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Thermal convection of a Oldroyd-B
nanofluid with magnetic effect: Linear and
weakly nonlinear analyses

Abhishek Kumar® and Mala*

Abstract

Onset of convection in a horizontal layer with Oldroyd-B
nanofluid investigated. The normal mode technique has
been employed to work out the non dimensional
governing equations and this leads to eigenvalue problem.
The free-free boundary conditions have been considered.
The analytical expressions of stationary and oscillatory
Rayleigh numbers are obtained using one term Galerkin
method. Critical values of Rayleigh number for the
prescribed values of other parameters are obtained. From
linear theory, it is proved that the Hartmann number and
Prandtl number has stabilizing effect on the flow.
Amplitude equation is derived in weakly nonlinear
analysis. Heat transport is studied by calculating Nusselt
number using amplitude. Keywords: Nanofluid, Thermal
convection, Casson model, Linear analysis, nonlinear
analysis.

Keywords: Nanofluid, Thermal convection, Casson model, Linear analysis,
nonlinear analysis.

1. Introduction

Nanofluids are formed by dispersing a small quantity of metallic or non-
metallic nanoparticles into a conventional base fluid. The term "nanofluid’
specifically denotes a liquid containing a suspension of solid particles at the
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nanometer scale. The term was coined by Choi[1]. The characteristic feature
of nanofluids is thermal conductivity enhancement, a phenomenon
observed by Masuda et al. [2].

This phenomenon suggests the possibility of using nanofluids in
advanced nuclear systems by Buongiorno and Hu [3]. The Bnard problem
(the onset of convection in a horizontal layer uniformly heated from below)
for a nanofluid was studied by Tzou [4-5] and Nield and Kuznetsov[6] on
the basis of the transport equations of Buongiorno [7]. The corresponding
problem for flow in a porous medium (the HortonRogersLap wood
problem) was studied by Nield and Kuznetsov [8] using the Darcy model.

Nowadays, the Casson fluid model is widely employed in the food
industry, particularly by cocoa and chocolate manufacturers, to describe
and analyze the rheological behavior of chocolate. Moreover, these days the
Casson model is also used for developing the rheological model for human
blood [9-12]. Some researchers [13-15] propounded that for blood flowing
through small vessels, there is an erythrocyte-free plasma (Newtonian)
layer adjacent to the vessel wall and a core layer of a suspension of all
erythrocytes (non-Newtonian). It has been pointed out both by Scott Blair
[16] and lida [17] that though it is possible to model the blood flow by both
Casson fluid model and HerschelBulkley fluid over the range where both
models are valid, Casson fluid model is well suited and simple to apply for
blood flow problems.

Many researchers [18-21] have wused Casson fluid model for
mathematical modelling of blood flow through narrow arteries at low shear
rates for different flow situations. Therefore, it is reasonable to model the
blood in the core region of the two-fluid blood flow system as a Casson
fluid. In recent years, nanoparticles have found extensive applications in
the treatment of various diseases. In particular, gold nanoparticles are
utilized in cancer therapy due to their relatively larger size and strong
energy absorption capacity. Moreover, nanoparticles influence the heat
transfer mechanism between the heart and the body surface through blood
convection. Consequently, the study of convective instability of blood in
the presence of nanoparticles plays a vital role in the medical field,
contributing to advancements in healthcare practices.

As observed in the literature magnetic effect on Casson nanofluid is not
studied. Moreover, the above studies concern with linear analysis of Casson
nanofluid. The present article have been considered conservation equations
for blood flow which are modeled by Casson nanofluid. The free-free
boundary conditions have been considered. The equations have been
solved by one term Galerkin method. The Rayleigh number is expressed in
terms of various parameters.
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2. Mathematical formulation

Thermal convection of a Oldroyd-B nanofluid

Consider a heated, infinitely thin, horizontal layer of Oldroyd-B nanofluid
with thickness d that is confined by the planes z= 0 and z = d. The volumetric
fraction ¢ and temperature T of nanoparticles are assumed to be Toand ¢,
atz=0and Tiand ¢, at z = d, respectively (To>T1) (see Fig. 1). The assumed

reference temperature is T1.

