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Abstract   

 

The paper presents the study of velocity profiles in a 
hydrodynamic flow and heat transfer in a Newtonian 
fluid over an exponentially stretching sheet. Navier slip 
condition is used at the boundary. The stretching of the 
sheet is assumed to be nonlinearly proportional to the 
distance from slit. Non-linear partial differential 
equations characterize the flow phenomenon with 
boundary conditions in a semi infinite domain. The 
equations are transformed to nonlinear ordinary 
differential equations by applying suitable local similarity 
transformation. The series solution of the transformed 
equations are obtained by using differential transform 
method and Pade approximation with assistance from the 
shooting method in obtaining the unknown initial values. 
The solution is obtained in a power series with assured 
convergence. The effects of various parameters on 
velocity and temperature profiles are presented 
graphically. 
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1.Introduction  

The study of boundary layer behaviour over a stretching sheet 
occurring in several engineering applications and   manufacturing 
processes of thin films in computer industry, in space applications 
etc. The practical applications of continuous flat surfaces are in 
aerodynamic extrusion of plastic sheets, rolling and manufacturing 
of plastic films, cooling of metallic plates and boundary layer flow 
over heat treated materials between feed roll and a windup roll. 
Sakiadis [1] initiated the study of boundary layer over a continuous 
solid surface moving with constant speed. Crane [2] studied the 
two dimensional boundary layer flow due to a stretching sheet. He 
assumed the velocity of the sheet to vary linearly with the axial 
distance. After this pioneering work, the flow over a stretching 
surface has drawn considerable attention and a good amount of 
literature in different field has been generated on this problem. The 
common feature in all these studies is that the flow field obeys the 
no-slip condition at the boundary. But in certain situations the no-
slip condition is required to be replaced by the Navier slip 
boundary condition.  

Anderson [3] studied the effects of slip boundary condition on the 
flow of Newtonian fluid past a stretching sheet. Bidin et al [4] 
analyzed the boundary layer flow over a stretching sheet with a 
convective boundary condition and slip effect, Chethan, et al [5] 
studied the flow and heat transfer of an exponential stretching 
sheet in a viscoelastic liquid with navier slip boundary condition, 
Fang et al [6] obtained the exact solution of MHD flow under the 
slip condition over a permeable stretching sheet, Fang, T. J et al [7] 
Slip MHD viscous flow over a stretching sheet – an exact solution,  
Sahoo et al [8] studied Flow and heat transfer of a third grade fluid 
past an exponentially stretching sheet with partial slip boundary 
conditions, ,Sajid et al [9] studied stretching flows with general slip 
boundary condition ,Wang[10] analyzed the  flow due to a 
stretching boundary with partial slip-an exact solution of the 
Navier-Stokes equations and Analysis of viscous flow due to a 
stretching sheet with surface slip . 

We have chosen to study navier slip condition on the flow and heat 
transfer in a coolant surrounded by an exponentially stretching 
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sheet. The Differential transform method along with ePad  
approximation is used to obtain a convergent series solution.  
 

Nomenclature 

cp 
specific heat at constant 

pressure 
Greek symbols 

E eckert number   similarity variable 

k thermal conductivity   kinematic viscosity 

l reference length µ dynamic viscosity 

T 
fluid temperature of the 
moving sheet 


 

dimensionless 
temperature in PEST case 

Tw wall temperature 


 
dimensionless 
temperature in PEHF 
case 

T∞ 
temperature far away 
from the sheet 

f
 

dimensionless stream 
function 

U0 constant 
 

electrical conductivity 

Uw 
stretching velocity of 
the boundary 


 density of the fluid 

u,v 
velocity components 
along x and y directions 

  similarity variable 

x 
flow directional co 
ordinate along  
stretching sheet . 

Subscripts 

y 
distance normal to the 
stretching sheet 

 w wall temperature 

X,Y 
dimensionless 
coordinates 

∞ ambient temperature 
conduction 

 

2. Mathematical formulation 

The governing equations and the boundary conditions for 
momentum and heat transfer of the stretching sheet problem are:
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where u and v are the velocity components of the fluid in x and y 

directions respectively,
 
  is the kinematic coefficient of viscosity,

 
m  is the magnetic permeability,  is the electrical conductivity, 

0H is the applied magnetic field,   is density of the fluid, T  is the 

temperature of the fluid,
 
k  is the thermal conductivity of the fluid 

and pc  is the specific heat at constant pressure.
 

The flow is generated solely by stretching the boundary surface in 

the x direction, we employ the following boundary conditions with 

the stretching assumed to be in exponential proportion to the axial 

coordinate. Following Elbashbeshy [6], we employ the following 

boundary conditions on velocity and temperature are
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Introducing   the stream function  yx,  defined by : 
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,                                                                        (2.5)      

into the equations (2.2) and (2.3)  we get               



S  Manjunath et al.                                    The Study of Navier Slip Condition 

47 
 

)7.2(
1

)6.2(0

2

2

2

2

2

2

0

2

2

22

3

3















































































YY

T

prY

T

XX

T

Y

Y

H

YXYXYY

m










                

The corresponding boundary conditions becomes  
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(2.8)           

Solution of Momentum equation: 

The   following transformation is used to convert the partial 
differential equation into  an ordinary differential equation 

                           

 

