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Abstract 

 

The effect of non-uniform temperature gradient on the 
onset of Rayleigh-Bénard-Marangoni- Magneto-
convection in a Micropolar fluid with Maxwell-Cattaneo 
law is studied using the Galerkin technique. The eigen 
value is obtained for rigid-free velocity boundary 
combination with isothermal and adiabatic condition on 
the spin-vanishing boundaries. A linear stability analysis 
is performed. The influence of various parameters on the 
onset of convection has been analyzed. One linear and 
five non-linear temperature profiles are considered and 
their comparative influence on onset is discussed. The 
classical approach predicts an infinite speed for the 
propagation of heat.  The present non-classical theory 
involves a wave type heat transport (Second Sound) and 
does not suffer from the physically unacceptable 
drawback of infinite heat propagation speed. 

Keywords: Rayleigh-Bénard-Marangoni-Magneto-convection, 
Maxwell-Cattaneo Law, Micropolar fluid 

                                                           
* Christ Junior College, Hosur Road, Bangalore 560 029, India; 
kiran.rv@cjc.christcollege.edu 

† Department of Mathematics, Christ University, Hosur Road, Bangalore 
560 029, India; kalyani.attluri@maths.christuniversity.in  

 

 

 



Mapana J Sci, 14, 3(2015)                                                              ISSN 0975-3303 
 

2 
 

1. Introduction 

 

The instability of Rayleigh-Bénard convection is due to the effect of 
thermal buoyancy. Theoretical studies of the onset of convection in 
classical viscous fluids with non-uniform heating have been made 
by Currie [1] with isothermal boundaries and by Nield [2] with 
adiabatic boundaries and showed that in the case of piecewise 
linear temperature profile the onset of convection could occur at a 
smaller Rayleigh number than of uniform heating or cooling. The 
non-uniform temperature gradient finds its origin in the transient 
heating or cooling at the boundaries and as a result the basic 
temperature profile depends explicitly on position. This has to be 
determined by solving the coupled momentum and energy 
equations. This coupling makes the problem very complicated. In 
the present study, therefore, we adopt a series of temperature 
profiles based on a simplification in the form of a quasi – static 
approximation (Currie [1], Lebon and Cloot [3]) that consists of 
freezing the temperature distribution at a given instant of time. In 
this method, we assume that the perturbation grows much faster 
than the initial state and hence freeze the initial state into some 
spatial distribution. This hypothesis is sufficient for our purpose 
because we are interested only in finding the conditions for the 
onset of convection. Even with these simplifications, the solutions 
to the variable-coefficients stability equation pose a problem 
because the temperature gradient varies with depth.  

Marangoni convection resulting from the local variation of surface 
tension due to a non-uniform temperature distribution is an 
interesting fluid mechanical problem. It has many important 
applications in a number of engineering problems, such as energy 
storage in molten salts, crystal growth from a melt in microgravity 
conditions, and paints, colloids and detergents in chemical 
engineering. The first theoretical study on steady Marangoni 
convection in a planar fluid layer with a non-deformable free upper 
surface was made by Pearson [4]. Takashima [5, 6], Smith [7], 
Perez-Garcia and Carneiro [8] subsequently extended the stability 
analysis of Pearson [1] studied the effect of free surface 
deformation on the stationary/oscillatory Marangoni convection. 
Later, many authors Rudraiah [9], Maekawa and Tanasawa [10] 
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and studied the onset of convection in a horizontal layer of 
Newtonian fluid driven by both surface tension variations and 
buoyancy force by considering the non-deformable surfaces. The 
corresponding problem with deformable boundaries is studied by 
Sarma [11, 12], Wilson [13, 14], Hashim and Wilson [15] and 
Rudraiah and Siddheshwar [16].  

