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Degree-Eccentricity Matrix of Graphs and 
Some Properties

Abstract

This paper presents a new matrix for a given graph called the 

and eccentricity of a vertex. Properties such as irreducibility and 
primitivity of this matrix are discussed. Further we obtain the 

classes of graphs and some graphs obtained through graph 
operations. Also, we try to develop an algorithm to construct 

is obtained. 

Keywords:

1. Introduction
In this paper, all graphs which we consider are simple, connected and 
undirected. For a graph G = (V (G), E(G)) with number of vertices n V (G)
and number of edges m E(G) vi in G
as the number of edges incident on vi and is denoted by d(vi) or simply di. 
For any two vertices u and v in G, the distance between these vertices is the 
length of the shortest path joining them and it is denoted by d(u, v) in G. The 
eccentricity of vi denoted by e(vi) or simply ei e(vi) = max{d(u, vi)
u is a vertex of G}. A vertex u is a neighbour of v in G, if uv is an edge of G, 
and . The set of all neighbours of v is the open neighbourhood of v or 
the neighbour set of v, and is denoted by N(v); the set N[v] = N(v)  {v} is the 
closed neighborhood of v Gn is the nth power of a graph G and it has 
the same vertex set as that of G and an edge adjacency between two vertices 
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u and v in Gn is given whenever d(u, v) n in G. G1 V G2 denotes the join of 
the two graph G1 and G2 and has vertex set V = V1  V2 and edge set E = E1 

 E2
that of the second. For additional notations and terminologies not covered 

The theory of matrices have huge applications in the domain of graph 
theory. When these two disciplines mixed together, we got an interesting 

be represented in the form of a matrix in which the order and entries of the 
matrix depends on the respective graph. Adjacency, incidence and Laplacian 
matrices are a few among them.

-electron energy of conjugated 
hydrocarbon molecules is a chemical quantity that is strongly related to 

discovery of various novel outputs, some of which have chemical relevance 
too. By considering various graph parameters, graph theorists have carried 
out a variety of studies on graph energies. Vertex energy, maximum degree 
energy, degree sum energy, eccentricity energy, eccentricity extended energy 
etc are different energies which are associated with the vertex degree and 

being developed only for mathematical research, graph energy and its later 
variations have fascinating, rather unexpected, and enigmatic uses in other 

conjugated compounds, which are not covered in detail here. Application 
in crystallography, macromolecule theory, and protein sequence analysis 
and comparison are all somewhat linked. Attempts to use graph energies in 
network analysis, such as in air transportation, satellite communication, and 

Motivated by the relevance of this area and tremendous applications, we are 
studying a new type of matrix and energy associated with the matrix called 

adjacency matrix and other matrices of a connected graph are symmetric in 
nature.

2. Preliminaries
 [6] The degree sequence of a graph G is the degree of vertices of 

the graph G arranged in non-increasing order.
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[11] Two graphs with the same degree sequence are said to be 
degree equivalent.

Lemma 2.1. [6] 
of the same degree.

For the graph G with vertices v1, v , . . . , vn, the adjacency 
matrix of G (with the given labeling of the vertices v1, v2, . . . , vn) is an n × n matrix 
A = (aij), where

Let the eigenvalues of  G 1 n be arranged in their 
non-decreasing order given by 1 2 n. For the distinct eigenvalues of G 

1 2 s with multiplicity mi i as an eigenvalues of G, 
we write

[10] The energy
eigenvalues the graph G.

Hence, the energy of the graph G,  of order n 1 , . . 
n is given by

 [13] Let A  Mn  
spectral radius

{| i|: i = ,

where Mn

 [9] The matrix A is said to be similar to a matrix B (written A B) 
if and only if there is a matrix P such that B = PAP 1.

 [13] If there is a permutation matrix P such that PTXP = Y, then 
the two matrices X and Y are said to be permutation similar.

 [13] If A is permutation similar to a matrix of the form
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then the matrix A  Mn is said to be reducible, where B and D are square matrices. 
A matrix which is not reducible is termed as irreducible.

that a square matrix with a zero row or a zero column is reducible.

Let A be a square irreducible non-negative matrix. 
 index 

of imprimitivity of A. If k = 1, then A is said to be primitive; otherwise A is 
considered to be imprimitive.

3. The Degree-Eccentricity Matrix of a graph
5

as the basic components in decomposition formulas and fast algorithms for 
4

matrix associated with a graph is a new matrix in which the above matrix 
served as its motivation. Using the two graph theoretical parameters viz. 

graph G as follows.

The Degree-Eccentricity matrix of a graph G having degree 
sequence (d1, d2, . . . , dn) is the square matrix DE(G) aij of order n in which 
aij 

where di = d(vi) and ei = e(vi).

An illustration is given below.

