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Bounds on Distance Difference Dominating 
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Abstract 

This work defines distance difference dominating matrix 
of graph and estimates characteristic values of distance 
difference dominating matrix. The summation of absolute 
eigen/characteristic values of graph's distance difference 
dominating matrix yields distance difference dominating 
energy of simple connected graph. The properties of 
distance difference dominating eigen values are analysed. 
The boundaries of distance difference dominating energy 
are established. 

Keywords: Eigen values, distance difference dominating matrix, distance 
difference dominating energy. 
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1. Introduction 

The concept of graph energy, which was first put forth by Gutman[6] in the 
framework of molecular orbital theory, has developed into a substantial 
area of research within spectral graph theory. Let 𝒢 be simple un-directed 
graph with vertex set 𝕍 = {𝔳1, 𝔳2, ⋯ , 𝔳ℓ} and edge set 𝔼 = {𝔢1, 𝔢2, ⋯ , 𝔢𝑡}. The 
adjacency matrix of 𝒢  is given by 𝐴 = (𝑎𝓍℘) . Assuming in decreasing 

sequence, the characteristic values of 𝒢 are 𝜆1, 𝜆2, . . . , 𝜆ℓ of 𝐴. Given that 𝐴 is 
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symmetric and real matrix, eigen/characteristic values of matrix are real 
and have a total of 0. The summation of the absolute eigen/characteristic 
values of graph defines the energy 𝐸(𝒢) which is given by 

𝐸(𝒢) = ∑ |ℓ
𝓍=1 𝜆𝓍|. 

The fundamentals of domination in graphs are discussed by Teresa W. 
Haynes, Stephen Hedetniemi, and Peter Slater[7]. A set 𝑀 ⊆ 𝕍  is a 
dominating set if each vertex in the set 𝕍\𝑀 is connected to a vertex in 𝑀. 
Dominating set with least number of vertices is known as minimum 
dominating (min-dominating) set. Domination number, denoted by 𝛾𝐷2(𝒢), 
is least number of vertices within every dominating set of a graph. The 
𝛾𝐷2(𝒢)-set of 𝒢 is the minimal dominating set with 𝛾𝐷2(𝒢) vertices. 

In recent decades, energies based on domination have attracted notable 
attention due to their capacity to represent both localized control and 
broader influence within networks. This research builds upon earlier 
foundational studies in distance energy [9], dominating energy[4,8] as well 
as it bounds[10], and recent developments concerning distance difference 
parameters [2,13].  

The aim of this article is to investigate the theoretical computation of 
characteristic polynomial and energy of distance difference dominating 
matrix 𝐴𝐷2(𝒢), analyse its characteristics across different types of graphs, 
and present significant findings related to bounds on 𝐸𝐷2(𝒢) along with 
properties of eigen values. 𝐸𝐷2(𝒢)  not only extends classical energy 
concepts from adjacency and Laplacian matrices to dominating matrices 
but also introduces a distance-aware fairness perspective into domination 
theory, making it a powerful tool for both theoretical exploration and 
practical optimization in spatially-sensitive network design. 

2. Distance Difference (𝑫𝟐)-Dominating Energy 

Let 𝒢 = (𝕍, 𝔼) denotes a simple graph with ℓ vertices and 𝑡 edges. Let 𝑀 be 
min-dominating set of a graph. A path of 𝒢 is walk with distinct terminal 
vertices in which every vertex appears only once. The distance between 𝔳𝓍 
and 𝔳℘  is the least number of edges that connect them. Let 𝐷(𝔳𝓍 , 𝔳℘) be 

detour distance between 𝔳𝓍 and 𝔳℘ which is distance of longest 𝔳𝓍𝔳℘-path 

connecting two vertices 𝔳𝓍 and 𝔳℘ . We denote 𝑑(𝔳𝓍 , 𝔳℘)  as the geodesic 

distance between 𝔳𝓍  and 𝔳℘ which is distance of shortest 𝔳𝓍𝔳℘-path in terms 

of edges connecting 𝔳𝓍 and 𝔳℘ vertices.  

Distance difference dominating matrix 𝐴𝐷2(𝒢)  of graph 𝒢  is ℓ × ℓ 

square matrix, denoted by (𝑝𝓍℘) whose (𝓍,℘)th entry is defined by  
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(𝑝𝓍℘) = {
𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘) 𝑖𝑓 𝔳𝓍 ≠ 𝔳℘ 

1 𝑖𝑓 𝓍 = ℘, 𝔳𝓍 ∈ 𝑀 
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The characteristic polynomial of distance difference dominating matrix 
𝐴𝐷2(𝒢)  is found by 𝜓(𝒢, 𝜗): = 𝑑𝑒𝑡( 𝜗𝐼 − 𝐴𝐷2(𝒢))  where 𝐼  is ℓ  order unit 
matrix and 𝜗 is any scalar. Characteristic equation of 𝐴𝐷2(𝒢) is 𝜓(𝒢, 𝜗) = 0. 
The roots of characteristic equation of 𝐴𝐷2(𝒢) are the distance difference 
dominating eigen values or characteristic values of 𝒢.  

The distance difference dominating energy 𝐸𝐷2(𝒢)  of an undirected 
simple finite graph 𝒢  is determined by adding absolute 
eigen/characteristic values of its distance difference dominating matrix 
𝐴𝐷2(𝒢).i.e. if 𝜗1, 𝜗2, . . . , 𝜗ℓ are eigen/characteristic values of 𝐴𝐷2(𝒢), distance 
difference dominating energy of 𝒢 is 

𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|. 

