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Abstract

Biomarkers play a vital role in detecting the presence of disease
or medical condition of interest. The challenging tasks in clinical
diagnosis are to interpret the performance of biomarkers. To
evaluate the biomarkers efficiency, the most advantageous tool
used is Receiver Operating Characteristic (ROC) Curve. For two
class problems (abnormal and normal), various models and
alternatives are developed to find the biomarker’s performance.
In this study, the two class problem has been further extended to
the threeclass problem i.e. (normal, suspicious and abnormal).
The three-class exponential ROC model, Volume Under the
ROC Surface (VUS), asymptotic variance and Confidence
Interval (CI) for VUS have been derived. The model has been
validated using a simulated data and for the real-life dataset
from the underlying distribution.

Keywords: Biomarker, Volume Under the ROC, Asymptotic Variance and
Exponential Distribution

1. Introduction

Biomarkers are quantifiable signs of a biological process or condition and they
are frequently employed in diagnosis, surveillance, and disease progression
or therapy response predictions. It must be evaluated to determine their
clinical value in discriminating between non-diseased and diseased subjects.
One of the most commonly used methods for determining clinical value is
the Receiver Operating Characteristic (ROC) curve.[5,6]

Diversified approaches are available for evaluating a biomarker that
classifies an individual into one of two classes. Nevertheless, very few
parametric approaches exist to evaluate a biomarker that identifies an
individual into three (Non-Diseased, Suspicious, and Diseased) or multiclass.
For three-class or multi-class, explicit or non-explicit models for the ROC
surface need to be obtained [1, 8]. The ROC surface is a graph representing the
simultaneous trade-off between the three correct classification rates, and the
surface is traced by plotting the three probabilities of correct classification
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[7,9]. Extending to a three class model is particularly important in clinical
diagnosis, as it allows for the identification of suspicious cases which often
occur in many disease like Alzheimer. This not only improves diagnostic accuracy
but also supports more informed decision-making. Volume Under the ROC
Surface (VUS) is is a diagnostic accuracy measure used to assess how well
a three-class or multi-class classification task is performing. It is sometimes
referred to as the area underneath the ROC surface (three dimensional).
It is an expansion of the two class classification problem in which Area
Under the ROC Curve (AUC), which measures the overall discriminatory
capacity of biomarkers in distinguishing diseased and non-diseased
subjects, whereas VUS captures how well a biomarker or diagnostic test can
separate all three (or more) clinical categories at once. The VUS generalizes
the AUC from binary to three class classification. The interpretation of VUS
of is same as AUC, that 0.5 means the test performs no better than chance
for three classes, while values closer to 1 indicate excellent discriminatory
power between the classes. This is especially relevant in clinical settings
where patients may fall into more than two status categories, such as "non-
diseased," “suspicious," and "diseased. The VUS provides a concise and
interpretable summary measure for evaluating multi-class discrimination.
Furthermore, the derivation of asymptotic variance for tri-class exponential
model has been derived for the first time. This helps in the calculation of
Confidence Intervals (CI) which showcase the reliability of the estimate of
VUS. Together, these metrics provides the observed discriminatory ability
of the selected biomarker in diagnostic accuracy studies.

In two-class classification, we have a non-diseased and diseased group
in which classification is made using a gold standard along with their
biomarker values. Now, the test procedure works as follows:

Combine the biomarkers of non-diseased and diseased individuals to form

a single set, say B, where i ranges from 1 to n. Now, tag the individuals as

non-diseased and diseased using the following decision criteria:

{Bi >t diseased i (1)
B;<'t non-—diseased "

where “t’ is the threshold

Now, we have two classification criteria, i.e., one is the gold standard
and the other is defined by equation (1). With these two criteria, we obtain
the following probabilities:

True Positive Rate (TPR): It is the proportion of diseases detected by the test
to the total number of diseased people. It is also called sensitivity.
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True Negative Rate (TNR): It is the proportion of non-diseased subjects
identified correctly by the test. It is sometimes referred to as specificity.

False Positive Rate (FPR): It is the proportion of non-diseased subjects
identified as diseased by the test. It is sometimes referred to as 1-specificity.