G and the corresponding sequence 
G is given by 
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      (1)

that the corresponding matrices are similar. This has no effect on the graph’s 
spectral properties because the spectrum of a matrix is a similarity invariant 

v1 and v2
obtained by interchanging the position of v1 and v2 in the degree sequence 
along with their corresponding eccentricities is given below

A
B P with B = PAP . In this case, the matrix 

P is given as

This shows that A and B are similar matrices.
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Remark 3.1. , det(DE(G)) = 0.

Remark 3.2. Two-degree equivalent graphs need not have similar DE matrix.

Consider the following example.

Figure 2:

Here G1 and G2 DE(G1) 
and DE(G2) are not similar.

4. Irreducibility and Primitivity of DE Matrix

to be focused in this section. Let A be a matrix which is said to be non-
negative if all of its entries are non-negative real numbers. This implies that 
A is a positive matrix. We use notation A > 0. That is, A is a matrix with all 

graph on n vertices is greater than 0. That is, aij > 0  i, j n. So we 
can say that DE(G) is a positive matrix.

Lemma 4.1.
and only if (I + A)n 1 > 0.

In the light of this Lemma, we can state the following.
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Theorem 4.1. 
irreducible.

Theorem 4.2. [13] (Frobenius). Let A be an irreducible non-negative matrix. If the 
characteristic polynomial of A is

where n > n1 > n2 >    > nt and every aj
imprimitivity of A is given by

gcd(n – n1, n1 – n2,….,nt-1 – nt)

Theorem 4.3. . Then DE(G) is primitive. 

Proof. Since the determinant of DE(G) is 0, 0 must be an eigenvalue of the 
matrix.

Let  be the characteristic polynomial of DE(G). Then it is of the form,

gcd(n-(n-1), n- n-

The proof is over.

5. DE-Spectrum and Energy of Some Standard Graphs and 
New Graphs Obtained by Graph Operations

G G is denoted by DE Sp(G) 
.

5.1. DE-Spectrum and Energy of Cn

Case 1: n odd

, 
is given by
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where Jn is the n × n matrix with all the elements are equal to 1. Clearly, rank 
of DE(Cn)

Case 2 n even

As in case 1, each vertex of Cn . The 

.
Cn

From the above two cases, the following proposition is put forth..

Proposition 5.1. For the cycle Cn, 

5.2 DE-Spectrum and Energy of Kn

It is clear that Kn is an (n 1)-regular graph with eccentricity of each vertex as 

Kn Kn is given as follows.

Hence, the following proposition holds.

Proposition 5.2. For the complete graph Kn, n

.
kth power of a graph G, where 

k = diam(G).
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Corollary 5.1. Let G be a graph with n vertices and let k = diam(G), then the 
k) = 1.

Proof. Let the vertex set of G be {v1, v2, . . . , vn}. Let the degree sequence be 
(d1, d2, . . . , dn) and (e1, e2, . . . , en) be the corresponding sequence of eccentricities 

diam(G), it is the max{e(v):v V(G)}. By taking 
k = diam(G) and computing Gk, every pair of vertices whose distance  are 
adjacent. Since k is maximum eccentricity, so Gk results a complete graph on 
n k) = 1.

An illustration of the above proposition is given below.

Figure 3:

Here k = 3. Taking the 3rd power of G, it becomes K4.

5.3. DE-Spectrum and Energy of Petersen graph

matrix as

 (G)

5.4. DE-Spectrum and Energy of Km,n

Let the two partite sets of Km,n be V1 and V2, where m n; m, n 2 1
m n. Let {u1, u2, . . . , um} be the vertices in V1 and {v1, v2, . . . , vn} be the 
vertices of V . Clearly, degree of each vertex in V1 is n and that of V2 is m. 

Km,n 
is given by
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m + n times.

It follows that DE (Km,n) is an (m n m n) matrix of rank 1 and is given by

m,n is given by

This leads to the following proposition.

Proposition 5.3. For the complete bipartite graph Km,n

5.5. DE-Spectrum and Energy of Double graph of Certain Graphs

friendship graph.

Let the vertex set of G be V (G) = {v1, v2, ……, vp}. Take another 
copy of G with the vertex labels {u1, u2, . . . , up} where ui corresponds to vi for each 
i. Make ui adjacent to all the vertices in N(vi) in G, for each i. The graph obtained in 
such a manner is called the double graph of G, and it is denoted by D2G.

5.5.1. DE-Spectrum and Energy of Double graph of Cycle, Cn

Label the vertices of Cn by v1, v , . . . , vn. In order to construct the double 
graph of Cn take a copy of Cn and label the vertices as u1, u2, . . . , un, where 
each ui corresponds to vi, i n. Since vi is adjacent to v(i+1) mod n and 
v , where i = 1, 2, . . . , n, join ui with v(i+1) mod n and v .