Since the distance difference dominating matrix 𝐴𝐷2(𝒢) is symmetric 
and real matrix, its eigen/characteristic values are real values and are in 
decreasing sequence with labels 𝜗1 ≥ 𝜗2 ≥. . . ≥ 𝜗ℓ. 

3. Distance Difference (𝑫𝟐 )-Dominating Energy of Some 
Graphs 

Theorem 3.1 The distance difference dominating energy of complete graph 

𝐾ℓ(ℓ ≥ 3) is        𝐸𝐷2(𝐾ℓ) = (ℓ-2)2 +√(ℓ − 2)2(ℓ2 − 2) + 1. 

Proof. Let 𝕍 = {𝔳1, 𝔳2, ⋯ , 𝔳ℓ} be vertex set of a complete graph 𝐾ℓ(ℓ ≥ 3). The 
min- dominating set of 𝐾ℓ is 𝑀 = {𝔳1}. Then 𝐷2-dominating matrix of 𝐾ℓ is 
given by 

𝐴𝐷2(𝐾ℓ) =

[
 
 
 
 
1 ℓ − 2 ℓ − 2 ⋯ ℓ − 2

ℓ − 2 0 ℓ − 2 ⋯ ℓ − 2
ℓ − 2 ℓ − 2 0 ⋯ ℓ − 2
⋮ ⋮ ⋮ ⋱ ⋮

ℓ − 2 ℓ − 2 ℓ − 2 ⋯ 0 ]
 
 
 
 

ℓ×ℓ

 

The complete graph has characteristic polynomial (𝜗 + (ℓ − 2))ℓ−2[𝜗2 −
[(ℓ − 2)2 + 1]𝜗 − (ℓ − 2)3] . The characteristic equation of 𝐾ℓ  is (𝜗 + (ℓ −

2))ℓ−2[𝜗2 − [(ℓ − 2)2 + 1]𝜗 − (ℓ − 2)3] = 0 . The 𝐷2 -dominating eigen 

values are 𝜗 = [−(ℓ − 2)][(ℓ − 2)  times], 𝜗 =
(ℓ−2)2±√(ℓ-2)2(ℓ2−2)+1

2
. The 

distance difference dominating energy of 
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𝐾ℓ(ℓ ≥ 3)  is 𝐸𝐷2(𝐾ℓ) = |−(ℓ − 2)|(ℓ-2) + |
(ℓ-2)2+√(ℓ−2)2(ℓ2−2)+1

2
| +

|
(ℓ-2)2−√(ℓ−2)2(ℓ2−2)+1

2
| 

𝐸𝐷2(𝐾ℓ) = (ℓ-2)2 + √(ℓ − 2)2(ℓ2 − 2) + 1 

 

Theorem 3.2 The distance difference dominating energy of a star graph 
𝑆1,ℓ-1(ℓ ≥ 2) is 𝐸𝐷2(𝑆1,ℓ-1) = 1. 

Proof. Consider a star graph 𝑆1,ℓ-1  of order ℓ  with vertex set 𝕍 =
{𝔳1, 𝔳2, ⋯ , 𝔳ℓ} . The min-dominating set is 𝑀 = {𝔳1} . Then 𝐷2 -dominating 
matrix of a star graph 𝑆1,ℓ-1 is given by 

𝐴𝐷2(𝑆1,ℓ−1) = [

1 0 ⋯ 0
0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 0

]

ℓ×ℓ

 

The star graph has characteristic polynomial 𝜗ℓ−1(𝜗 − 1) . The 

characteristic equation of 𝑆1,ℓ-1  is 𝜗ℓ−1(𝜗 − 1) = 0 . The 𝐷2 -dominating 
eigen values are 𝜗 = 0  [ (ℓ − 1)  times], 𝜗 = 1 . The distance difference 
dominating energy of a star graph 𝑆1,ℓ-1(ℓ ≥ 2) is 𝐸𝐷2(𝑆1,ℓ-1) = |0|(ℓ − 1) +

|1| = 1. 

Theorem 3.3 The distance difference dominating energy of cocktail party 

graph 𝐶𝑃ℓ×2(ℓ ≥ 3)  is 𝐸𝐷2(CPℓ×2) = 4ℓ2 − 8ℓ+ 1 +

√𝜅4 + 4𝜅3 + 2𝜅2 + 4𝜅 + 1 where 𝜅 = 2ℓ− 2. 

Proof. Let 𝐶𝑃ℓ×2(ℓ ≥ 3)  be cocktail party graph with vertex set 𝕍 =

⋃ {𝑓𝓍 , 𝑔𝓍}
ℓ
𝓍=1 . The min-dominating set of 𝐶𝑃ℓ×2  is 𝑀 = {𝑓1, 𝑔1} . Then 𝐷2 -

dominating matrix of 𝐶𝑃ℓ×2 is given by 

𝐴𝐷2(𝐶𝑃ℓ×2)

=

[
 
 
 
 
 
 
 

1 2(ℓ − 1) ⋯ 2(ℓ − 1) 2ℓ − 3 2(ℓ − 1) ⋯ 2(ℓ − 1)

2(ℓ − 1) 0 ⋯ 2(ℓ − 1) 2(ℓ − 1) 2ℓ − 3 ⋯ 2(ℓ − 1)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

2(ℓ − 1) 2(ℓ − 1) ⋯ 0 2(ℓ − 1) 2(ℓ − 1) ⋯ 2ℓ − 3
2ℓ − 3 2(ℓ − 1) ⋯ 2(ℓ − 1) 1 2(ℓ − 1) ⋯ 2(ℓ − 1)

