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Abstract  
An improved numerical study on mixed convection from 
a heated vertical plate embedded in a Newtonian fluid 
saturated sparsely packed porous medium is undertaken 
by considering the variation of permeability, porosity and 
thermal conductivity. The boundary layer flow in the 
porous medium is governed by Lapwood – Forchheimer 
– Brinkman extended Darcy model. Similarity 
transformations are employed and the resulting ordinary 
differential equations are solved numerically by using 
shooting algorithm with Runge – Kutta – Fehlberg 
integration scheme to obtain velocity and temperature 
distributions. Besides, skin friction and Nusselt number 
are also computed for various physical parameters 
governing the problem under consideration. It is found 
that the inertial parameter has a significant influence in 
decreasing the flow field, whereas its influence is 
reversed on the rate of heat transfer for all values of 
permeability considered. Further, the obtained results 
under the limiting conditions were found to be in good 
agreement with the existing ones.  
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1. Introduction 

In recent years, considerable attention has been evinced on the 
study of boundary layer flow behavior and heat transfer 
characteristics of Newtonian fluid past a vertical plate embedded in 
a fluid saturated porous medium because of its extensive 
applications in engineering processes, especially in the enhanced 
recovery of petroleum resources and packed bed reactors. 
Considerable amount of interest has also been devoted towards the 
study of transport properties in porous media subject to heat 
transfer which are characterized by highly non-linear coupled 
partial differential equations. The problem of free convection heat 
transfer from a vertical plate embedded in a fluid saturated porous 
medium is studied by Cheng and Minkowycz (1977), who have 
obtained the similarity solutions for the problem considered. 
Cheng (1978) has provided an extensive review of early works on 
free convection in porous media. Nakayama and Koyama (1987) 
have obtained the similarity solution for the problem of free 
convection in the boundary layer adjacent to a vertical plate 
immersed in a thermally stratified porous medium. The mixed 
convection boundary layer flow on an impermeable vertical surface 
embedded in a saturated porous medium has been treated by 
Merkin (1980). Hung and Chen (1997) have studied non-Darcy free 
convection in a thermally stratified fluid saturated porous medium 
along a vertical plate with variable heat flux. Hsieh et al.(1993) 
have obtained non-similar solution for combined convection from 
vertical plates in porous media with variable surface temperatures 
or heat flux. Recently, Nield and Bejan (1999) have given an 
excellent summary of free convection flow in porous media. 

Several investigators have considered the non – Darcian model in 
the recent past to study the convection and heat transfer rates on 
bodies embedded in a porous medium for Newtonian fluids. 
Kumari et al (1990) have investigated the non-Darcian effects on 
forced convection heat transfer over a flat plate in a highly porous 
medium. Chen and Ho(1988) have studied the effects of flow 
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inertia on vertical, natural convection in saturated, porous media. 
Hong et al.(1987) have studied analytically the non-Darcian effects 
on a vertical plate natural convection in porous media. They used a 
combination of Rayleigh and Darcy numbers to describe the inertia 
and boundary terms and obtained similar solutions. They found 
that these effects decrease the velocity and reduce the heat transfer 
rate. Hassanien et al (1998) studied the effects of thermal 
stratification on non-Darcy mixed convection from a vertical flat 
plate embedded in a porous medium. Plumb and Huenefeld (1981) 
investigated on non-Darcy natural convection from vertical 
isothermal surfaces in saturated porous media. Lai and Kulacki 
(1987,1991) used both Darcy and non-Darcy natural convection 
from vertical isothermal surfaces in saturated porous media.  Bejan 
and Poulikakos (1984) used Forchheimer’s model to study vertical 
boundary layer natural convection in a porous medium. 

Shwartz and Smith (1953), Benenati and Brosilow (1962) have 
shown that the permeability of a porous medium varies due to the 
variation of porosity from the wall to the interior of the porous 
medium. Chandrashekar and Namboodire (1985) have shown the 
effectiveness of variable permeability of the porous medium on 
velocity distribution and heat transfer. Recently, Mohammadein 
and El-Shaer (2004) have studied combined free and forced 
convective flow past a semi-infinite vertical plate embedded in a 
porous medium incorporating the variable permeability. 
Nonetheless, the inertia effects become important in a sparsely 
packed porous medium and hence their effect on free convection 
problems needs to be investigated. 