Convection in Micropolar fluid has been the subject of intensive 
study because of the remarkable physical properties of the fluid as 
well as its practical applications (see Power [17], Lukaszewicz [18] 
and Eringen [19]). Rayleigh-Bénard convection in Micropolar fluid 
has been studied by many authors [20-25]. The main results from 
all these studies are that for heating from below stationary 
convection is the preferred mode. The effect of non-uniform 
temperature gradient on the onset of Rayleigh-Bénard/Marangoni 
convection in a Micropolar fluid is investigated by Siddheshwar 
and Pranesh [26, 27]. The effect of non-uniform temperature 
gradients on the onset of Rayleigh-Bénard-Marangoni-Electro-
convection in a micropolar fluid is investigated by Pranesh and 
Riya Baby [28] and more, recently Pranesh and Joseph [29]. All the 
above reported works are with classical Fourier heat flux law. 

A well known consequence of Classical Fourier heat conduction 
law is that heat perturbations propagate with an infinite velocity.  
This drawback of the classical law motivated Maxwell [30], 
Cattaneo [31], Lindsay and Stranghan [32], Straughan and Franchi 
[33] and Pranesh and Kiran [34, 35, 36, 37], to adopt a non-classical 
heat flux Maxwell-Cattaneo law in studying  Rayleigh-Bénard / 
Marangoni convection to get rid of this unphysical results. This 
Maxwell-Cattaneo equation contains an extra inertial term with 
respect to the Fourier law 

TQ
dt

Qd





 

where, Q


  is the heat flux,  is a relaxation time and  is the heat 

conductivity.  This heat conductivity equation and the conservation 
of energy equation introduce the hyperbolic equation, which 
describes heat propagation with finite speed.  Puri and Jordan [38, 
39], Puri and Kythe [40, 41] and Straughan [42] have studied other 
fluid mechanics problems by employing the Maxwell-Cattaneo 
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heat flux law. The above mentioned works are with linear 
temperature gradient.  

The objective of this paper is to replace the classical parabolic heat 
equation by non-classical Maxwell-Cattaneo Law and study the 
effect of non-uniform basic temperature gradients on Rayleigh-
Bénard-Marangoni-Magneto convection in Micropolar fluids. 
 

2. Mathematical Formulation 

Consider an infinite horizontal layer of a Boussinesquian, 
electrically conducting fluid, with non-magnetic suspended particle 
of depth „d‟ permeated by an externally applied uniform magnetic 
field normal to the fluid layer. Cartesian co-ordinate system is 
taken with origin in the lower boundary and z-axis vertically 

upwards. Let T be the temperature difference between the upper 
and lower boundaries. (See Figure (1)). 

[ 

 

 

 

 

 

 

 

 

Fig 1. Schematic diagram of the Rayleigh-Bénard situation for a Micropolar fluid. 

 

The governing equations for the Rayleigh-Bénard situation in a 
Boussinesquian fluid with suspended particles are  
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Continuity equation:     

,0q. 


                                                                (1) 

Conservation of linear momentum: 
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Conservation of angular momentum: 
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Conservation of energy: 
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              (4) 

Maxwell – Cattaneo heat flux law: 

,TQQQ 1

.












                                                               (5) 

Magnetic Induction equation: 

,Hq).H(H).q(
t

H 2

m








                                      (6) 

Equation of state: 

)].TT(1[ oo 
                                                                             

(7) 

where, q


is the velocity, 


is the spin, T is the temperature, P is the 

hydromagnetic pressure,  is the density, o is the density of the 

fluid at reference temperature oTT  , 



m

m

1
, m is magnetic 

permeability, g is the acceleration due to gravity,  is the coupling 

viscosity coefficient or vortex viscosity,  is the shear kinematic 
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viscosity coefficient,  I is the moment of inertia, and  are the 

bulk and shear spin viscosity coefficient,   is the Micropolar heat 

conduction coefficient, vC  is the specific heat,   is the thermal 

conductivity,   is the co – efficient of thermal expansion, 

,q
2

1
1


 Q


is the heat flux vector and  is the constant 

relaxation time.  

3. Basic State  

The basic state of the fluid being quiescent is described by 
 

  












f(z).
d

T

dz

dT
,)z(Q,0,0Q,k̂HH
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b
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bbbbb





 

                                           

(8) 

The monotonic, non-dimensional basic temperature gradient 

f(z)which is non-negative satisfies the condition 1dzf(z)
1

0

 . We 

have considered various steady state temperature gradients in this 
paper and these are defined below. 