2(ℓ − 1) 2ℓ − 3 ⋯ 2(ℓ − 1) 2(ℓ − 1) 0 ⋯ 2(ℓ − 1)
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮

2(ℓ − 1) 2(ℓ − 1) ⋯ 2ℓ − 3 2(ℓ − 1) 2(ℓ − 1) ⋯ 0 ]
 
 
 
 
 
 
 

2ℓ×2ℓ
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The cocktail party graph has characteristic polynomial (𝜗 + (2ℓ − 4))(𝜗 +

(2ℓ − 3))ℓ−1(𝜗 + (2ℓ − 1))ℓ−2[𝜗2 − (4ℓ2 − 8ℓ + 3)𝜗 − (8ℓ3 − 20ℓ2 + 18ℓ −
6)].                                  The characteristic equation of 𝐶𝑃ℓ×2 is (𝜗 + (2ℓ −

4))(𝜗 + (2ℓ − 3))ℓ−1(𝜗 + (2ℓ − 1))ℓ−2[𝜗2 − (4ℓ2 − 8ℓ + 3)𝜗 − (8ℓ3 −
20ℓ2 + 18ℓ − 6)] = 0. The 𝐷2-dominating eigen values are 𝜗 = −(2ℓ − 4), 
𝜗 = −(2ℓ − 3)[(ℓ − 1)  times], 𝜗 = −(2ℓ − 1)[(ℓ − 2)  times], 𝜗 =
(4ℓ2−8ℓ+3)±√𝜅4+4𝜅3+2𝜅2+4𝜅+1

2
 where 𝜅 = 2ℓ − 2 . The distance difference 

dominating energy of 𝐶𝑃ℓ×2(ℓ ≥ 3) is 

𝐸𝐷2(CPℓ×2) = |−(2ℓ − 4) | + | − (2ℓ − 3)|(ℓ-1) + | − (2ℓ − 1)|(ℓ-2)

+ |
(4ℓ2 − 8ℓ + 3) + √𝜅4 + 4𝜅3 + 2𝜅2 + 4𝜅 + 1

2
|

+ |
(4ℓ2 − 8ℓ + 3) − √𝜅4 + 4𝜅3 + 2𝜅2 + 4𝜅 + 1

2
| 

𝐸𝐷2(CPℓ×2) = 4ℓ
2 − 8ℓ + 1 + √𝜅4 + 4𝜅3 + 2𝜅2 + 4𝜅 + 1 where 𝜅 = 2ℓ − 2. 

 
Theorem 3.4 The distance difference dominating energy of a (2, ℓ)-Barbell 
graph 𝒢(𝐾ℓ, 𝐾ℓ)(ℓ ≥ 3)  is 𝐸𝐷2(𝒢(𝐾ℓ,Kℓ)) = 3ℓ

2 − 10ℓ + 9 +

√(ℓ − 1)(9ℓ3 − 35ℓ2 + 27ℓ + 15)  

Proof. Let 𝒢(𝐾ℓ, 𝐾ℓ)(ℓ ≥ 3)  be a (2, ℓ) -Barbell graph with vertex set 𝕍 =

⋃ {𝑓𝓍 , 𝑔𝓍}
ℓ
𝓍=1 . The min-dominating set of 𝒢(𝐾ℓ, 𝐾ℓ) is 𝑀 = {𝑓1, 𝑔1}. Then 𝐷2-

dominating matrix of (2, ℓ) -Barbell graph is given by 

 

𝐴𝐷2(𝒢(𝐾ℓ, 𝐾ℓ))

=

[
 
 
 
 
 
 
 
1 ℓ − 2 ℓ − 2 ⋯ ℓ − 2 0 2ℓ − 4 2ℓ − 4 ⋯ 2ℓ − 4

ℓ − 2 0 ℓ − 2 ⋯ ℓ − 2 ℓ − 2 2ℓ − 4 2ℓ − 4 ⋯ 2ℓ − 4
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

ℓ − 2 ℓ − 2 ℓ − 2 ⋯ 0 ℓ − 2 2ℓ − 4 2ℓ − 4 ⋯ 2ℓ − 4
0 ℓ − 2 ℓ − 2 ⋯ ℓ − 2 1 ℓ − 2 ℓ − 2 ⋯ ℓ − 2

ℓ − 2 2ℓ − 4 2ℓ − 4 ⋯ 2ℓ − 4 ℓ − 2 0 ℓ − 2 ⋯ ℓ − 2
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

ℓ − 2 2ℓ − 4 2ℓ − 4 ⋯ 2ℓ − 4 ℓ − 2 ℓ − 2 ℓ − 2 ⋯ ℓ − 2 ]
 
 
 
 
 
 
 

2ℓ×2ℓ

 

 

The (2, ℓ)  -Barbell graph has characteristic polynomial (𝜗 − 1)(𝜗 + (ℓ2 −

2ℓ))(𝜗 + (ℓ − 2))2ℓ−4[𝜗2 − (3ℓ2 − 10ℓ + 9)𝜗 − (ℓ − 2)(4ℓ2 − 15ℓ + 12] . 
The characteristic equation of 𝒢(𝐾ℓ, 𝐾ℓ) is (𝜗 − 1)(𝜗 + (ℓ2 − 2ℓ))(𝜗 + (ℓ −

2))2ℓ−4[𝜗2 − (3ℓ2 − 10ℓ + 9)𝜗 − (ℓ − 2)(4ℓ2 − 15ℓ + 12] = 0 . The 𝐷2 -
dominating eigen values are 𝜗 = 1, 𝜗 = −(ℓ2 − 2ℓ), 𝜗 = −(ℓ − 2)[(2ℓ − 4) 
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times], 𝜗 =
(3ℓ2−10ℓ+9)±√9ℓ4−44ℓ3+62ℓ2−12ℓ−15