  )9.2(, 

























2

X
exp

2

X
exp

2

Re
Yf2ReYX

 where 









2

X
exp

2

Re
Y

 
is the similarity variable , 



lU
Re 0

 
is 

the Reynolds number. Substituting in (2.7),  we obtain a nonlinear 
boundary value problem   

                                                   

022
2

  fQffff
                             ( 2.10) 

The boundary equations becomes                                              
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we have assumed the following condition to solve third order 

dofferentail equation 

 

                                      

0  atf

  

Method of Solution 

We adopt the shooting method with Runge-Kutta- Fehlberg 45 
scheme to solve the initial value problems in PEST and PEHF. The 
coupled non-linear equations (2.12) - (2.15)  are transformed to a 

system of first order ordinary differential equations using 1Ff   

in the following form : 
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(2.12)  

  

The above boundary value problem is converted  to an initial value 

problem by choosing the value of  03F
 
and appropriately. 

Resulting initial value problem is integrated using RK Felberg 45 
method. The constant guess which satisfies the boundary condition 
for different slip factors is  

 
  

Q K = 0
 

         K= 0.01        K = 0.05 

1 -1.912647983 -1.8689930529 -1.714468910 

2 -2.379420850 -2.3163599348 -2.096951788 

3 -2.768210449 -2.6859864501 -2.403595029 

4 -3.110866887 -3.0073557281 -2.663608408 
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The differential transform of  zf
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where is  f(z) the original function and  F[k]is the transformed 
function. 

Applying differential transform to (2.10) and (2.11), we get a 
recurrence relation as  
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The corresponding boundary conditions becomes 

                  kFF  11,00  

By using inverse differential operator, we get   
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 Differentiating w.r.t  to   ,we get to   

        ................33221' 3   FFFf                             (2.15) 

 As the radius of convergences of the obtained power series is not 

large enough to contain both boundaries, to obtain the same , we 

need to make use of  Pade approximation. 

 Pade approximation of order [5,7] has been used for the slip 
factor k = 0 
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 Pade approximation of order [6,7] has been used for the slip 

factor k = 0.01 

 Pade approximation of order [5,6] has been used for the slip 

factor k = 0.05 

3. Heat transfer analysis 

We consider two general cases of non-isothermal boundary 
conditions, namely 

 Prescribed exponential order surface temperature (PEST) 

 Prescribed exponential order heat flux (PEHF) 

Prescribed exponential order surface temperature (PEST) 

We define a non dimensional temperature    as  
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where  
X

w eTT    and    XeTT    

using (3.1) in the (2.7)  and (2.8), we obtain a nonlinear ordinary 
differential equation for 
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We have assumed the following condition to solve the second 
order differential equation  
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Applying  DTM (3.2) and (3.3) we get 
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By using inverse differential operator, we get   

 

          ................3210 32   GGGG           3.5) 

using Mathematica, we get  
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To get the convergence of the power series obtained by DTM, Pade 
approximation is used.

 
Prescribed exponential order heat flux (PEHF)   

We define a non dimensional temperature    as  
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Using  (3.6), and (3.7) in (2.7),we obtain a second order nonlinear 

differential equation for    as 
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We have assumed the following condition to solve the second order 

differential equation  
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Applying  DTM (3.8)and (3.9)  we get 
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By using inverse differential operator, we get   
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using Mathematica, we get  
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To get the convergence of the power series obtained by DTM, pade 
approximation is used.

 

K=0.01 

Q 
 

            

PEST                
  

      PEHF 
            

1 -1.8689930529 -0.722183611 0.2675571680 

2 -2.3163599348 -0.500314385 1.5521492451 

3 -2.6859864501 -0.340471233 1.8113148012 

4 -3.0073557281 -0.209716105 1.9734189281 
 

As the radius of convergences of the obtained power series is not 
large enough to contain both boundaries, to obtain the same, we 
need to make use of  Pade approximation. 

 Pade approximation of order [6/7] has been used for the 
slip factor k = 0.01 

 Pade approximation of order [5/6] has been used for the 
slip factor k = 0.05 
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Results and discussions  

The navier slip condition at the boundary on the flow and heat 
transfer in a coolant surrounded an exponentially stretching sheet 

is analysed. In figures , the graphs of  f  and  'f  ,    and 

   versus  are drawn for different values of the parameters 

  PrEEQ, s ,  in both PEST and PEHF cases.   

 An increase in Q  is to reduce the velocity in the boundary 

layer which results in thinning of the boundary layer 
thickness and increasing the thermal boundary layer 
thickness. 

 The increase in  EsE  is to enhance the temperature .This is due 

to the fact that the heat energy is stored in the liquid considered 

due to frictional heating.  

 An increase in Pr  is associated with a decrease in the 
temperature. Thermal boundary layer thickness decreases 
with increase in the values of Pr. The increase of Prandtl 
number means there is a slow rate of thermal diffusion. The 
temperature is at unity on the will in PEST case where as it 
may be other than unity in PEHF case. 
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                  Fig 1:  Plots of  f  and  'f  for  different values of Q for k = 0.01
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               Fig 2 :  Plots of  f  and  'f  for  different values of Q for k = 0.05
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   Fig 3: Plots of    and    for  different values of Q in PEST and PEHF cases. 
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  Fig 4: Plots of    and    for  different values  sEE of  in PEST and PEHF cases. 
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   Fig 5 : Plots of    and    for  different values Pr  of  in PEST and PEHF cases. 
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