Table (1): Basic-State Temperature Gradients 

 

 

 

 

 

 

 

 

 

  

Model Basic temperature gradients f(z) 

 Linear 1 

 Heating from below 









1z0

z01

 

 Cooling from above 








 1z1

1z00
1

 

 Step function )z(   

 Inverted Parabolic )z1(2   

 Parabolic z2  
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Equations (2), (4), (5) and (7) in the basic state specified by equation 
(8) respectively become 





 .0
dz
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                                                                                                                  (9) 

4.  Linear Stability Analysis 

Let the basic state be disturbed by an infinitesimal thermal 
perturbation. We now have 

 











.HHH,TTT,

,QQQ,PPP,,qqq

0bb
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(10) 

The primes indicate that the quantities are infinitesimal 
perturbations and subscript „b‟ indicates basic state value. 

Substituting equation (10) into equations (1) – (7) and using the 
basic state (9), we get linearised equation governing the 
infinitesimal perturbations in the form: 

,0q. 
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 where, 1  

Operating divergence on the equation (15) and substituting in 
equation (14), on using equation (11), we get  
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where,  


             

The perturbation equation (12), (13), (16) and (18) are non – 
dimensionalised using the following definition: 
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Using equation (17) in (12), operating curl twice on the resulting 
equation, operating curl once on equation (13) and non-
dimensionalising the two resulting equation and also equations 
(16) and (18), we get 
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where the asterisks have been dropped for simplicity and the non-

dimensional parameters PmPr,,Q,R,N,N,N 531  and C are as 

defined as 
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The infinitesimal perturbation TandH,,W zz   are assumed to be 

periodic waves and hence these permit a normal mode solution in 
the form 
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where, l and m are horizontal components of the wave number a


, 

Substituting equation (24) into equations (20)-(23), we get 
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Eliminating zH between equations (25) and (27), we get 
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The equations (26),(28) and (29) are solved subject to the following 
boundary conditions 
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where: M is the Marangoni number.  The condition on G is the 
spin-vanishing boundary condition. 

We now apply the single term Galerkin expansion to find the 
critical eigen value Mc and the equations (26), (28) and (29) that 
gives general results on the eigen value of the problem for various 
basic temperature gradients using simple, polynomial, trial 
functions for the lowest eigen value. Now we multiplying equation 
(29) by W, equation (26) by G and equation (28) by T, integrating 
the resulting equation by parts with respect to z from 0 to 1, using 
boundary condition (30) and taking W = AW1, G = BG1 and T = CT1 
in which A, B and C are constants with W1, G1 and T1 are trial 
functions.  This procedure yields the following equation for the 
Marangoni number M: 
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In the equation (31),  denotes integration with respect to z 

between 0z  and 1z  . 

The value of critical Marangoni number depends on the 
boundaries. In this paper we consider the rigid-free 
isothermal/adiabatic, no-spin boundary combinations. The trial 
functions satisfying the boundary conditions are: 
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Boundary conditions Rigid–free 

W1 )z1(z 22   

G1 )z1(z   

Isothermal T1 )z2(z   

Adiabatic T1 1 

  

5. Results and Discussion 

In this paper, we study the classical Rayleigh-Bénard-Marangoni-
Magneto convection in micropolar fluids in presence of non-
uniform temperature gradients by replacing the classical Fourier 
heat flux law by a non-classical Maxwell-Cattaneo heat flux law. 
Keeping in mind the laboratory and geophysical problem, the 
rigid-free boundary shave been investigated with 
isothermal/adiabatic and no-spin condition. 

One uniform and five non-uniform basic temperature gradients are 
chosen for study.  On the basis of this following grouping of non-
uniform temperature profile can be made for rigid-free boundary. 