False Negative Rate (FNR): Itis the proportion of diseased subjects identified
as non-diseased by the test. It is also referred to as 1-sensitivity.

Each threshold t leads to a 2x2 contingency table given in Table 1
containing the true and false classification probabilities.

Table 1: 2x2 Confusion matrix regarding the performance of a two-class classification

Actual Status Result of the classifier (diagnostic marker)
(Gold Standard) Diseased Non-Diseased
Diseased TPR=P(Y>1) FNR=P(Y<t)
Non-Diseased FPR=P(X>1) TNR =P(X<t)

*TPR - True Positive Rate *FNR - False Negative Rate
*FPR - False Positive Rate *TNR - True Negative Rate

Now a two-class ROC curve can be generated by plotting FPR on the
horizontal axis and TPR on the vertical axis. The primary goal is to reduce
errors in classification, specifically focusing on minimizing both FPR and
FNR. Sensitivity and specificity of the test refer to the probability values
where True Classification (TC) is maximized while False Classification (FC)
is minimized. This means achieving a high rate of correctly identifying
positives (sensitivity) and negatives (specificity) while minimizing the
chances of incorrectly classifying them.

1.1. A parametric approach for a two-class ROC approach:

Let X and Y be two random variables that denote the biomarker values from
the non-diseased and diseased populations. Also, let X and Y follow some
continuous distribution having F(x) and G(y) as cumulative distribution
functions, respectively. Then the form of the ROC model for plotting the
ROC curves takes the following form [2,3]:

ROC(t) = Gy o Fx(t); —0o <t < o )

The summary index of the ROC curve is the AUC, which is the total area
covered under the ROC curve towards the x-axis. AUC is defined as the
probability that a randomly chosen marker value from a diseased population
will have higher values than a randomly chosen marker value from a non-
diseased population [3], i.e., as
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1

1
AUC =P >X) = f ROC(t) dt = f Gy o Fy(t) dt (3)
0 0

The ROC curve ROC(t) is directly related to the AUC, which is the
integral of the ROC curve over all possible thresholds from 0 to 1. The AUC
provides a single scalar value that summarizes the overall performance of
the classifier in terms of its ability to discriminate between positive and
negative instances.

1.2. A parametric approach of ROC surface to three-class diagnostic
problem:

A three-class ROC surface can be used in medical diagnosis to assess the
effectiveness of a diagnostic test or biomarker that divides the subject into
three groups: Non-Diseased, Suspicious, or Diseased, using two thresholds ¢,
and t,. A three-dimensional extension of the AUC that offers a more thorough
evaluation of the effectiveness of the biomarker is the VUS. Here the ROC
surface is fitted using the true classification rates i.e., (TC, TC,, and TC,). [7]

Let X, Y and Z be the random variables representing the biomarker
values of Non-Diseased, Suspicious, and Diseased groups respectively.
These variables assume continuous distribution function, i.e., X; ~ F, (.); i
=1, 2,...,m (For non — diseased),, Y] ~F,();j=12,..., n (For suspicious) and Z,
~F, (); k=1,2,.., p (For diseased). As in the two-class approach, combine the
biomarker values of all the three groups together to form a single set, say B,
(i=12,...,N); where N =m + n + p; m, n and p be the number of observations
from Non-Diseased, Suspicious, and Diseased groups, respectively. For each
set of two ordered thresholds ¢, and ¢, (t,<t,), assigns a probability score for

each class and they are defined as follows:

P (B,<t):|Estimate of the probability that the data point B, belongs to diseased
Estimate of the probability that the data point B, belongs to a
suspicious group

Estimate of the probability that the data point B, belongs to a non-
diseased group

P (t<B<t):

P (B>t):

Whenever a gold standard technique is available, then the confusion matrix
can be described in Table 2:

Table 2: 3x3 Confusion matrix regarding the performance of a three-class classification

