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Abstract 

Onset of convection in a horizontal layer with Oldroyd-B 
nanofluid investigated. The normal mode technique has 
been employed to work out the non dimensional 
governing equations and this leads to eigenvalue problem. 
The free-free boundary conditions have been considered. 
The analytical expressions of stationary and oscillatory 
Rayleigh numbers are obtained using one term Galerkin 
method. Critical values of Rayleigh number for the 
prescribed values of other parameters are obtained. From 
linear theory, it is proved that the Hartmann number and 
Prandtl number has stabilizing effect on the flow. 
Amplitude equation is derived in weakly nonlinear 
analysis. Heat transport is studied by calculating Nusselt 
number using amplitude. Keywords: Nanofluid, Thermal 
convection, Casson model, Linear analysis, nonlinear 
analysis. 

Keywords: Nanofluid, Thermal convection, Casson model, Linear analysis, 
nonlinear analysis. 

1. Introduction 

Nanofluids are formed by dispersing a small quantity of metallic or non-
metallic nanoparticles into a conventional base fluid. The term ’nanofluid’ 
specifically denotes a liquid containing a suspension of solid particles at the 
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nanometer scale. The term was coined by Choi[1]. The characteristic feature 
of nanofluids is thermal conductivity enhancement, a phenomenon 
observed by Masuda et al. [2].  

This phenomenon suggests the possibility of using nanofluids in 
advanced nuclear systems by Buongiorno and Hu [3]. The Bnard problem 
(the onset of convection in a horizontal layer uniformly heated from below) 
for a nanofluid was studied by Tzou [4-5] and Nield and Kuznetsov[6] on 
the basis of the transport equations of Buongiorno [7]. The corresponding 
problem for flow in a porous medium (the HortonRogersLap wood 
problem) was studied by Nield and Kuznetsov [8] using the Darcy model. 

Nowadays, the Casson fluid model is widely employed in the food 
industry, particularly by cocoa and chocolate manufacturers, to describe 
and analyze the rheological behavior of chocolate. Moreover, these days the 
Casson model is also used for developing the rheological model for human 
blood [9-12]. Some researchers [13-15] propounded that for blood flowing 
through small vessels, there is an erythrocyte-free plasma (Newtonian) 
layer adjacent to the vessel wall and a core layer of a suspension of all 
erythrocytes (non-Newtonian). It has been pointed out both by Scott Blair 
[16] and Iida [17] that though it is possible to model the blood flow by both 
Casson fluid model and HerschelBulkley fluid over the range where both 
models are valid, Casson fluid model is well suited and simple to apply for 
blood flow problems. 

Many researchers [18-21] have used Casson fluid model for 
mathematical modelling of blood flow through narrow arteries at low shear 
rates for different flow situations. Therefore, it is reasonable to model the 
blood in the core region of the two-fluid blood flow system as a Casson 
fluid. In recent years, nanoparticles have found extensive applications in 
the treatment of various diseases. In particular, gold nanoparticles are 
utilized in cancer therapy due to their relatively larger size and strong 
energy absorption capacity. Moreover, nanoparticles influence the heat 
transfer mechanism between the heart and the body surface through blood 
convection. Consequently, the study of convective instability of blood in 
the presence of nanoparticles plays a vital role in the medical field, 
contributing to advancements in healthcare practices.  

As observed in the literature magnetic effect on Casson nanofluid is not 
studied. Moreover, the above studies concern with linear analysis of Casson 
nanofluid. The present article have been considered conservation equations 
for blood flow which are modeled by Casson nanofluid. The free-free 
boundary conditions have been considered. The equations have been 
solved by one term Galerkin method. The Rayleigh number is expressed in 
terms of various parameters. 
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2. Mathematical formulation 

Consider a heated, infinitely thin, horizontal layer of Oldroyd-B nanofluid 
with thickness d that is confined by the planes z = 0 and z = d. The volumetric 
fraction  and temperature T of nanoparticles are assumed to be T0 and  

at z = 0 and T1 and  at z = d, respectively (T0 > T1) (see Fig. 1). The assumed 
reference temperature is T1. 

 

 

 

 

 

 

 

 

 

Figure 1: Physical Configuration.