Group 1 Group 2 Group 3 

Linear (MC1) 
 
Inverted parabolic (MC5) 
 
Parabolic (MC6) 

Piecewise linear heating 
from below (MC2) 
 
Piecewise linear cooling 
from above (MC3) 

Step 
function 
(MC4) 

 

In the case of rigid-free boundaries (non-symmetric boundary 
combinations) we find that, 

MC3  <  MC4  <  MC6  <  MC2  <  MC1  <  MC5   

i.e., for non-symmetric boundaries we find that the cooling from 
above is the most destabilizing basic temperature and inverted 
parabolic is the most stabilizing basic temperature distribution. 
Figures (2)-(9) are the plot of critical Marangoni number MC versus 
Cattaneo number C, for different values of coupling parameter N1, 
couples stress parameter N3, Micropolar heat condition parameter 
N5 and Chandrasekhar number Q and for different basic 
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temperature gradient for rigid-free boundaries respectively. From 
these figures following observation are made: 

1. As C increases MC decreases. C is the scaled relaxation time 
and it accelerates the onset of convection. Also it is observed 
that C which represents second sound which has a 
destabilizing influence. Increase in Cattaneo number leads to 
narrowing of the convection cells and thus lowering of the 
critical Marangoni number. It is also observed from the figures 
that influence of Cattaneo number is dominant for small 
values because the convection cells have fixed aspect ratio. 

2. The increase in N1 increases MC. Increase in N1 indicates the 
increase in the concentration of microelements. These elements 
consume the greater part of the energy in forming the 
gyrational velocities and as a result the onset of convection is 
delayed. From these we conclude that increases N1 is to 
stabilize the system. 

3. As N3 increases MC decreases, because when N3 increases the 
couple stress of the fluid increases, which causes the 
microroation to decrease. Therefore, increase in N3 destabilizes 
the system. 

4. When N5 increases the heat induced in to the fluid due to these 
microelements also increases, thus reducing the heat transfers 
from bottom to top. The decrease in heat transfer is responsible 
for delaying onset of instability. Therefore, increase in N5 
increase in MC and thereby stabilizes the system.  

5. As Q increases the MC also increases. From this we conclude 
that Q has stabilizing effect on the system.  

6. Conclusion 

Following conclusions are drawn from the problem: 

1) Cattaneo number which represents scaled relaxation time 
destabilizes the system.   

2) The cooling form above basic temperature profile is most 
destabilizing temperature profile. The inverted temperature 
profile is the most stabilizing temperature profile.  
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3) By creating conditions for appropriate basic temperature 
gradients we can also make a prior decision on advancing 
or delaying convection.  

4) By adjusting the Chandrasekhar number Q we can control 
the convection. 

5) Rayleigh-Bénard-Marangoni convection in Newtonian 
fluids may be delayed by adding micron sized suspended 
particles.   

6) The non-classical Maxwell-Cattaneo heat flux law involves 
a hyperbolic type heat transport equation that predicts finite 
speeds of heat wave propagation. Hence it does not suffer 
from the physically unacceptable drawback of infinite heat 
propagation speed predicted by the parabolic heat equation. 
The classical Fourier flux law overpredicts the critical 
Marangoni number compared to that predicted by the non-
classical law.  
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Fig 2: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

isothermal no-spin boundary condition for different values of coupling parameter N1 and different 

non-uniform basic temperature gradients. 
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Fig 3: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

isothermal no-spin boundary condition for different values of couple stress parameter N3 and different 
non-uniform basic temperature gradients. 
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Fig 4: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 
isothermal no-spin boundary condition for different values of micropolar heat conduction parameter 

N5 and different non-uniform basic temperature gradients. 
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Fig 5: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

isothermal no-spin boundary condition for different values of Chandrasekhar number Q and different 
non-uniform basic temperature gradients. 
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Fig 6: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

adiabatic no-spin boundary condition for different values of coupling parameter N1 and different non-
uniform basic temperature gradients. 
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Fig 7: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

adiabatic no-spin boundary condition for different values of couple stress parameter N3 and different 

non-uniform basic temperature gradients. 
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Fig 8: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 
adiabatic no-spin boundary condition for different values of micropolar heat conduction parameter N5 

and different non-uniform basic temperature gradients. 
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Fig 9: Plot of critical Marangoni number MC verses Cattaneo number C with respect to rigid-free 

adiabatic no-spin boundary condition for different values of Chandrasekhar number Q and different 

non-uniform basic temperature gradients. 