Results from the Results from the Diagnostic test
Gold Standard Non-diseased Suspicious Diseased
Non-diseased |TC,=P (X<t) FC,=P (t,<X<t) FC,=P (X>t)
Suspicious FC,=P(Y<t) TC,=P(t,<Y<t) FC,=P(Y>1)
Diseased FC,=P (Z<t) FC,=P (t,<Z<t) TC,=P (Z>1)
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*TC - True Classification

*FC- False Classification

If TC and FC are the correct and false classifications, respectively, then TC,
is the probability of correctly identifying non-diseased individuals, TC, is
the probability of correctly identifying suspicious individuals, and TC, is the
probability of correctly identifying diseased individuals. The remaining six
misclassification that occur during the classification procedure using ¢, and
t, are: FC, (non-diseased subjects are misidentified as suspicious), FC, (non-
diseased subjects are identified as diseased), FC, (suspicious are incorrectly
identified as non-diseased), FC, (suspicious are misidentified as diseased),
FC, (Diseased are misidentified as non-diseased), and FC, (diseased are
misidentified as suspicious). The general ROC surface model is given by

ROC (t1,t;) = Fp(F;X(t) — Fy(F71(t)); —o< ty,t; < 4
where,

P(Z <ty) = F; (t1) ©)

P(t; <Y <ty) = Fy(ty) — Fy(ty) (6)

PX>t,) =1—Fx(ty) )

A typical ROC surface plot will look like the one presented in Figure 1. In
this plot, the x-axis represents TC,, the y-axis represents TC,, and the z-axis
represents TC..

TC1

TC3

Figure 1: The general ROC plot
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1.3. The Volume Under the ROC Surface

The VUS offers a summary index of biomarkers in a three-class approach.
The non-parametric form of VUS can be written as

n

P(Z>Y>X)=iZi% 8)

i=1 j=1k=1

where

1 ifZ<Y<X
05 ifZ=Y<X
05 ifZ<Y=X

105,20 =370 SN 5K

5
0
1
¢ f@Z=v=X)

The VUS ranges from 0 to 1. A VUS value of 1 indicates a perfect model that
achieves perfect classification for all classes. It is computationally difficult to
obtain for a larger number of classes.

2. Materials and Methods
2.1. Tri-class exponential ROC (Tri-EROC) model

Let us assume that biomarker values from the three groups follows
exponential distribution individually, i.e., X~ Exp (8,), Y~ Exp (6 ) and Z~
Exp (6,) where X, Y and Z are mutually independent.

where

Fx(x)=1—-e % 0< 6, <o
FO)=1-e%0< 0, <
Fs(z2)=1—-e% 0<6,<o

VUS = P(Z>Y>X) = [ [7[7 f)f0)f (2) dz dy dx ©)

= fooo fxm f;o O, e bx Gye‘(’y 0,e % dz dy dx (10)

The volume under the ROC surface is calculated by solving the integral of
equation (10) and we get,
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6,6, (11)

VUsS =
(6,+6,)+(6.+6,+6,)

2.2. Asymptotic Variance of VUS of Tri-EROC

Asymptotic variance quantifies how much the VUS estimate would fluctuate
if you repeatedly sampled from the population. It's essential for assessing
the reliability and precision of the VUS estimate. Smaller variance means
more confidence in the summary measure.

The log-likelihood function of the joint pdf of the three population is
given by

L =TI, e 0% [}, 6,6~ i [T}, O,e 0% (12)

Then the log likelihood function (In L) of (12) is given by

LogL = mf0, — 6, 3% x; + n€ 6, — 6,37,y + k€6, — 6, Y 17k (13)

The Fisher Information matrix helps determine the variance-covariance
structure of this limiting distribution. The consistent property of Maximum
Likelihood Estimator (MLE) has been used. A parametric approach utilizing
MLE was also proposed and executed using Mathematica [4]. It shows that

=(0,6,6)~NI[0, I (8)] and I(5) is a Fisher information matrix which is

glvenby
" (Gre) = (ams) o)
0672 02062 020672
a%¢ %4
1®=1 - E <692> E <an592>
%4
I )

Now taking the first derivative of In L with respectto 6, GV and 6
dlnL m = dlnL n 5 olnL p
3, 6, ~“ae, o, o, o,