2
. The distance difference 

dominating energy of a (2, ℓ)-Barbell graph 𝒢(𝐾ℓ, 𝐾ℓ)(ℓ ≥ 3) is 

𝐸𝐷2(𝒢(𝐾ℓ,Kℓ)) = |1| + | − (ℓ
2 − 2ℓ)| + | − (ℓ − 2)|(2ℓ-4)

+ |
(3ℓ2 − 10ℓ + 9) + √9ℓ4 − 44ℓ3 + 62ℓ2 − 12ℓ − 15

2
|

+ |
(3ℓ2 − 10ℓ + 9) − √9ℓ4 − 44ℓ3 + 62ℓ2 − 12ℓ − 15

2
| 

𝐸𝐷2(𝒢(𝐾ℓ,Kℓ)) = 3ℓ
2 − 10ℓ + 9 + √(ℓ − 1)(9ℓ3 − 35ℓ2 + 27ℓ + 15) 

 

Theorem 3.5 The distance difference dominating energy of a globe graph 

𝐺𝑙(ℓ)(ℓ ≥ 2) is 𝐸𝐷2(𝐺𝑙(ℓ)) =

{
 

 √2(ℓ−2) + √1 + 4ℓ4,

1 + 2√2(ℓ−2) + √(2ℓ + 1)(2ℓ + 9),

(2ℓ − 1) + √(2ℓ + 1)(2ℓ + 9),

ℓ = 2
ℓ = 4,6
ℓ ≠ 2,4,6

 

 

Proof. Consider a globe graph 𝐺𝑙(ℓ)  of order ℓ ≥ 2  with vertex set 𝕍 =
{𝑓1, 𝑓2, 𝑔1, 𝑔2, ⋯ , 𝑔ℓ}  where 𝑑𝑒𝑔( 𝑓1) = 𝑑𝑒𝑔( 𝑓2) = ℓ . The minimum 
dominating set is 𝑀 = {𝑓1, 𝑓2}. Then 𝐷2-dominating matrix of a globe graph 
𝐺𝑙(ℓ)  is given by 

𝐴𝐷2(𝐺𝑙(ℓ)) =

[
 
 
 
 
1 0 2 2 ⋯ 2
0 1 2 2 ⋯ 2
2 2 0 2 ⋯ 2
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
2 2 2 2 ⋯ 0]

 
 
 
 

(ℓ+2)×(ℓ+2)

 

Case(i) 𝓵 = 𝟐 

The globe graph of order 2 has characteristic polynomial 𝜗(𝜗 −

1)
√2(ℓ−2)(𝜗2 − 𝜗 − 𝑠4) . The characteristic equation of 𝐺𝑙(2)  is 𝜗(𝜗 −

1)
√2(ℓ−2)(𝜗2 − 𝜗 − 𝑠4) = 0. The 𝐷2-dominating eigen values are 𝜗 = 0, 𝜗 =

1 [(√2ℓ−2) times], 𝜗 =
1±√1+4ℓ4

2
. The distance difference dominating energy 

of a globe graph 𝐺𝑙(2) is    

𝐸𝐷2(𝐺𝑙(2)) = |0| + |1| (√2(ℓ−2)) + |
1 + √1 + 4ℓ4

2
| + |

1 − √1 + 4ℓ4

2
|

= √2(ℓ−2) + √1 + 4ℓ4 
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Case (ii) 𝓵 = 𝟒, 𝟔 

The globe graph has characteristic polynomial 𝜗(𝜗 − 1)(𝜗 + 2)
√2(ℓ−2)(𝜗2 −

(2ℓ − 1)𝜗 − (6ℓ + 2)). The characteristic equation of 𝐺𝑙(ℓ) is 𝜗(𝜗 − 1)(𝜗 +

2)
√2(ℓ−2)(𝜗2 − (2ℓ − 1)𝜗 − (6ℓ + 2)) = 0. The 𝐷2-dominating eigen values 

are 𝜗 = 0 , 𝜗 = 1 , 𝜗 = −2[(√2(ℓ−2))  times], 𝜗 =
(2ℓ−1)±√(2ℓ+1)(2ℓ+9)

2
. The 

distance difference dominating energy of a globe graph 𝐺𝑙(ℓ) is              

𝐸𝐷2(𝐺𝑙(ℓ)) = |0| + |1| + | − 2|(√2(ℓ−2)) + |
(2ℓ − 1) + √(2ℓ + 1)(2ℓ + 9)

2
|

+ |
(2ℓ − 1) − √(2ℓ + 1)(2ℓ + 9)

2
|

= 1 + 2√2ℓ−2 +√(2ℓ + 1)(2ℓ + 9) 

Case(iii) 𝓵 ≠ 𝟐, 𝟒, 𝟔 

The globe graph has characteristic polynomial (𝜗 − 1)(𝜗 + 2)ℓ−1(𝜗2 −
(2ℓ− 1)𝜗 − (6ℓ+ 2)) . The characteristic equation of 𝐺𝑙(ℓ)  is (𝜗 − 1)(𝜗 +

2)ℓ−1(𝜗2 − (2ℓ− 1)𝜗 − (6ℓ + 2)) = 0. The 𝐷2-dominating eigen values are 

𝜗 = 1 , 𝜗 = −2[(ℓ − 1)  times], 𝜗 =
(2ℓ−1)±√(2ℓ+1)(2ℓ+9)