The aim of the present investigation is, therefore, to study 
systematically the effect of inertial terms on combined free and 
forced convective heat transfer past a semi-infinite vertical plate 
embedded in a saturated porous medium with variable 
permeability, porosity and thermal conductivity. In this analysis 
coupled non-linear partial differential equations, governing the 
problem, are first reduced by a similarity transformation to the 
ordinary differential equations and then the resultant boundary 
value problem is converted into the system of five simultaneous 
equations of first-order for five unknowns. Then these equations 
are solved numerically by shooting technique with Runge-Kutta-
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Fehlberg method to obtain horizontal velocity and temperature 
profiles for various values of physical parameters. The results 
obtained from the present numerical computation under limiting 
conditions agree well with the existing ones and thus verifies the 
accuracy of the method used. 

2. Mathematical Formulation 

We consider a semi-infinite vertical heated plate embedded in a 
sparsely packed Newtonian fluid saturated porous medium of 
variable porosity, permeability and thermal conductivity. The x-
coordinate is measured along the plate from its leading edge, and 
y-coordinate normal to it. Let  oU  be the velocity of the fluid in the 
upward direction and the gravitational field, g, is acting in the 
downward direction. The plate is maintained at a uniform 
temperature wT   which is always greater than the free stream 

values existing far from the plate (i.e., wT > T ). The boundary layer 
equations governing the conservation of mass, momentum and 
energy can be written in the following form: 
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where, u and v are the velocity components along the x and y 
directions respectively, T is the temperature of the fluid,    is the 

fluid density, g is the acceleration due to gravity,   is the effective 

viscosity of the fluid,   is the fluid viscosity,  yk  is the variable 

permeability of the porous medium,  y is the porosity of the 

saturated porous medium,  y  is the variable effective thermal 
diffusivity of the medium, F is the empirical constant of the second 
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– order resistance term due to inertial effect, pC  is the specific heat 
at constant pressure,  is the coefficient of volume expansion and 

T  is the ambient temperature. 

 The above governing equations need to be solved subject to 
the following boundary conditions on velocity and temperature 
fields: 

  0u    ,    ,0v    wTT                    at 0y    (4) 
 oUu   ,    ,0v    TT                   as y           (5) 

We now introduce the following dimensionless variables f and θ as 
well as the similarity variable η 

[Hady et al.(1996), Mohammadein and El-Shaer (2004)]: 
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where, a prime represents differentiation with respect to   and wT  
is the plate temperature. 

In equation (6) the stream function  yx,  is defined by 
y

u






,   

x
v


 

 , such that the continuity equation (1) is satisfied 

automatically and the velocity components are given by  
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Following Chandrashekhara and  Namboodiri (1985), the variable 
permeability  k , the variable porosity   and variable effective 

thermal diffusivity    are given by 
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Where ok , o  and o  are the permeability, porosity and diffusivity 

at the edge of the boundary layer respectively, *  is the ratio of the 
thermal conductivity of solid to the conductivity of the fluid, d  
and *d  are treated as constants having values 3.0 and 1.5 
respectively. 

Substituting (6) and (7) in Equations (2) and (3), we get the 
following transformed equations: 
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where, 2
12* / oo kxF   is the local inertial parameter, oPr  

is the Prandtl number,  * is the ratio of viscosities, 
)(2

 TTCUE wpo     is the Eckert number, oo xk  2   is the 

local permeability parameter, vxUoRe  is the local Reynolds 

number and 23)( vxTTgGr w    is the local Grashof number. 

The transformed boundary conditions are: 

 ,0f       ,0f      1             at   0          (13) 

,1f         0                              as                (14) 

Once the velocity and temperature distributions are known, the 
skin friction and the rate of heat transfer can be calculated 
respectively by  

Re)0(f       and       )0(Re Nu   (15) 

where   is the skin friction and Nu is the Nusselt  number. 