 

We consider stress tensor of Casson fluid as 
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The governing equations are [22-24]: 
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The boundary conditions are 

=  , = = 0, (6)

=  , = = , (7)

 

The basic state is described by 

  

= 0, = 0, = (8)

We define the following non-dimensional parameters: 

( , ,  ) =  ( , , ),            =  ,                   =  ,  
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( , , ) =  ( , , ),         =  
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where =   . 

 

Hence, Eqs. 2 – 5 are modified as   
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3. Linear stability analysis

To study the linear theory, we consider the linear parts of Eq. (13)-(16).
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1 + + + + [( × ) × ] =

1 + , (15)

 

= + +  . +  .   ,    (16) 
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= 0, = 0, = 0, = 0  = 0,  

= 0,  = 0, = 0, = 0  = 1.       (18) 

 

Again taking the third component of double curl of 15 

 

1 + + 1 + ( ) = 0,          (19) 

Where 11 = 1 + 2
2 1 + 1

1
. 

Let us consider the normal mode solution ( , , ) =

( , , ) ( )  into the Eqs. 19, 16, and 17 

 

 

((1 + )( ) (1 + ) ( ) (1 +
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+(1 + )( ) = 0,      (21) 
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( )  ( ) = 0.     (23) 

=  = =  = 0: = 0, 1    (24) 
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Boundary conditions chosen here allow one to apply the one-term Galerkin 
method to obtain the analytical expressions for steady and overstable 
Rayleigh numbers. We choose the solution in the form of 

 

( , , ) = ( , , ) sin z.      (25) 

 

where , ,  are unknowns. On substituting the above solution in Eqs. 
20 to 23, we get a system of equations in three unknowns coefficients 

, , . After eliminating these unknown coefficients, we obtain 
the expression for Rayleigh number as 
 

=  
( )

( )
    (26) 

 

Where, 

 

=  ,                                                                             

=  + ( 1 + ) + ( ) + ,

= ( + + ),

= + + ( + ) ,

= + + 1 + Pr 1 + ( + ) .

 

 

On substituting = 0,  one obtains the Ra for stationary convection as 

= + + (27)
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Figure 2: Change of with H for Na = 0.5.

For Newtonian liquids, without the Coriolis effect, the above formula 
becomes 

=        (28) 

 

Which is well agreed with Chandrasekhar [25]. 

To determine the Rayleigh number for oscillatory convection, the roots 
of the imaginary part are first obtained. Substituting these roots into the 
real part of the Rayleigh number yields the critical Ra for oscillatory 
convection. 

 

4. Weakly nonlinear analysis

To analyze the nature of convective motion, the weakly nonlinear theory is 
employed. For this purpose, we consider the non-dimensional equations 
including the nonlinear terms, given as: 
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Figure 3: Change of with Na for Ha2 = 2. 

 

  

 

 

 

 

 

 

 

Figure 4: Change of with Ha2 for the fixed values of Pr = 5, = 0.4, = 0.5, = 2.
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Figure 5: Change of with 1 for the fixed values of Pr = 5, Ha2 = 2, 2 = 0.5, and Na = 0.5

  

 

 

 

 

 

 

 

Figure 6: Change of 1 for the fixed values of Ha2= 5, Rn = 5, 1 = 0.5, and Na = 0.5
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+ ( . ) = +  + (  . ) + (  . ),

(31) 

To study the weakly nonlinear behaviour, we employ multiple scale analysis. The 

governing equations, after eliminating T and , can be written as: 

 =         (32) 

Where, 

= 1 + + 1 + ,                                                                              

=  1 + + 1 + + 1 +  + 1 + ,
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1

,                 
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We write u, v, w, T and  as,   

 

= + + + , 

= + + + , 

= + + + ,
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(33) 

Where, 

   = 1 
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The first approximations are,

= .  

= sin + . , 

=
1

sin + . , 

= sin + .  

          (34) 

Where, 

 

= ( , , , ) ,
. .  