2
. The distance 

difference dominating energy of globe graph 𝐺𝑙(ℓ) is 𝐸𝐷2(𝐺𝑙(ℓ)) = |1| + | −

2|(ℓ − 1) + |
(2ℓ−1)+√(2ℓ+1)(2ℓ+9)

2
| + |

(2ℓ−1)−√(2ℓ+1)(2ℓ+9)

2
|                𝐸𝐷2(𝐺𝑙(ℓ)) =

(2ℓ − 1) + √(2ℓ + 1)(2ℓ+ 9) 

4. Properties of Distance Difference (𝑫𝟐)-Dominating Eigen 
Values 

Proposition 4.1 Let 𝒢 = (𝕍, 𝔼) be graph. Let 𝑀 be a min-dominating set. Let 

𝜓(𝒢, 𝜗) = 𝑐0𝜗
ℓ + 𝑐1𝜗

ℓ−1+. . . +𝑐ℓ be the characteristic polynomial of graph 𝒢. 
Then 

i. 𝑐0 = 1 

ii. 𝑐1 = −|𝑀| = −𝛾𝐷2(𝒢) 

Proof. 

i. Proof of (i) follows immediately after definition of 𝜓(𝒢, 𝜀). 

ii. Since total of diagonal elements of 𝐴𝐷2(𝒢) equals 𝛾𝐷2(𝒢), the total of 
determinants of all 1 × 1 leading principal submatrices of 𝐴𝐷2(𝒢) is 
trace of 𝐴𝐷2(𝒢)  and this is efficiently the equal of 𝛾𝐷2(𝒢) . Thus 
(−1)1𝑐1 = 𝛾𝐷2(𝒢). 
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Theorem 4.2 Let  𝒢 = (𝕍, 𝔼)  be graph. If eigen/characteristic values of 
𝐴𝐷2(𝒢) are 𝜗1, 𝜗2, . . . , 𝜗ℓ then     

a. ∑ 𝜗𝓍
ℓ
𝓍=1 = 𝛾𝐷2(𝒢) 

b. ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 + 𝛾𝐷2(𝒢) 

where 𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2
and 𝛾𝐷2(𝒢) = |𝑀|.  

Proof:  

a. It is commonly known that the total of characteristic values of 
𝐴𝐷2(𝒢) equals trace of 𝐴𝐷2(𝒢). As a result, 

∑𝜗𝓍

ℓ

𝓍=1

=∑𝑝𝓍𝓍 =

ℓ

𝓍=1

𝛾𝐷2(𝒢) 

b. Analogously, total of square of characteristic values of 𝐴𝐷2(𝒢) 
equals trace of [𝐴𝐷2(𝒢)]

2. Hence 

       ∑ 𝜗𝓍
2ℓ

𝓍=1 = ∑ ∑ (𝑝𝓍℘𝑝℘𝓍)
ℓ
℘=1

ℓ
𝓍=1  

                                        = ∑ (𝑝𝓍℘𝑝℘𝓍) + ∑ (𝑝𝓍𝓍)
ℓ
𝓍=1

2
𝓍≠℘  

                                        = 2∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2
+ ∑ (𝑝𝓍𝓍)

ℓ
𝓍=1

2
 

∑𝜗𝓍
2

ℓ

𝓍=1

= 2𝑄 + 𝛾𝐷2(𝒢) 

5. Bounds on Distance Difference (𝑫𝟐)-Dominating Energy 

Here the lower and upper boundaries of distance difference ( 𝐷2 ) 
dominating energy are computed. The next few lemmas are applied to 
determine the bounds on distance difference (𝐷2) dominating energy.  

Lemma 5.1[1] If 𝛼1,…, 𝛼ℓ  and 𝛽1,…, 𝛽ℓ  are positive real values, then real 
constants 𝛼, 𝛽, 𝑈, and 𝑉 exists such that, for each 𝓍 = 1,…,ℓ, 𝛼 ≤ 𝛼𝓍 ≤ U and 
𝛽 ≤ 𝛽𝓍 ≤ 𝑉. Then inequality that follows is true  

|ℓ∑𝛼𝓍𝛽𝓍 −∑𝛼𝓍∑𝛽𝓍

ℓ

𝓍=1

ℓ

𝓍=1

ℓ

𝓍=1

| ≤ 𝜎(ℓ)(𝑈 − 𝛼)(𝑉 − 𝛽) 

 

where 𝜎(ℓ) = ℓ ⌊
ℓ

2
⌋ (1 −

ℓ

2
⌊
ℓ

2
⌋). This equality is true provided that 𝛼1 = 𝛼2 =

… = 𝛼ℓ and 𝛽1 = 𝛽2 = ... = 𝛽ℓ. 
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Lemma 5.2[11] Let 𝛼1,…, 𝛼ℓ and 𝛽1,…, 𝛽ℓ be non-negative real values, then 

∑𝛼𝓍
2∑𝛽𝓍

2

ℓ

𝓍=1

ℓ

𝓍=1

− (∑𝛼𝓍𝛽𝓍

ℓ

𝓍=1

)

2

≤
ℓ2

4
(𝛧1𝛧2 − 𝑧1𝑧2)

2 

where 𝑍1 = max
1≤𝓍≤ℓ

(𝛼𝓍) ; 𝑍2 = max
1≤𝓍≤ℓ

(𝛽𝓍) ; 𝑧1 = min
1≤𝓍≤ℓ

(𝛼𝓍) and 𝑧2 = min
1≤𝓍≤ℓ

(𝛽𝓍). 