—2z; (14)

In order to get the I(0) the second derivative for the parameters have been
taken

9’L -m 9°L —m 0*L —p
—_— e = =, = — (15)
90, 62’6, 0206, 62
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By using the delta method, the estimated asymptotic variance becomes

TEY _ o 99922 0362\ ;. 2 2, a2
v(VUS) =2 2z m? 0,6, + 6) - 7 )@ 6:(6.6, — 65 + 6;) +
02603\ (02605 0y (05 +26,+26;)
( 62 )(9x+ey+az)z(9y+az) (16)

3. Results and Discussion

This section uses simulation studies to validate Tri-EROC and Tri-EROC's
VUS. The three-class exponential distribution ROC model has been
researched through simulated studies. The exponential distribution was used
to generate the sample of same sizes (30,30,30) for with varying parametric
values. (&, &, 6)={(80,65,3), (80,35,3), (80,15,2), (90,20,1)}. The simulation
studies have been done and the values are elaborated in Table 3. Simulated
data was generated to evaluate the performance of the proposed method
under controlled conditions. The data were simulated under the assumption
that biomarker values follow an exponential distribution, which is widely
applied in survival and reliability analysis and serves as a reasonable
model for certain biomedical processes. Using simulated datasets allows for
systematic assessment of the VUS estimator across different scenarios and
ensures that the results are not overly dependent on a single clinical dataset.
Additionally, the exponential distribution's density plot is also fitted for all
the parameters in figure 2, 3, 4 and 5.

Table 3: Simulation Studies that present ROC surface for different parametric values

SET | Parameters Estimated |VUS parametric vus Standard
means and CI Non-Parametric and CI| Error
0=80 |0,=799
i s 0.595 0.619
1 %:65 92’ = 42 [0.294,0.869] [0.318,0.920] 0.15352
=3 6, =29
0=80 |8,=799
‘ 2 0.6701 0.666
2 %:35 92’ =2 [0.626,0.714] [0.622,0.710] 0.022287
=3 6, =29
0=80 |6,=799
z = 0.729 0.715
3 Gé 125 ?y =99 [0.7284,0.7296] [0.7144,0.7156] 0.00031
P 6,=19
g=90 |B,=89.8
‘ 5 _ 0.805 0.814
4 %_:215 63’ : gg [0.8049,0.8051] [0.8139,0.8141] 0.000056
x x = o
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*ROC - Receivers Operating Characteristics Curve

*VUS - Volume Under the ROC Surface

Table 3 presents various sets of assumed parameters and their corresponding
evaluation results. Each set includes specific parameter values used in
the simulation. The table provides estimated means for these parameters,
calculated using the MLE. In addition to the estimated means, the table
includes parametric estimates of the VUS. These parametric VUS values
quantify the overall performance of a classifier for each set of parameters.
Alongside the parametric VUS estimates, the table also provides non-
parametric VUS estimates, which serve as an alternative measure that does
not rely on the assumptions inherent to parametric methods.

The standard error values listed in the table reflect the precision of the VUS
estimates. Lower standard error values indicate more reliable and precise
VUS estimates. Together, these metrics offer a comprehensive assessment
of classifier performance across different parameter sets, highlighting both
the parametric and non-parametric perspectives. The set 4 parameters is the
best performer because it has the highest VUS value and the lowest standard
error, indicating both superior classifier performance and high precision in
the estimates.

30

Variable

Diseased
Normal

[] suspicious

10

0.0 02 04 0.6
Value

Figure 2: Density Plot for the Parameter (80,65,3)
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Figure 3: Density Plot for the parameter (80,35,3)

20 Variable

2

% Diseased

3 Normal
Suspicious

Value
Figure 4: Density plot for the parameter (80,15,2)
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Variable

Z Diseased

2
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Suspicious

0.00 025 050 075
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Figure 5: Density plot for the parameter (90,20,1)
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Each parameter (1/0) represents the rate at which Non-Diseased, Suspicious,
and Diseased occur. The higher the 1/60, the more frequent the events.
Conversely, a lower 1/6 means events occur less frequently. In the above
graph, it is evident that higher a parameter value steeper the decline in
the density plot from 0 indicating more of diseased group, while lower
parameter leads to a shallower decline, indicating less of non-diseased
group and moderate of suspicious group.