The resulting graph D2Cn has 2n vertices, each vertex is of degree 4 and the 
eccentricity of each vertex is , when n is even and , when n is odd.
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Case 1: n odd
n vertices of D2Cn has degree 4 with eccentricity . 

D2Cn is given by

Since DE(D2Cn)
given by

Case 2: n even
Here also the graph D2Cn is 4 regular with eccentricity of each vertex as . So 

With all above information, we shall conclude the following proposition.

Proposition 5.4. For the cycle Cn

Remark 5.1.

Figure 4: Double graph of C4 and C6
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We observe that,

5.5.2 DE-Spectrum and Energy of Double graph of Star K1,n, 
K1,n n edges. Label the central vertex as v and the 
pendant vertices as v1, v2, . . . , vn. Take another copy of K1,n and label the 
central vertex as u and the corresponding pendent vertices as u1, u2, …., un. 
Since v is adjacent to vi, i= K1,n, v and u are 
adjacent to vi, ui, i = 1, 2, ….., n. Then degree of v and u n and that of vi, 
ui  i = 

The degree sequence of D2K1,n n 

the DE (D2K1,n) is a rank 1 matrix, which can be written as

D2K1,n is given by

As a result, the argument that follows can be made. 

Proposition 5.5. 

An illustration is displayed below.

Figure 5: Double graph of K1,3
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Here DE 1,3) = 

5.5.3. DE-Spectrum and Energy of Double graph of Friendship 
graph
The friendship graph Fn is obtained by coalescence n copies of the cycle 
graph C3 of length 3 with a common vertex. Fn

Here we construct the double graph of Fn
graph of Fn. In Fn n and all other vertices are of 

n as v and the remaining vertices as 
v1, v , . . . , v . In order to construct the double graph of Fn, take a copy of Fn 
and label the vertices as u, which was labeled as v in Fn and the remaining as 
u1, u2, . . . , u2n. In D2Fn, u is adjacent to vi, i v is adjacent to ui, 
i u, v is 4n and that of ui, vi is 3, i n. 
In D Fn Fn is (4n, 
4n

Fn is given by,

So, the following proposition holds.

Proposition 5.6. For n

An example is illustrated below.
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Figure 6: Double graph of F2

can see that 

Proposition 5.7. 

Proof. Since Cn Cn 
is 
of  will be  has 
the eigenvalue 0 with multiplicity n-1 and trace ( ) =  with multiplicity 
1. This completes the proof.

Proposition 5.8. For the graphs G1 and G2, which are not complete, having order 
m and n respectively

Proof. Consider the two graphs G1 1 m n. 
Let di, i = 1, 2, ….., m and , j G1

 and G2 

1  denote the join of two graphs G1 and G2. Then G1  
G2 has m + n vertices with degrees di + n,  + m, i=1,2,….,m, j=1,2,….,n. Since 
every vertex of G1 is adjacent to every vertex of G2 and vice versa, vertices of 
G1  G2 G1  G2 are  
and , i=1, 2, …., m, j = 1, 2, ….., n. G1  G2) is a rank 1 
matrix. This completes the proof.



113

Akhil et al.

6. Graphs with DE Energy 1
From our prior explanation we can see that the complete graph is one of the 

6.1. Construction of C2,n

Here we discuss a procedure for constructing an  -regular graph on 
C2,n, where n is a positive 

even integer, . Denote this graph by C2,n. The construction of C  begins 
with an n-cycle Cn, whose vertices are consecutively labeled v1, v2, . . . , vn 

Figure 7: Construction of C2,n starting with Cn

For two vertices vi and vj, the adjacency in the graph C2,n is determined 
by the distance between vi and vj along the perimeter of the cycle Cn. Since 
n is a positive even integer, there exists a positive integer k with n = 2k. Two 
vertices vi and vj are adjacent, if their distance is not equal to k.

Figure 8  C2,6 and C2,8

We can observe from the construction itself that C  is an n
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Also  , where Jn is n x n matrix with all of its entries as 1. So C  
n. Hence by Proposition 

) = 1.

Proposition 6.1. 2,n) = 1.

Proposition 6.2.  v C ) = 1

Proof.  C  v C n n
each vertex in C  v C

n n n
Therefore,

  
spectrum is given by,

Hence DE ) = 1.



115

Akhil et al.

7. An Upperbound for the Eigenvalues of DE Matrix

better upperbound than the spectral radius of the corresponding matrix.

Theorem 7.1. (Hopf). For a positive matrix of A = (aij) order n,

If 

Proposition 7.1. Let the 

Proof: 

fact that for DE(G),  and .

Consider the graph P4.

Here  = 1.0164 and 
2
= 0.0164, 

3 
= 

4
= 0.

i 

8. Concluding Remarks

and graph operations. Further, this matrix can be extended to other areas 

applications related to this matrix.
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