Lemma 5.3[3] If 𝛼1,…, 𝛼ℓ  and 𝛽1,…, 𝛽ℓ  are non-negative real values, then real 
constants 𝑟 and 𝑅 exists, such that, for all 𝓍 = 1,2, . . . , ℓ, 𝑟𝛼𝓍 ≤ 𝛽𝓍 ≤ 𝑅𝛼𝓍. Then 
inequality that follows is true 

∑𝛽𝓍
2

ℓ

𝓍=1

+ 𝑟𝑅∑𝛼𝓍
2

ℓ

𝓍=1

≤ (𝑟 + 𝑅)∑𝛼𝓍𝛽𝓍

ℓ

𝓍=1

 

This equality is true provided that 𝑟𝛼𝓍 = 𝛽𝓍 = 𝑅𝛼𝓍 for at least one 𝓍, 𝓍 =
1,2, . . . , ℓ. 

Lemma 5.4[12] Let 𝛼1,…, 𝛼ℓ and 𝛽1,…, 𝛽ℓ be positive real numbers, then 

∑𝛼𝓍
2∑𝛽𝓍

2

ℓ

𝓍=1

ℓ

𝓍=1

≤
1

4
(√

𝛧1𝛧2
𝑧1𝑧2

−√
𝑧1𝑧2
𝛧1𝛧2

)

2

(∑𝛼𝓍𝛽𝓍

ℓ

𝓍=1

)

2

 

where 𝑍1 = max
1≤𝓍≤ℓ

(𝛼𝓍) ; 𝑍2 = max
1≤𝓍≤ℓ

(𝛽𝓍) ; 𝑧1 = min
1≤𝓍≤ℓ

(𝛼𝓍) and 𝑧2 = min
1≤𝓍≤ℓ

(𝛽𝓍). 

Lemma 5.5[5] Let 𝛼1,…, 𝛼ℓ , 𝛽1,…, 𝛽ℓ , 𝜍1,…, 𝜍ℓ  and 𝜃1,…, 𝜃ℓ  be sequences of 
real values and 𝑝1,…, pℓ , 𝑞1,…, qℓ  are nonnegative. Then inequality that 
follows is true  

∑𝑝𝓍𝛼𝓍
2

ℓ

𝓍=1

∑𝑞𝓍𝛽𝓍
2

ℓ

𝓍=1

+∑𝑝𝓍𝜍𝓍
2

ℓ

𝓍=1

∑𝑞𝓍𝜃𝓍
2

ℓ

𝓍=1

≥ 2∑𝑝𝓍𝛼𝓍𝜍𝓍

ℓ

𝓍=1

∑𝑞𝓍𝛽𝓍𝜃𝓍

ℓ

𝓍=1

 

Theorem 5.6 Suppose that 𝒢 = (𝕍, 𝔼) is graph on ℓ vertices, 𝛾𝐷2(𝐺) = 𝜂 and 

𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2

. Let |𝜗1| ≥ |𝜗2| ≥. . . ≥ |𝜗ℓ|  be decreasing 

sequence of characteristic values of 𝐴𝐷2(𝒢). Then inequality that follows is 
true  

𝐸𝐷2(𝒢) ≥ √2𝑄ℓ + 𝜂ℓ − 𝜎(ℓ)(|𝜗1| − |𝜗ℓ|)
2 

where 𝜎(ℓ) = ℓ ⌊
ℓ

2
⌋ (1 −

ℓ

2
⌊
ℓ

2
⌋), while ⌊𝜔⌋ indicates the integer portion of real 

value 𝜔. Equality is preserved provided that 𝒢 ≅ 𝐾ℓ. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be the eigen values of 𝐴𝐷2(𝒢). If we substitute 

𝛼𝓍 = 𝛽
𝓍
: = |𝜗𝓍|, 𝛼 = 𝛽: = |𝜗ℓ|  and 𝑈 = 𝑉:= |𝜗1|, 𝓍 = 1,2, . . . , ℓ,  in lemma 

5.1, then the inequality becomes 
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|ℓ∑|𝜗𝓍|
2 − (∑|𝜗𝓍|

ℓ

𝓍=1

)

ℓ

𝓍=1

2

| ≤ 𝜎(ℓ)(|𝜗1| − |𝜗ℓ|)
2 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|  and ∑ |𝜗𝓍|

2ℓ
𝓍=1 = ∑ 𝜗𝓍

2ℓ
𝓍=1 = 2𝑄 + 𝛾𝐷2(𝒢) = 2𝑄 +

𝜂,  

ℓ(2𝑄 + 𝜂) − (𝐸𝐷2(𝒢))
2 ≤ 𝜎(ℓ)(|𝜗1| − |𝜗ℓ|)

2 

𝐸𝐷2(𝒢) ≥ √2𝑄ℓ + 𝜂ℓ − 𝜎(ℓ)(|𝜗1| − |𝜗ℓ|)
2 

Therefore, equality is preserved provided that |𝜗1| = |𝜗2| =. . . = |𝜗ℓ|. 