lg=(0.0.-g)

A
T=TI (I)=(I)1 N s
. =T, O=d, X

Figure 1: Physical Configuration.
We consider stress tensor of Casson fluid as

2 (MB +v%) e if m < mg;
2 ([lB + \/ZLTL'C> el-j if > ¢

Where

ug — dynamic viscosity, p, — yield shear stress,
e;; —rate of deformation tensor, T = ejej,

. — critical value of m

The governing equations are [22-24]:
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V.v=0 ()

(1472 ) (po 3+ po(V-V) V = [dpy, + (1 = $)po(1 = BT —T1))]g +

VP— oy(V x By8,) = u(1+ 1,2 V2V, 3)
24+ (V.V)¢ = DpV?¢ + V7T, @)
1
(pO)f |5+ V. VT| = V2T + (p0),, [DyV VT + 2VT.VT] )
PEr ot : PCp [FbVEP - N
where
V= (u%, v¥, w*) = Velocity,t = Time, P = Pressure,
@ = Volume fraction, T = Temperature
u = Viscosity,
g = Gravity,

k = Thermal conductivity, p = Density,
pc = Heat capacity, Q, = Volumetric heat source.
Dy, = Dif fusion coef ficient of Brownian, D, = Thermophoresis dif fusion coef ficient

A, = 1, = Relaxation times of the fluid

The boundary conditions are
T = T0,¢= ¢0 atZ=0, (6)
T = T1,¢= ¢1 atZ=d, (7)

The basic state is described by

AT

v, =0,y =0Ty = To— ()2 ®)

We define the following non-dimensional parameters:
ast p' d*p

7 ’ "N _ l - 27 -
(x,y:Z)— d(xlylz)l t dz’ Ilaf’
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d T—T —
W, v',w)=—wvw), T = L ¢ = M’
ar To—Th b1 — o
k
o = ———,
! (pep)f
where a = —.
pC
Hence, Egs. 2 - 5 are modified as
V.V =0, 9)

d 1 [ov’ R ‘A ' A
(1 + Al a) (FT (W + (V’.V’)V’) —-V'P + Rmez — RaT e, + Rn(,b e,
— Ha?[(V' x é,) x éz]>
= (1+ y) a) vy’ 10
- Zat ’ ( )
i / / r_ﬂ 127 i 12 4.1
(at,+(V.V)>¢ =Magep g Lyzg 1)
(6 + .V )T'
FRAURD

— VrZTr +&(V7T7 V7¢r)
L, '

NANB 4 ! ! !
+ V'T VT, (12)
Le
w=0,D*W=0,¢=0T=0:7=0,1 (13)
where
TS — T4
Ry = progK3py (O—al),Rayleigh number

f
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a
L, = —f,LBWiS number
Dy

P. = L, Prandtl number
pag

,Modified particle density increment

N, = (p0), (¢>op—c¢>1)

N _ D¢ Ty —T7)
Dy Ti(¢; — d5)

r — (PrPotPro(—¢o)
m uay

,Modified dif fusivity ratio

) gK3, basic density Rayleigh number

(Pp — Pro) (D1 — dg) 9K

R =
n ua;

3 nanoparticle Rayleigh number

_ O'lBgdZ

a? , Hartmann number

/11af
1 = dz 4

La
2 = dz 4

stress relaxation number

strain retardation number

(14)

3. Linear stability analysis

To study the linear theory, we consider the linear parts of Eq. (13)-(16).
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(1 + 1 at) ( L2 L Yp + Re, — R,Te, + Rype, — HA2[(V' X 6,) X éz]) =
(1+2,2)v2, (15)

&~ w+v2T + Yy vr + Yeloyr yr (16)
at Le Le

9 _ L y24 4 Nay2

at_Lev¢+LeVT' (17)

w=0,D*w=0,¢=0T=0atZ=0,

w=0,D*w=0,¢=0T=0atZ=1. (18)
Again taking the third component of double curl of 15