3. Numerical Method 

Equations (11) and (12) constitute a highly non-linear coupled 
boundary value problem (BVP) of third and second order 
respectively. An improved numerical scheme involving shooting 
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technique with Runge-Kutta-Fehlberg method is developed to 
solve the resulting nonlinear BVP. Thus, the coupled nonlinear 
boundary value problem of third-order in f and second-order in    
has been reduced to a system of five simultaneous equations of 
first-order for five unknowns as follows (Vajravelu, 2001): 
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where ,1 ff    ,2 ff  ,3 ff   ,4 f  5f   and a prime 

denotes differentiation with respect to  . 

The boundary conditions now become 

,01 f    ,02 f     14 f         at   0        (18) 

,12 f    04 f                            as               (19) 

4. Results and Discussion 

The system of first-order differential equations (17) – (19) are 
solved numerically using shooting technique with Runge-Kutta-
Fehlberg method. In order to know the accuracy of the method 
used, computed values of )0(f   and )0(   were obtained for 

0*   and compared with those obtained by Mohammadein and 
El-Shaer (2004) in Table 1 for the variable permeability (d=3.0, 
d*=1.5) case and good agreement has been obtained with their 
results. The values tabulated in Table 1 are for 

71.0Pr,1.0,4.0  Eo  with selected values of 2ReGr , *  and 

Re*  . The slight deviation in the values may be due to the use 
of Runge-Kutta-Fehlberg method which has fifth order accuracy 
whereas, Mohammadein and El-Shaer (2004) have used fourth-
order Runge-Kutta method which has only fourth order accuracy. 
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Thus the present results are more accurate compared to their 
results. 

 

Table 2 contains the computed values of  )0(f   and )0(   for the 

selected values of Re*   and 2ReGr  and *  for uniform 
permeability (UP) and variable Permeability (VP) cases. From the 
table, it is observed that an increase in the value of *  is to increase 

the skin friction for all values of Re*  , *  and 2ReGr  for both 
UP & VP. Further, it is interesting to note the effect of * is to 
increase the skin friction whereas the rate of heat transfer 
decreases. 

 

 

 
 
 
 

 

 

*  2ReGr  Re*   
Present result Mohammadein 

and El-Shaer 

)0(f   )0(    )0(f   )0(   

 

2.0 0.2 
0.0 
0.1 
0.5 

0.611321 
0.667804 
0.846341 

0.381233 
0.386090 
0.417658 

0.61215 
0.64526 
0.75527 

0.38030 
0.38281 
0.38959 

0.5 0.0 
0.1 

0.958156 
0.987898 

0.403083 
0.406430 

0.95816 
0.97432 

0.40308 
0.40325 

2.0 0.0 2.415691 0.376339 2.31558 0.40376 
 

4.0 0.2 
0.0 
0.1 
0.5 

0.627031 
0.681575 
0.859094 

0.504676 
0.507192 
0.519451 

0.62705 
0.65772 
0.76231 

0.50459 
0.50664 
0.51242 

0.5 0.0 
0.1 

0.993653 
1.022091 

0.528672 
0.528510 

0.99206 
1.00403 

0.52979 
0.52940 

Table 1:  Results for )0(f  and )0(   for ,71.0Pr    0.0*   for 
Variable Permeability case. 
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Figure 1 depicts the velocity distribution for various values of 
second order resistance for variable permeability (VP) and uniform 
permeability (UP) cases. It is observed that, increase in the value of 
inertial parameter *  leads to an increase in the velocity profile 

within the boundary layer, while for * =0.5, the velocity coincides 
for both UP and VP cases. It is also important to note that the 
boundary layer decreases with an increase in the value of inertial 
parameter. Thus, the non- Darcian term has a very significant effect 
on the velocity distribution. Figure 2 exhibits the variation of 
velocity profiles for various values of *  for both UP and VP. It is 
clearly seen that the velocity profile increases with an increase in 

*  which is effective only for UP but its effect diminishes for small 
values of * . 