Theorem 5.7 Suppose that 𝒢 = (𝕍, 𝔼) is graph on ℓ vertices, 𝛾𝐷2(𝒢) = 𝜂 and 

𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2

. Let |𝜗1| ≥ |𝜗2| ≥. . . ≥ |𝜗ℓ|  be decreasing 

sequence of characteristic values of 𝐴𝐷2(𝒢) . Then 𝐸𝐷2(𝒢) ≥

√2𝑄ℓ + 𝜂ℓ −
ℓ2

4
(𝜗ℓ − 𝜗1)

2. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be the eigen values of 𝐴𝐷2(𝒢). If we substitute 𝛼𝓍 =
1 and 𝛽𝓍: = |𝜗𝓍|, 𝓍 = 1,2, . . . , ℓ, in lemma 5.2, then the inequality becomes 

∑12
ℓ

𝓍=1

∑|𝜗𝓍|
2 − (∑|𝜗𝓍|

ℓ

𝓍=1

)

ℓ

𝓍=1

2

≤
ℓ2

4
(𝜗ℓ − 𝜗1)

2 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|, ∑ 1 = ℓℓ

𝓍=1  and ∑ |𝜗𝓍|
2ℓ

𝓍=1 = ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 +

𝛾𝐷2(𝒢) = 2𝑄 + 𝜂,   

ℓ(2𝑄 + 𝜂) − (𝐸𝐷2(𝒢))
2 ≤

ℓ2

4
(𝜗ℓ − 𝜗1)

2 

𝐸𝐷2(𝒢) ≥ √2𝑄ℓ + 𝜂ℓ −
ℓ2

4
(𝜗ℓ − 𝜗1)

2 

Theorem 5.8 Suppose that 𝒢 = (𝕍, 𝔼) is graph on ℓ vertices, 𝛾𝐷2(𝒢) = 𝜂 and 

𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2

. Let |𝜗1| ≥ |𝜗2| ≥. . . ≥ |𝜗ℓ| > 0  be 

decreasing sequence of eigen values of 𝐴𝐷2(𝒢). Then 𝐸𝐷2(𝒢) ≥
|𝜗1||𝜗ℓ|ℓ+2𝑄+𝜂

|𝜗1|+|𝜗ℓ|
. 

Equality is preserved provided that     𝒢 ≅ 𝐾ℓ. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be the eigen values of 𝐴𝐷2(𝒢). If we substitute 𝛽𝓍: =
|𝜗𝓍|, 𝛼𝓍 = 1, 𝑟: = |𝜗ℓ| and 𝑅:= |𝜗1|, 𝓍 = 1,2, . . . , ℓ, in lemma 5.3, then the 
inequality becomes 
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∑|𝜗𝓍|
2

ℓ

𝓍=1

+ |𝜗1||𝜗ℓ|∑ 12

ℓ

𝓍=1

≤ (|𝜗1| + |𝜗ℓ|)∑|𝜗𝓍|

ℓ

𝓍=1

 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|, ∑ 1 = ℓℓ

𝓍=1  and ∑ |𝜗𝓍|
2ℓ

𝓍=1 = ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 +

𝛾𝐷2(𝒢) = 2𝑄 + 𝜂,  we get 

2𝑄 + 𝜂 + |𝜗1||𝜗ℓ|ℓ ≤ (|𝜗1| + |𝜗ℓ|)𝐸𝐷2(𝒢) 

𝐸𝐷2(𝒢) ≥
|𝜗1||𝜗ℓ|ℓ + 2𝑄 + 𝜂

|𝜗1| + |𝜗ℓ|
 

For some 𝓍, if it is true that 𝑟𝛼𝓍 = 𝛽𝓍 = 𝑅𝛼𝓍, then it follows that 𝛽𝓍 = 𝑟 = 𝑅 
for that same 𝓍 . This indicates that |𝜗𝓍| ≤ |𝜗℘| ≤ |𝜗𝓍|  for every ℘ ≠ 𝓍 . 

Hence equality in theorem is preserved provided that |𝜗1| = |𝜗2| =. . . =
|𝜗ℓ|. 

Theorem 5.9 Suppose that 𝒢 = (𝕍, 𝔼)  is graph on ℓ vertices,  𝛾𝐷2(𝒢) = 𝜂 

and 𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2
. Let |𝜗1| ≥ |𝜗2| ≥. . . ≥ |𝜗ℓ| > 0 be the 

eigenvalues of 𝐴𝐷2(𝒢) . Then 𝐸𝐷2(𝒢) ≥
2√(2𝑄+𝜂)ℓ√𝜗1𝜗ℓ

𝜗1+𝜗ℓ
  where 𝜗1  and 𝜗ℓ 

represent the lowest and highest of absolute values of  𝜗𝓍’s. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be eigen values of 𝐴𝐷2(𝒢). If we substitute 𝛼𝓍: = |𝜗𝓍| 
and 𝛽𝓍 = 1, 𝓍 = 1,2, . . . , ℓ in lemma 5.4, then the inequality becomes 

∑|𝜗𝓍|
2

ℓ

𝓍=1

∑ 12

ℓ

𝓍=1

≤
1

4
(√

𝜗ℓ

𝜗1
+ √

𝜗1

𝜗ℓ

)(∑|𝜗𝓍|

ℓ

𝓍=1

)

2

 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|, ∑ 1 = ℓℓ

𝓍=1  and ∑ |𝜗𝓍|
2ℓ

𝓍=1 = ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 +

𝛾𝐷2(𝒢) = 2𝑄 + 𝜂,  we get 

ℓ(2𝑄 + 𝜂) ≤
1

4
(
(𝜗1 + 𝜗ℓ)

2

𝜗1𝜗ℓ
) (𝐸𝐷2(𝒢))

2 

𝐸𝐷2(𝒢) ≥
2√(2𝑄 + 𝜂)ℓ√𝜗1𝜗ℓ

𝜗1 + 𝜗ℓ
 

Theorem 5.10 Suppose that 𝒢 = (𝕍, 𝔼) is graph on ℓ  vertices, 𝛾𝐷2(𝒢) = 𝜂 

and 𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2
. Then 𝐸𝐷2(𝒢) ≤ √

ℓ2+(2𝑄+𝜂)2

2
. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be eigen values of 𝐴𝐷2(𝒢). If we substitute 𝛼𝓍 = 𝛽𝓍 =
𝑝𝓍 = 𝑞𝓍: = 1  and  𝜍𝓍 = 𝜃𝓍: = |𝜗𝓍|, 𝓍 = 1,2, . . . , ℓ,  in lemma 5.5, then the 
inequality becomes 
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∑1