] ]
A V2w — (1 + s )HaZDZW + (1 + A5 )v (RaT —Rng) =0,  (19)

Where A, = (1 + 4, 5) (1 + 4 at) L2

Pr 0t

Let wus consider the normal mode solution (W,T,¢) =
(W, 6, p)ze My +wt jnto the Egs. 19, 16, and 17

(€@ + )02 = ) - (1 + i) 2) (07 - g2 - (1 +

Miw)Ha?D*)W (20)
+(1 + A4 iw)(Rng®¢ — Raq?6) = 0, (21)
(iw—(Dz—q) TDp+2%2D )9—W+D¢=O, (22)
(i~ 5 02 ~a) b~ 12 (0 = gD)6 =0. (23)
W=D"=0=¢=0:2=0,1 (24)
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Boundary conditions chosen here allow one to apply the one-term Galerkin
method to obtain the analytical expressions for steady and overstable
Rayleigh numbers. We choose the solution in the form of

(W, 9, ¢)) = (W(), 00, d)o) sinllz. (25)

where W, 0y, ¢ are unknowns. On substituting the above solution in Egs.
20 to 23, we get a system of equations in three unknowns coefficients

W,, 6y, ¢. After eliminating these unknown coefficients, we obtain
the expression for Rayleigh number as

_ (a1w*+azw?+az)+iw(b;w?+by)

Ra Prq282(Lw?+1)

(26)
Where,

al = _6412,
a, = —NaPrq?Rné213 + §*(—1 + Ha?1?PrA?) + Pré&®(4, — A,) + Pr&éa,A,,
as = Pré6%(—Nag?Rn + Ha?T%8% + 6°),
b, = 4 (—LePrq?RnA, + Ha*NI*Pr&§?A, + 8%(A, + Pry)),
b, = (—LePrqun + Ha?N?Pr&%4, + 6%(1 + Pr(1 + 6%(—A, + Az)))).

On substituting w = 0, one obtains the Ra for stationary convection as

2 6
Ray,. = —RnNa + Ha?II2 j—z + ‘;—2 (27)
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650 .
] 1 Z Ha ! 4 5

Figure 2: Change of Rag, with Ha*for Na=0.5.

For Newtonian liquids, without the Coriolis effect, the above formula
becomes

56

Rag = (28)

Which is well agreed with Chandrasekhar [25].

To determine the Rayleigh number for oscillatory convection, the roots
of the imaginary part are first obtained. Substituting these roots into the
real part of the Rayleigh number yields the critical Ra for oscillatory
convection.

4. Weakly nonlinear analysis

To analyze the nature of convective motion, the weakly nonlinear theory is
employed. For this purpose, we consider the non-dimensional equations
including the nonlinear terms, given as:

33



Mapana - Journal of Sciences, Vol. 24, No. 3

ISSN 0975-3303

715

714

712

1

710

709

234

0.2
Figure 3:

04 Na

06

0.8

Change of Ra$,with Na for Ha® = 2.

232 |
230
Ra’,
228 |

226 |-

224 |-

kY
Na=0.2,0.4,0.6

0.0

Figure 4: Change of Ra, with Ha’ for the fixed values of Pr=15,4; = 0.4,1, = 0.5,and Rn = 2.
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Figure 5: Change of Ra$, with A, for the fixed values of Pr =5, Ha’ = 2, ., = 0.5, and Na = 0.5

600
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Figure 6: Change of Ra$, with X, for the fixed values of Ha’=5, Rn =5, %,=0.5, and Na=0.5

(1+2,5) (5 (5 + (V.9)V) = VP +Ryé, — RaTe, + Ry¢é, -

Pr
Ha?[(V x &) x &,]) = (14 2, 2) V2V, (29)
(Z+@v.m)e=22v2r+ Lv2g, (30)

Thermal convection of a Oldroyd-B nanofluid
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Nal
T.VT
12 (vr V7,

(%+ (V.V))T =w+ VT + IZ—E(VT-W)) +
(31)