 

Re*   *  2ReGr  *  
)0(f   

                 
)0(   

       UP 
      VP 

 
        UP       VP 

0.1 

2.0 

0.0 
 
 

0.0 
0.1 
0.5 
0.9 

0.451835 
0.576676 
0.929158 
1.192470 

0.421933 
0.564654 
0.963919 
1.284032 

0.250491 
0.260377 
0.357305 
0.507254 

0.363478 
0.379063 
0.504579 
0.796314 

0.1 
 

0.0 
0.1 
0.5 
0.9 

0.584076 
0.690510 
1.007338 
1.245152 

0.549309 
0.672864 
1.036579 
1.327359 

0.260956 
0.267553 
0.288634 
0.506892 

0.376262 
0.387279 
0.412960 
0.795579 

0.2 0.0 
0.1 

0.707080 
0.798848 

0.667804 
0.776034 

0.269021 
0.273416 

0.386090 
0.393967 

2.0 0.1 2.368606 2.259598 0.291978 0.414071 

4.0 
0.0 0.1 

0.5 
0.576676 
0.929858 

0.564841 
0.963919 

0.217035 
0.351812 

0.538623 
0.731295 

0.1 0.1 
0.5 

0.700834 
1.002954 

0.671721 
1.028371 

0.222808 
0.352147 

0.545299 
0.731303 

0.5 2.0 0.2 0.0 0.937729 0.846341 0.336831 0.417658 

Table 2: Results for )0(f  and )0(   for the selected values of  
Re*   and 2ReGr  for Pr = 0.71 for uniform Permeability (UP) and 

Variable Permeability (VP) cases. 
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Figure 1: Velocity profiles for various values of second order resistance for VP and 
UP. 

Figure 2: Velocity profiles for various values of *  for VP and UP. 
 

 

 

 

 

Figure 3 shows the variation of velocity distribution for three 
values of Pr = 0.71, 3 and 10 for the case of VP. It is observed that 
the velocity profiles decrease as the Prandtl number increases 
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which is very significant in the middle of boundary layer. Further, 
it is clear that the boundary layer decreases with decrease in the 
value of Pr. 

Figure 3: Variation of velocity distribution for various values of Prandtl 
number of VP 

 
 

 
Figure 4: Temperature distribution for various values of 2ReGr  for VP 

and UP 
Figure 4 depicts the temperature distribution for various values of 
the parameter 2ReGr  for the cases of UP and VP. It is seen that 

increase in the value of 2ReGr  is to decrease the temperature 
distribution for both the cases considered. The temperature is 
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found to be less for VP as compared to UP. It is also observed that 
the effect of VP is more significant on temperature distribution for 
higher values of 2ReGr . 

Figure 5 displays the distribution of temperature for various values 
of second order resistance * for UP and VP cases. From this figure 
it is evident that the temperature profile decreases smoothly for  

1.0*   within the boundary layer whereas for higher value of *
the temperature continuously decreases and this decrease is very 
rapid. This shows that the rate of cooling is much faster for higher 
values of second order resistance in both UP and VP cases.                 

 

 

Figure 5: Temperature profiles for various values of second order 
resistance for VP and UP. 
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Figure 6: Variation of temperature distribution with   for various values 
of Pr for VP. 

 

Another interesting feature which is observed from Figure 5 is that 
the boundary layer decreases with an increase in the value of 
inertial parameter and it is more so in the case of UP as compared 
to VP for both the values of * considered. Figure 6 gives the 
variation of temperature distribution within the boundary layer for 
various values of Pr in the case of VP. The temperature profiles 
show a typical smooth decreasing pattern for Pr = 0.71 whereas, for 
higher values of Pr, the temperature continuously decreases at a 
steeper rate in the flow region and the boundary layer decreases 
with the increase in Pr. 

5.  Acknowledgement 

The authors are grateful to the Research Centre M S Ramaiah 
Institute of Technology, Atria Institute of Technology, 
Vivekananda Institute of Technology, for all the support and also 
the financial support from VTU research scheme project.  

References 

[1] Bejan A. and Poulikakos D.(1984):  “The non-Darcy regime for 
vertical boundary layer natural convection in a porous medium.” 
Internl. J. Heat Mass Transfer, vol.27, pp.717-722. 



Nalinakshi, Dinesh, Shivakumara and Chandrashekar                       ISSN 0975-3303 

50 

 

[2] Benanati R.F. and Brosilow C.B. (1962): “Void fraction 
distribution in beds of spheres.”AI Che J., vol.8,pp.359-361. 