  

 

In our analysis, we proceed to scale the slow variables (X, Y, Z, and T) in 
the following manner, 

 

= , =  , = ,                 = ,  

 

Based on these scalings, the differential operators are expressed as: 

+ ,

+ ,

 , 

. (35)
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= + + …,

= + + … (36)

 

On putting Eq. (36) into Eq. (32), one obtains the following system,

 

= 0        (37) 

+ = ,       (38) 

+ +  = .     (39) 

 

Where, 

=
1 1 1

( ) +
1

( ) , 

= 2 4 ( + )  + + 2 ,  

 

= (1 + + ) +

+  (1 + )

( + ) + + (4 ( +

) + + 2 + 2 6

( + )

Let us substitute the solution = 0 and one obtains,

= + + ,       (40) 

which is well agreed with stationary Rayleigh number. From the equation 

+ =  , = 0 and  = 0. The equation reduces to, 
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= 0,       (41) 

= 0,       (42) 

= | | 2 .     (43) 

= + 1 | | 2 (44)

 

When these solutions are substituting into Equation (39), we derive the 
Newell-Whitehead equation in the following manner:  

 

 + | | = 0  (45) 

 

Where,  

 

= ( (1 + + ) )

( Pr ( ( + ) + (1 + ) ) ),   (46) 

 

= (6 ( + ) + ),      (47) 

 

2 = 2 2, (48)

3 =
2

2
[ + ]      (49)   

In order to find the maximum amplitude we consider only the x-
dependence terms in Eq. (45), 

 

+ 1 | | = 0 (50)

 

( ) = tanh       (51) 
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Where, 

= ,

=
2

 

 

5. Heat transport by convection 

From Eq. (32), we obtain the maximum of steady amplitude (| |) as, 

 

| | =  

 

 

 

 

 

 

 

 

 

 

 

Figure 7: The figure is plotted for fixed values of Le = 2, Pr = 5, Rn = 0.2, Na 1 2 = 0.5, 
and Ha2 = 2.

 Hence,  

  = 1 +  | |  
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is Nusselt number. From Eq. (37), we obtain convection for R>  and 
conduction for . From Eq. (32), is valid for > 0 which is possible 
when R> , this we get,

1) convection for Nu > 1, 

2) convection for  (see in Figure 7). 

 

6. Results and Conclusions 

This section presents a discussion of the results. In this part, we evaluated 
an analytical study of magnetic effect on the onset of convection of a 
Oldroyd-B nanofluid. The critical Rayleigh number at the onset of 
stationary ( )  and oscillatory ( )  convection is obtained for the 
prescribed values of the physical parameters. 

In Figs. 2-3, we show the change of critical  with different physical 
parameters. Fig. 2 shows the relation between critical  and . The 
threshold value of Ra is an increasing function of . A higher Hartmann 
number shows that strength in a magnetic field, which will enhance the 
stability of the fluid layer, leads to a delay in the convection, so a higher 
temperature difference (higher critical ) is needed to trigger convective 
motion. Variation of  with  is shown in Fig. 3. It is evident that as  
increases, the critical also increases, indicating the stabilising effect. 
Furthermore, in Figs. 2-3, the destabilising nature of Rn on steady instability 
has been also observed.  

Stationary Rayleigh number is independent of 1 2, which can 
be seen in Eq. 27. Hence, 1, and 2 do not effect the stationary instability.

In Figs. 4-6, variation of critical with different physical parameters 
has been displayed. The effect of and Na on critical  is shown in Fig. 
4. As increases critical increases whereas on increasing the 
parameter Na, critical decreases. Hence ( ) has stabilising 
(destabilising) effect on oscillatory convection.  

Critical is monotonically decreasing function of Pr and Rn, which 
has been evident from Figs. 5-6. Hence, as increasing the value of Pr and Rn 
advances the onset of convection. Moreover, a non-monotonic trend of 

1 2 1 2, critical  initially 
increases gradually later it decreases.  
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7. Conclusions 

The problem of convective instability of a Oldroyd-B nanofluid with 
magnetic effect is considered in this paper. Both linear and weakly 
nonlinear analyses are studied. One term Gallerkin approach is used to 
study the linear theory whereas multiple scale analysis is used to study the 
weakly nonlinear theory. From the results we conclude that Pr, 1 2 
does not shown any effect on stationary convection. Moreover, Rn and Na 
has destabilizing effect on system whereas Hartmann number and Prandtl 
number has stabilizing effect on the flow. Critical  is non-monotonic 

function of 1 2. In weakly nonlinear analysis, a multiple scale 
approach is used to derive amplitude equation. Heat transport is studied 
by calculating Nusselt number using amplitude. 
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