To study the weakly nonlinear behaviour, we employ multiple scale analysis. The

governing equations, after eliminating T and ¢, can be written as:

Lw=N (32)
Where,
] .,
L= AyBy,Cy V2 — (1 + 2 E) Ha?B,,Cy,D? + (1 + E) VZRaCy,,
4 2 9 2 9 2 4 2 Na 2
N= Ny — (1 + 1, 5) VZRaN,, + (1 + A4 E) VZRnBy;Nas + (1 + A4 E) VZRnB;; Ny + (1 + 1, 5) VRRR T2V,
A —(1+)L a)vz (1+/1 a)la
e 20t 1ot) prot
By = 9 V2, C 9 ! V2
T I Tot Le
-1 a
Nyy = F(l +’11E)VX Vx (V.V)V.é,,
Np N,Np
Npz = =(V. DT + V2T + 7 (VT.V) + == (VT.VT),
N3z = —(V.V)¢p

We write u, v, w, T and ¢ as,

u = euy + €*uy + Euy + -,
v = evy + €2v, + 3y + -,
W= ew, + €wy + 3w, + -,
T = €Ty + €Ty + €T, + -+,
¢ =¢€pot P+ D, + 0,
(33)
Where,
EZ __ Ra—Ragc

=—=K1

Rag,
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The first approximations are,

i iqsex
Uy = — [Ae Isc*cosllz — c.c]

qSC

wo = [Ae'se*sinllz + c.c|,

1 .
To =5z [Aetdse¥sinllz + c.c],

Na . )
¢o =5 [Aetdse*sinllz + c. |

Where,

{A =AX,Y,Z,T) — amplitude,
c.c.—complex conjugate

In our analysis, we proceed to scale the slow variables (X, Y, Z, and T) in

the following manner,

1
X = ex, Y = ezy, Z =z,

Based on these scalings, the differential operators are expressed as:

0 o, 0
—_ — J—
ox ox ‘ox
0 0 10
_ J—
ay oy oy

a0
9 _ 9
dz az’

9 20

at—>e o (35)

37



Mapana - Journal of Sciences, Vol. 24, No. 3 ISSN 0975-3303
By using Eq. (35), the operators L and N of Eq. (32) can be written as,
L=Ly+ €L, + €L, ..,

N =Ny + el + €20, ... (36)

On putting Eq. (36) into Eq. (32), one obtains the following system,

Lowo =0 (37)
Lowl + £1WO = .Nz), (38)
Lowz +£1w1+ LZWO =.N1 (39)
Where,

Ly = —iVZRaV2 - iVz NaRnv? — iHa2 (i)z (V3)?% + i(VZ)4
0 Le " Le " Le 0z Le ’

_ 5 90 6 _ _ w2 2
Ly=2-—= <4v V2(Ra + NaRn) — V (Ra+NaRn+2Ha (a ) ))

)

OT LePr

V2Ha?Pri, (:) )+ 2L (Vzpr <(1 t LoHa? (a)z _

VZA(Ra + NaRn)) + V8Pr,12> +—= <(4V6 — V% (Ra+

) = ( —Ve(1 + Pr + LePr) + LePrRaVi —

0X? Le

_y2 2 (2 L P

NaRn) —V (Ra + NaRn + 2Ha ( aZ) )) + (2 — ax) - (6v
—at (2

(Ra+ NaRn) — Ha (az) )

Let us substitute the solution Lyw, = 0 and one obtains,

Ra,, = —RnN, + Ha?n? % + & (40)

which is well agreed with stationary Rayleigh number. From the equation

Lowy + Liwy = Ny, Ny = 0and Lywy = 0. The equation reduces to,
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w; =0, (41)
u, =0, (42)
Ty = —|Al*sin2mz. (43)
1 =22 (2 + 1) |4 sin2nz (44)

When these solutions are substituting into Equation (39), we derive the
Newell-Whitehead equation in the following manner:

24 a i 9%)?
G54 (Gr—303) A= GA+GIAPA=0 (45)