ℓ

𝓍=1

∑1

ℓ

𝓍=1

+∑|𝜗𝓍|
2

ℓ

𝓍=1

∑|𝜗𝓍|
2

ℓ

𝓍=1

≥ 2∑|𝜗𝓍|

ℓ

𝓍=1

∑|𝜗𝓍|

ℓ

𝓍=1

 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍|, ∑ 1 = ℓℓ

𝓍=1  and ∑ |𝜗𝓍|
2ℓ

𝓍=1 = ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 +

𝛾𝐷2(𝒢) = 2𝑄 + 𝜂,  we get 

ℓ2 + (2𝑄 + 𝜂)2 ≥ 2(𝐸𝐷2(𝒢))
2 

𝐸𝐷2(𝒢) ≤ √
ℓ2 + (2𝑄 + 𝜂)2

2
 

Theorem 5.11 Suppose that 𝒢 = (𝕍, 𝔼) is graph on ℓ vertices, 𝛾𝐷2(𝒢) = 𝜂 

and 𝑄 = ∑ [𝐷(𝔳𝓍 , 𝔳℘) − 𝑑(𝔳𝓍 , 𝔳℘)]𝓍<℘
2
. Then 𝐸𝐷2(𝒢) ≤

ℓ+2𝑄+𝜂

2
. 

Proof. Let 𝜗1, 𝜗2, . . . , 𝜗ℓ be eigen values of 𝐴𝐷2(𝒢). If we substitute 𝛼𝓍 = 𝛽𝓍 =
𝜃𝓍 = 𝑝𝓍 = 𝑞𝓍: = 1  and 𝜍𝓍: = |𝜀𝓍|, 𝓍 = 1,2, . . . , ℓ,  in lemma 5.5, then the 
inequality becomes 

∑1

ℓ

𝓍=1

∑1

ℓ

𝓍=1

+∑|𝜗𝓍|
2

ℓ

𝓍=1

∑1

ℓ

𝓍=1

≥ 2∑|𝜗𝓍|

ℓ

𝓍=1

∑1

ℓ

𝓍=1

 

Since 𝐸𝐷2(𝒢) = ∑ |ℓ
𝓍=1 𝜗𝓍| ,   ∑ 1 = ℓℓ

𝓍=1  and ∑ |𝜗𝓍|
2ℓ

𝓍=1 = ∑ 𝜗𝓍
2ℓ

𝓍=1 = 2𝑄 +

𝛾𝐷2(𝒢) = 2𝑄 + 𝜂,  we get 

ℓ2 + (2𝑄 + 𝜂)ℓ ≥ 2(𝐸𝐷2(𝒢))ℓ 

𝐸𝐷2(𝒢) ≤
ℓ + 2𝑄 + 𝜂

2
 

6. Application 

Network Design & Optimization facilitates the strategic arrangement of 
resources to lessen the average or maximum distance to any node and 
involves the strategic allocation of resources within a network to meet 
certain objectives. The distance difference dominating matrix assists in 
assessing and enhancing the performance of a selected dominating set, 
particularly regarding distance-based balance. In scenarios such as sensor 
networks or server placements, the aim is to reduce the distance variance 
from any node to the nearest and furthest server or sensor. The distance 
difference dominating matrix aids in evaluating and improving such 
configurations.  

The distance difference dominating energy serves as a method for 
examining and addressing issues related to control, influence, or coverage 
within a network depicted as a graph. It offers a matrix-centric approach 
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for investigating dominating sets, which play a vital role in guaranteeing 
that every node in a network is directly connected. A low 𝐸𝐷2  implies that 
most nodes are nearly equidistant, indicating well-balanced coverage, 
which is desirable in critical systems like emergency service placement, 
wireless sensor networks, or logistics. Conversely, a high 𝐸𝐷2  reveals 
significant imbalance, where certain nodes are disproportionately far from 
other nodes, which could lead to inefficiencies or service delays. 

In models of influence spreading, distance difference dominating 
matrix can clarify how rapidly or effectively influence can spread from 
dominators to other nodes. In chemical graph theory which is utilized to 
depict molecular structures, the domination concepts correspond to 
reactive sites and distances may indicate molecular characteristics. Hence 
the notion of distance difference dominating matrix has various practical 
application.  

Conclusion 

In this paper, the distance difference dominating energy 𝐸𝐷2(𝒢)  is 
determined which is a refined spectral measure that captures the structural 
efficiency of a graph’s dominating set. It is derived from the eigen values of 
difference dominating matrix 𝐴𝐷2(𝒢) , which encodes the difference 
between the maximum and minimum distances between vertices. The 
computation of 𝐸𝐷2(𝒢)  for some familiar graphs is accomplished and 
properties of distance difference dominating eigen values are discussed. 
Finally, the boundaries of 𝐸𝐷2(𝒢) are set forth. Further research extensions 
in 𝐸𝐷2(𝒢) include examining the connections between 𝐸𝐷2(𝒢) and various 
dominating energy concepts, investigating the spectrum (eigenvalues) of 
the distance difference dominating matrix, and developing efficient 
algorithms to calculate 𝐸𝐷2(𝒢) for large graphs. 
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