The parenthesis in the VUS column represents the non-parametric estimate
of VUS for the same set. Both parametric and non-parametric versions of the
three-layered VUS are displayed from figure 6 to 13.

a. ROC curve of parametric approach
0.12

Figure 6: ROC surface of Tri-EROC for (8, = 80,0, =65, 6, = 3)

y

0.0008

Figure 7: ROC surface of Tri-EROC for (8, = 80,0, =35, 6, = 3)

=

y
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TC1

002004 006 008 0.1 012

Figure 8: ROC surface of Tri-EROC for (6, =80,0, =15,6, =2)

y X

Figure 9: ROC surface of Tri-EROC for (GZ =90, Gy =20, Gx =1)

b. Non-parametric ROC approach

TC1 1
08

06 0.005

02 04

0.004
0.0031¢3
0.002
0.001

(]
08

04 TC2

0

Figure 10: ROC surface of Tri-EROC for (GZ =80,0 =65, Gx =3)
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TC3
0.004

0.002

Figure 12: ROC surface of Tri-EROC for (8, = 80, Gy =15,0,=2)

TC1

og !

06
04
g 02

TC3
002

001

08

a

Figure 13: ROC surface of Tri-EROC for (8, = 90, By =20,0,=1)
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A larger volume under the ROC curve typically indicates better
model performance. It means that the model is performing well across
different threshold settings and possibly across different values of the third
dimension. ROC curves are useful when you want to visualize and analyze
how model performance varies not only with different threshold settings
but also with other factors. From the above figures, the volume under the
curve increase according to the parameter which means when the difference
in the parameter increase the model fits better.

A real-life clinical dataset which was downloaded from kaggle has been
used further to evaluate the VUS. This dataset pertains to the identification
of early stage cardiovascular diseases and was used to validate the Tri-
class exponential ROC space model. The dataset contains patient diagnostic
information classified into three categories: Non-Diseased, Suspicious, and
Diseased. Incorporating this dataset enables the practical evaluation of the
proposed model, ensuring that the VUS estimation is both theoretically
rigorous and clinically relevant. This validation enhances the model’s
credibility and demonstrates its potential applicability in biomarker
assessment for diagnostic accuracy studies involving continuous biomarkers.
For this particular dataset, the VUS, which measures the effectiveness of
the classifier in distinguishing between these groups, is 0.5963 and the SE
is 0.00263. The corresponding graphical representation of this analysis is
shown in Figure 14.

A VUSvalueof 0.5963 suggests that the classifier has amoderate capability
to differentiate between the Non-Diseased, Suspicious, and Diseased groups
in the context of early-stage cardiovascular disease identification. This
value indicates a fair level of accuracy in identifying the various stages of
cardiovascular disease within the dataset.

Figure 14: The ROC graph for the cardiovascular disease
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4. Conclusion

We have derived the asymptotic variance and VUS for the exponential
distribution in this study. We used varying degrees of parameters to simulate
the data for the suggested model, and the ROC model was created for both
parametric and non-parametric data with the aid of those parameters.
According to the simulation study, the VUS varies with the parameters to
varying degrees. The VUS reaches its maximum (0.805) and the standard
error reaches its lowest (0.000056) when there is a large discrepancy in the
parameters, and vice versa. Furthermore, we found that the parametric ROC
model has a stronger influence on the parameters than the non-parametric
model. Therefore, we deduce that the VUS achieves its maximum and SE
achieves its minimum with a large parameter difference (Non-Diseased,
Suspicious, and Diseased). Additionally, the VUS for the real-life dataset
is 0.5963, which suggests that the classifier possesses a moderate ability to
accurately identify and differentiate between various stages of cardiovascular
disease. This value indicates that the classifier performs better than random
guessing but is not highly accurate. It can reasonably categorize individuals
into Non-Diseased, Suspicious, and Diseased groups based on their risk
factors and early signs of cardiovascular disease.
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