Where,

&= L:Pr (6°(1 + Pr + LePr) — LePrRaq? — Ha?Pri,6°n?) —

— (82Pr(q?A,(Ra + NaRn) + (1 + Le)Ha?n?) — PrA,6°), (46)

4= i (66* — (Ra + NaRn) + Ha*r?), (47)
{, = Raq?s’, (48)
{3 =2 [Ra + RnNa] (49)

In order to find the maximum amplitude we consider only the x-
dependence terms in Eq. (45),

d?a | ¢ ¢ 2 _
m+§(1—5|A|)A_0 (50)
~ A(X) = Aytanh (/\io) (51)
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Where,

1
2

Ay = (%) ,

1
w2

5. Heat transport by convection

From Eq. (32), we obtain the maximum of steady amplitude (|4;,4x1) as,

BN
€°0;\?
A =(—
|max| ((3)

0.8 |

NUJ,S B

04

02

0.0
05

Figure 7: The figure is plotted for fixed values of Le=2, Pr=5,Rn=0.2, Na=2,, =04,k =0.5,
and Ha’ = 2.

Hence,

€2
Nu=1+ o |Apal®
Sc
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is Nusselt number. From Eq. (37), we obtain convection for R>Rrg, and
conduction for R < Ry, . From Eq. (32), is valid for {3 > 0 which is possible
when R>Ry, , this we get,

1) convection for Nu > 1,

2) convection for Nu>1 (see in Figure 7).

6. Results and Conclusions

This section presents a discussion of the results. In this part, we evaluated
an analytical study of magnetic effect on the onset of convection of a
Oldroyd-B nanofluid. The critical Rayleigh number at the onset of
stationary (Ra$.) and oscillatory (Rag.) convection is obtained for the
prescribed values of the physical parameters.

In Figs. 2-3, we show the change of critical Ra,, with different physical
parameters. Fig. 2 shows the relation between critical Ray. and Ha?. The
threshold value of Ra is an increasing function of Ha?. A higher Hartmann
number shows that strength in a magnetic field, which will enhance the
stability of the fluid layer, leads to a delay in the convection, so a higher
temperature difference (higher critical Ra,.) is needed to trigger convective
motion. Variation of Rag, with Na is shown in Fig. 3. It is evident thatas Na
increases, the critical Rag.also increases, indicating the stabilising effect.
Furthermore, in Figs. 2-3, the destabilising nature of Rn on steady instability
has been also observed.

Stationary Rayleigh number is independent of Pr, A1, and A, which can
be seen in Eq. 27. Hence, Pr, A1, and ;> do not effect the stationary instability.

In Figs. 4-6, variation of critical Ra,. with different physical parameters
has been displayed. The effect of Ha?and Na on critical Ra, is shown in Fig.
4. As Ha? increases critical Ra,. increases whereas on increasing the
parameter Na, critical Ra,. decreases. Hence Ha?(Na) has stabilising
(destabilising) effect on oscillatory convection.

Critical Ra,, is monotonically decreasing function of Pr and Rn, which
has been evident from Figs. 5-6. Hence, as increasing the value of Pr and Rn
advances the onset of convection. Moreover, a non-monotonic trend of Ra§,
with A, and 2. As increasing the value of A1, and )\, critical Ra,, initially
increases gradually later it decreases.
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7. Conclusions

The problem of convective instability of a Oldroyd-B nanofluid with
magnetic effect is considered in this paper. Both linear and weakly
nonlinear analyses are studied. One term Gallerkin approach is used to
study the linear theory whereas multiple scale analysis is used to study the
weakly nonlinear theory. From the results we conclude that Pr, A1, and \»
does not shown any effect on stationary convection. Moreover, Rn and Na
has destabilizing effect on system whereas Hartmann number and Prandtl
number has stabilizing effect on the flow. Critical Ra,, is non-monotonic
function of A, and X\». In weakly nonlinear analysis, a multiple scale
approach is used to derive amplitude equation. Heat transport is studied
by calculating Nusselt number using amplitude.
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