[3] Chandrasekhara B.C. and Namboodiri P.M.S.(1985): “Influence 
of variable permeability on combined vertical surfaces in porous 
medium.” Internl. J. Heat Mass Transfer, vol.28,pp.199-206. 

[4] Chen K.S. and Ho J.R.(1988): “Effects of flow inertia on vertical 
natural convection in saturated porous media.” Internl. J. Heat Mass 
Transfer ,vol.29,pp.753-759. 

[5] Cheng P.(1978): “Heat transfer in geothermal systems,” Adv. 
Heat Transfer,vol.4,pp.1-105. 

[6] Cheng P. and Minkowycz W.J.(1977): “Free convection about a 
vertical plate embedded in a porous medium with application to 
heat transfer from a dike.”J. Geophys. Res.vol.82, pp.2040-2044. 

[7] Hady F.M., Bakier A.K. and Gorla R.S.R.(1996): “Mixed 
convection boundary layer flow on a continuous flat plate with 
variable viscosity.” Heat mass Transfer, vol.31, pp.169-172. 

[8] Hassanien I.A., Bakier A.Y. and Gorla R.S.R.(1998): “Effects of 
thermal dispersion and stratification on non-Darcy mixed 
convection from a vertical plate in a porous medium.”Heat Mass 
Transfer,vol.34,pp.209-212. 

[9] Hong J.T., Yamada Y. and Tien C.L.(1987): “Effect of non-
Darcian and non-uniform porosity on vertical plate natural 
convection in porous media.” Internl. J. Heat Mass Transfer, vol.109, 
pp.356-382. 

[10] Hsieh J.C., Chen T.S. and Armaly B.F.(1993): “Non-similarity 
solutions for mixed convection from vertical surfaces in porous 
medium with variable surface temperature or heat flux.” Internl. J. 
Heat Mass Transfer, vol.38,No.4, pp.1485-1493. 

[11] Hung C.I. and Chen C.B.(1997): “Non-Darcy free convection in 
a thermally stratified porous medium along a vertical plate with 
variable heat flux.” Heat and Mass Transfer, vol.33,pp.101-107. 

[12] Kumari M., Pop I.and Nath G.(1990): “Non – Darcian effects on 
forced convection heat transfer over a flat plate in a highly porous 
medium.” Acta Mechanica, vol.84, pp.201-207. 



Mapana J Sci, 10, 2(2011)        Mixed Convection Heat Transfer from a Vertical Heated Plate 

51 

 

[13] Lai F.C. and Ku lacki F.A. (1987): “Non-Darcy convection from 
horizontal impermeable surface in saturated porous medium.” 
Internl. J. Heat Mass Transfer, vol.30, pp2189-2192. 

[14] Lai F.C. and Kulacki F.A.(1991): “Non – Darcy mixed 
convection along a vertical wall in a saturated porous medium.” 
Internl.J.Heat Mass Transfer,vol.113, pp.252-255. 

[15] Merkin J.H.(1980): “Mixed convection boundary layer flow on 
a vertical surface in a saturated porous medium.” J. of Engineering 
Mathematics,vol.14,No.4,pp.301-313. 

[16] Mohammadein A.A. and El-Shaer N.A. (2004): “Influence of 
variable permeability on combined free and forced convection flow 
past a semi – infinite vertical plate in a saturated porous medium.” 
Heat Mass Transfer, vol.40, pp.341-346. 

[17] Nakayama A.and Koyama H. (1987): “Effect of thermal 
stratification on free convection within a porous medium.” J. 
Thermophysics Heat Transfer, vol.1,pp.282-285. 

[18] Nield D.A. and Bejan A.(1999): Convection in porous media. 
Springer verlag. 

[19] Plump O.A. and Huenefeld J.C. (1981): “Non – Darcy natural 
convection from heated surfaces in saturated porous media.” 
Internl. J. Heat Mass Transfer, vol.24, pp.765-768. 

[20] Schwartz C.E. and Smith J.M. (1953): “Flow distribution in 
packed beds.” Ind. Eng. Chem., vol.45, pp.1209-1218. 

[21] Vajravelu K. (2001): “Viscous flow over a nonlinear stretching 
sheet.” Applied Math. Computation, vol.124, pp.281-288. 

 

 

 

 

 

 

 




