading counterparts, the CNNSC model
demonstrates commendable performance. Examination of the
confusion matrices reveals superior precision, recall, and F1 scores
exhibited by the CNNSC model. Moreover, analysis of the loss graph
unmistakably showcases significantly lower losses incurred by the
CNNSC model in contrast to its competitors. Designed to provide
timely insights to farmers, the model facilitates targeted nutrient
supplementation, thereby promoting the growth of nutrient-rich
plants and substantially enhancing overall crop yields. This proactive
approach not only contributes to sustainable agricultural practices
but also reinforces global food security initiatives.
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A user-friendly Graphical User Interface (GUI) is crafted using
Gradio, enabling the input of real-time images of banana leaves for
nutrient deficiency prediction.

Upon detecting Boron deficiency, it is advisable to address the issue
through the following steps

* Soil application of Borax @ 25 g per plant or
* Foliar application of 0.1 % Boron (Solubore) or

* Foliar application of Banana special @ 5g per litre

Detecting multi-nutrient deficiencies in crops via visual symptoms
presents a formidable challenge, as the possibility of multiple nutrients
causing similar symptoms complicates the diagnostic process.

For instance,

* Magnesium deficiency often manifests as yellowing between
leaf veins, resembling symptoms seen in Iron and Manganese
deficiencies

* DPotassium deficiency may cause marginal leaf scorching or
browning, which can be confused with symptoms of drought
stress or disease

* Calcium deficiency symptoms may include distorted or irregularly
shaped leaves, similar to symptoms caused by environmental
stress or certain pathogens

* Phosphorus deficiency can lead to slow or stunted growth, as
well as purplish discoloration on leaf undersides, which may be
mistaken for symptoms of nutrient toxicity or root damage

* Excess Nitrogen can result in lush, green foliage but may lead to
reduced fruit quality and increased susceptibility to pests and
diseases

* Excessive Potassium levels can cause salt burn on leaf margins
and tip dieback, which can be misinterpreted as symptoms of
drought or fungal infections.
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Detecting deficiencies in multiple nutrients simultaneously poses a
formidable challenge, yet there is promising potential to expand this
research to encompass the identification of multi-nutrient deficiencies
in banana plants.
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